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The approval of immunotherapy for stage II-IV melanoma has underscored the
need for improved immune-based predictive and prognostic biomarkers. For
resectable stage II-III patients, adjuvant immunotherapy has proven clinical
benefit, yet many patients experience significant adverse events and may not
require therapy. In themetastatic setting, single agent immunotherapy curesmany
patients but, in some cases, more intensive combination therapies against specific
molecular targets are required. Therefore, the establishment of additional
biomarkers to determine a patient’s disease outcome (i.e., prognostic) or
response to treatment (i.e., predictive) is of utmost importance. Multiple
methods ranging from gene expression profiling of bulk tissue, to spatial
transcriptomics of single cells and artificial intelligence-based image analysis
have been utilized to better characterize the immune microenvironment in
melanoma to provide novel predictive and prognostic biomarkers. In this
review, we will highlight the different techniques currently under investigation
for the detection of prognostic and predictive immune biomarkers in melanoma.
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Introduction

The yearly incidence of skin cancer in the United States is greater than all other types of
cancer combined (O’Neill and Scoggins, 2019; Dzwierzynski, 2021). Among skin cancers,
melanoma is the most aggressive. An individual’s lifetime risk of developing melanoma has
gone from 1 in 500 in 1935 to 1 in 50 in 2023, partially due to increased awareness and early
detection of disease (Volkovova et al., 2012; Rastrelli et al., 2014; Dzwierzynski, 2021). Thus,
the need for better prevention and treatment of this disease is increasingly critical.

The development of immunotherapy has served as a pivotal turning point in the
treatment of many cancers and melanoma in particular (Hu-Lieskovan et al., 2020).
Specifically, the discovery of antibodies directed to immune checkpoint molecules such
as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated-protein
4 (CTLA-4), and, more recently, lymphocyte activation gene 3 (LAG-3), have drastically
prolonged survival in melanoma (Uhara, 2019; Huuhtanen et al., 2023). Ipilimumab, an anti-
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CTLA-4 antibody, was FDA approved for the treatment of
unresectable or metastatic melanoma in 2011 based on phase
3 data showing superiority to chemotherapy and treatment with
a well-studied vaccine against glycoprotein 100 (gp100) and was
subsequently found to also show promise in the adjuvant setting
(Hodi et al., 2010; Robert et al., 2011; Sarnaik et al., 2011; Sanlorenzo
et al., 2014). Anti-PD-1 antibodies, however, have become the gold
standard treatment for melanoma based on studies comparing anti-
PD-1 to anti-CTLA-4 and to chemotherapy (Topalian et al., 2012).
A recent study found that pembrolizumab, an anti-PD-1 antibody,
may be used as adjuvant therapy in stage IIB and IIC melanoma, in
addition to advanced melanoma and resected stage III disease (Luke
et al., 2022). There is now very strong data to support neoadjuvant
therapy for stage III melanoma, although integrating with surgical
management in small volume disease may not always be
straightforward and this is currently an area of investigation
(Patel et al., 2023). Combination anti-CTLA-4 and anti-PD-1 is
more effective than either alone but at the cost of significant toxicity
(Wolchok et al., 2013). Most recently, the combination of anti-PD-
1 and anti-LAG-3 gained FDA approval, providing a second
immunotherapy option, although prolonged overall survival (OS)
with this regimen is not yet proven (Huuhtanen et al., 2023).
Emerging immune checkpoint molecules [e.g., adenosine A2A
receptor (A2AR), T cell immunoglobulin and mucin domain 3
(TIM3), V-domain Ig suppressor of T cell activation (VISTA)]
are being explored in clinical trials with already approved ICIs,
offering potentially additional treatment options (Hu-Lieskovan
et al., 2020). Tumor-infiltrating lymphocyte (TIL) therapy has
also been shown to have high efficacy rates as first-line therapy
as well as in the post-PD-1 setting in phase II and phase III trials, but
has not yet reached regulatory approval (Rohaan et al., 2022;
Monberg et al., 2023).

The notable phase III DREAMseq trial established that
immunotherapy should precede targeted therapy for patients
with treatment-naive BRAF V600-mutant metastatic melanoma
(Atkins et al., 2023). Thus, immunotherapy has become the
standard of care for resected stage III melanoma, and most
recently for resected stage IIB-C melanoma. Immunotherapy is
FDA approved despite the fact that over 75% of patients are
cured by surgery alone. Therefore, the need for biomarkers
focuses on two areas: selecting patients with advanced disease for
combination immunotherapy and selecting patients with early stage
disease for single-agent adjuvant immunotherapy.

Although dramatic success has come from the advent of
immune checkpoint inhibitors (ICI), these therapies have also
been associated with multiple adverse events including elevated
liver enzymes, rash, pruritus and fatigue, among many others.
Grade 3 or 4 adverse events have also been commonly reported,
oftentimes in over 50% of melanoma patients treated in clinical trials
with ICI (Wolchok et al., 2010; Robert et al., 2011; Wolchok et al.,
2013). Given these significant clinical findings, as well as the expense
and inconvenience incurred by treatment, the establishment of
biomarkers will be crucial in helping clinicians better weigh the
potential response to immunotherapy against the potential risks and
adverse effects.

Biomarkers are measurable biological indicators that can be
subdivided into two main groups: prognostic and predictive
(Nalejska et al., 2014; Rizk et al., 2019). While prognostic

biomarkers indicate a patient’s disease outcome regardless of
treatment, predictive biomarkers are used to estimate how likely
a patient will respond to a given therapy. Thus, prognostic
biomarkers may identify high-risk patients that may benefit from
multimodal, more aggressive therapy while predictive biomarkers
may indicate a patient’s specific treatment outcome. To discover
these biomarkers, multiple techniques have been utilized including
gene expression profiling of bulk tissue and spatial transcriptomics
of single cells, among others. This review summarizes these different
techniques from the current standard to newer technological areas
of innovation such as multiplexing and artificial intelligence (AI)-
based image analysis for the development of prognostic and
predictive biomarkers in melanoma and highlights directions for
future biomarker development.

Current gold standard

Traditionally, the major clinical and histological prognostic
biomarkers of melanoma have included primary tumor
(i.e., Breslow) thickness, ulceration, mitotic rate, anatomic site
(i.e., acral, cutaneous, mucosal or uveal) and sentinel lymph node
(SLN) involvement (Balch et al., 2001; Abbas et al., 2014). These
factors have been largely captured in the Tumor, Node and
Metastasis (TNM) system by the American Joint Committee on
Cancer (AJCC). In the current (eighth) edition of the TNM system,
Breslow thickness and ulceration, which comprise the T category,
continue to be correlated with survival with thicker and ulcerated
tumors more associated with poorer prognosis (Keung and
Gershenwald, 2018; In ’t Hout et al., 2012). However, mitotic
rate, which remains a strong indicator of prognosis in
melanomas of varying thickness, is no longer incorporated into
the AJCC melanoma staging system.

Regarding the N category, patients with “clinically occult” nodal
metastasis (i.e., patients with regional node metastasis at SLN biopsy
but without accompanying clinical or radiographic evidence) have
been shown to have better survival than patients with clinically or
radiographically evident disease. Thus, SLN biopsies are often
performed in these patients as nodal status is an important
independent predictor of prognosis (Cascinelli et al., 2000; van
Akkooi et al., 2008; Balch et al., 2010; Gershenwald et al., 2017;
Keung and Gershenwald, 2018). A positive SLN biopsy historically
warranted complete lymph node dissection (CLND). However, two
multicenter randomized controlled trials found that there was no
significant difference in OS between immediate CLND versus nodal
observation in these patients, demonstrating new prognostic
implications and roles for adjuvant systemic therapies. Non-
nodal regional (e.g., microsatellite, satellite or in-transit)
metastases also serve as criteria for the N category and have been
associated with worse prognosis (Rao et al., 2002; Van Es et al., 2008;
Wilmott et al., 2012; Read et al., 2015). For the M category of the
TNM system, which refers to sites of distant metastases, patients
with non-visceral (e.g., subcutaneous, cutaneous, nodal) distant
metastasis have a modestly better survival than those with distant
metastases to other sites (Barth et al., 1995; Keung and Gershenwald,
2018).

Although prognostic biomarkers have been well-established for
melanoma, predictive biomarkers are not yet routinely used for ICI
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in melanoma due to limited clinical utility or low sensitivity and
specificity (Huang et al., 2022). However, multiple techniques have
been utilized for the discovery of promising candidates which will be
discussed.

Melanoma genetics and circulating
tumor DNA

Recent advancements in genetic research have provided insight
into the molecular landscape of melanoma, revealing potential
genetic signatures associated with prognosis and therapeutic
response. Notably, a genome-wide sequencing program of
thousands of melanomas worldwide revealed that mutations in
BRAF are most common, with reported frequencies of over 60%
(Akbani 2015; Tímár and Ladányi, 2022). Specifically, a substitution
of valine with glutamate at residue 600 (V600E) accounts for over
90% of mutations within that locus (Dahl and Guldberg, 2007). The
prognostic significance of BRAF mutations has been widely
controversial as some studies have found that BRAF-mutated
melanomas may be associated with worse survival and higher
risk of recurrence but other studies have shown no survival
difference compared to BRAF wild-type (Meckbach et al., 2014;
Adler et al., 2017; Ny et al., 2020; Naimy et al., 2023). Following
BRAF, NRAS, and NF1 comprise the next most common mutations
identified in melanoma. Patients with NRAS- and NF1- mutated
melanomas tend to have a worse prognosis (Cirenajwis et al., 2017;
Podlipnik et al., 2021; Randic et al., 2021). Mutations in BRAF,
NRAS, and NF1 represent driver mutations that lead to aberrant
activation of the MAPK pathway, which is important for cell
proliferation and survival (Burotto et al., 2014).

The identification of mutations guide therapy for melanoma.
BRAF inhibitors (BRAFi) such as dabrafenib and trametinib have
been shown to improve progression-free survival (PFS) and OS in
patients with these mutations (Long et al., 2017a; Long et al., 2017b;
Yang et al., 2023). However, these clinical benefits of BRAFi are
often short-lived given increasing drug resistance. Activating
mutations in NRAS also confer resistance to BRAF-targeted
therapy (Nikolaou et al., 2012; Hawryluk and Tsao, 2014).
Additionally, while patients with melanomas harboring a
different mutation, BRAF V600K, respond to BRAFi, they have
been shown to have shorter PFS compared to BRAF V600E mutant
melanomas with this therapy but exhibit superior clinical response
to ICI (Akbani 2015; Pires Da Silva et al., 2019; Yang et al., 2023).
Additional genetic markers that indicate favorable ICI response
include high tumor mutational burden (TMB), increased expression
of inflammatory mediators, BRAF wild type and BRCA2 mutants
(Ho et al., 2013; Hugo et al., 2016; Goodman et al., 2017; Yang et al.,
2023). Nonetheless, the key DREAMseq study found that initial
treatment with combination ICI therapy is significantly better than
initial treatment with targeted therapy against BRAF andMEK, even
in patients with BRAF-mutated melanomas (Atkins et al., 2023).

Circulating tumor DNA (ctDNA) has also emerged as a
promising prognostic and predictive blood-based biomarker to
monitor disease status in advanced melanoma patients (Calapre
et al., 2017). Melanoma, like many other solid tumors, releases DNA
that may be isolated from peripheral blood which can then be
analyzed using sensitive techniques such as next-generation

sequencing (NGS) to recapitulate intratumoral heterogeneity,
evaluate genomic evolution in response to treatment and reveal
potential resistance mechanisms (Sacco et al., 2020). Prognostically,
levels of ctDNA have been found to significantly correlate with
clinically-relevant, serological markers of tumor burden such as
S100 calcium-binding protein B (S100B), melanoma inhibitory
activity (MIA) and lactate dehydrogenase (LDH) (Sanmamed
et al., 2015; Calapre et al., 2017). In the predictive setting,
multiple studies have shown that plasma ctDNA levels prior to
the initiation of BRAFi therapy correlated with treatment response.
Specifically, the BREAK trials revealed that high baseline ctDNA
levels were reliably and significantly associated with lower PFS and
overall response rate (ORR) to targeted therapy with dabrafenib
(Ascierto et al., 2013; Santiag et al., 2016). A smaller number of
studies have assessed the predictive value of ctDNA in patients
treated with ICI. For example, a study in 2017 found that ctDNA
levels at baseline and early during treatment with anti-PD-
1 antibodies in metastatic melanoma patients accurately
predicted tumor response, OS and PFS (Lee et al., 2017). More
recently, another study showed that ctDNA levels may also inform
treatment response to adjuvant ICI following curative resection (Tan
et al., 2019; Tivey et al., 2022). Currently, ctDNA is being explored in
clinical trials as a biomarker for melanoma recurrence and treatment
response.

Genomic profiling

Immune surveillance has been shown to have potential value in
prognostication for many solid cancers (Fridman et al., 2010; Bindea
et al., 2011). Thus, the immunoscore, a scoring system that
quantitatively classifies TIL density both at the tumor center and
invasive margin, was proposed as a biomarker for cancer
progression. In primary melanoma, the presence of a very high
number of TILs confers a more favorable prognosis (Clemente et al.,
1996; Azimi et al., 2012). However, the universal clinical application
of TILs has been limited due to observer variability. Additionally, the
majority of early stage melanoma patients have “non-brisk” TILs, an
intermediate TIL group that does not provide much prognostic
information (Busam et al., 2001; Azimi et al., 2012; Sivendran et al.,
2014). Development of biomarkers beyond TILs in the clinical
setting has also been challenging given the requirement of
formalin-fixed and paraffin-embedded (FFPE) samples for
melanoma diagnosis, which compromises RNA for
transcriptomic analysis (Bogunovic et al., 2009).

To address this need, Nanostring transcriptomic technology,
which analyzes the expression of multiple transcripts under varying
pathological or physiological states, has been used to profile a group
of 446 immune-associated candidate genes in primary melanoma. A
study in 2014 found that 53 out of the 446 screened genes predicted
non-progression, disease-specific survival (DSS) and prolonged
recurrence-free survival (RFS) in two independent cohorts of
patients with resectable stage II-III melanoma (Sivendran et al.,
2014). This 53-immune gene signature panel, called the melanoma
immune profile (MIP), was validated in a third independent cohort
of stage II-III melanoma patients, further stratifying this patient
population into low- and high-risk groups for enrollment in clinical
trials and/or exposure to potentially toxic ICI (Gartrell et al., 2019).
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The MIP differs from other genomic signatures such as the Castle
Biosciences signature, the latter of which evaluated a 31-gene
expression profile (GEP) test in patients with stage I-II disease
where risk is generally lower. The Castle Biosciences test is based on
the mesenchymal to epithelial transition, hypothesized to play a role
in melanoma genesis (Zager et al., 2018). Recently, a 2023 study has
prioritized the co-extraction of quality DNA and RNA from FFPE
melanoma sections for large scale multi-omic analysis for future
clinical utility. The study described, for the first time, the optimal
approach for the procurement and testing of nucleic acids for the
screening of somatic mutations, miRNA and methylation that may
identify new gene signatures in archival and limited tumor tissue
(Orlow et al., 2023). Genomic tests are also being explored as
companion biomarkers in clinical trial settings.

Single cell and spatial based genomics

Single-cell RNA-sequencing (scRNA-seq) analysis is a valuable
method for obtaining gene expression profiles of individual cells
which helps to identify different cell types and pathways involved in
cancer progression and resistance (Lim et al., 2020; Maynard et al.,
2020). However, the isolation of individual cells during the tissue
dissociation step of scRNA-seq interferes with information
regarding their native spatial organization within the tissue and
relation to other neighboring cells. Spatial transcriptomics
complements scRNA-seq by physically localizing gene sets
upregulated by specific cell types thereby preserving spatial
information (Yu et al., 2018; Longo et al., 2021). To achieve this
aim, studies have found that messenger RNA (mRNA) can be
captured on microarrays of spatially barcoded DNA capture
probes. Complementary DNA (cDNA) can then be generated
from the mRNA by reverse transcription and left affixed to the
arrayed oligonucleotides on the slide, maintaining the RNA
molecule’s original position in the tissue section using the unique
positional molecular barcodes. Sequencing libraries and
computational reconstruction usually follow to model the tissue’s
spatial organization (Ståhl et al., 2016; Ahmed et al., 2022a; Piwecka
et al., 2023).

A recent scRNA-seq study found that PRRT3-AS1, an important
long non-coding RNA (lncRNA) that has been incorporated in
prognostic models for prostate cancer, hepatocellular carcinoma and
glioblastoma (GBM), may be required for tumor cell migration in
melanoma, suggesting that PRRT3-AS1 is not only a potential
prognostic biomarker but also a potential therapeutic target
(Zhang et al., 2022; Liang et al., 2018; Fan et al., 2020; Zhang
et al., 2021; Y et al., 2021). Additional lncRNA-based immune classes
have been associated with survival and integrated into multi-omic
panels for precision immunotherapy based on melanoma samples
from The Cancer Genome Atlas (TCGA) (Yu et al., 2020). Aside
from lncRNAs, studies have assessed the tumor ecosystem in
primary melanoma to indicate prognosis. One study found that
the composition of recurrent cellular neighborhoods (RCNs)
involving stromal, tumor and immune cells significantly differs
with disease stage. According to this model, a spatially confined
suppressive TME develops in melanoma which is sustained by
cytokine gradients upregulating MHC-II and IDO1 expression
and by PD-1/PD-L1-mediated cell interactions (Nirmal et al., 2022).

Other cells in the TME analyzed using scRNA-seq include
T cells and tumor-derived exosomes (TEXs). Studies have shown
that the presence of CXCL13+ CD4+ T cells and CXCL13 expression
broadly correlates with OS in a cohort of melanoma patients,
independent of immunotherapy type (Litchfield et al., 2021;
Veatch et al., 2022). A TEX-related signature, termed TEXscore,
using scRNA-seq was associated with shorter OS across 12 cancer
types, including melanoma (Wu et al., 2021).

Predictive biomarkers have also been proposed using sc-
RNAseq and spatial profiling. One study’s spatial distribution
analysis found that proximity of PD-L1+ cells to tumor cells and
intratumoral CD8+ density predicts response to ICI in the metastatic
setting (Gide et al., 2020). Similar analyses have provided insight
into the mechanism for resistance of melanoma cells to ICI. For
example, using single-cell functional proteomics, it was discovered
that certain signaling networks become activated shortly after BRAF
inhibition and before the emergence of drug-resistant phenotypes
(Su et al., 2017). By leveraging single-cell profiles to understand
tumoral heterogeneity and putative interactions between stromal-
derived factors and immune mediators within melanoma, multiple
studies have called for therapeutic strategies that account for specific
tumor cell composition rather than bulk tumor expression (Tirosh
et al., 2016).

Moreover, sc-RNAseq has been paired with single cell T cell
receptor sequencing (sc-TCRseq) to elaborate additional predictive
information in melanoma, which has recently been shown to be a
feasible technique in both fresh and frozen tissue (Wang et al., 2023).
This paired technique allows for the simultaneous analysis of T cell
clones and phenotypes within single cells, which may provide
information on T cell differentiation, specificity and activation to
better understand underlying disease etiology and guide future
treatment strategies (Pai and Satpathy, 2021). One study found
that two pretreatment characteristics in the peripheral
blood—activated CD4 memory T (TM) cell abundance and TCR
diversity—constitute promising biomarkers of ICI-induced
immune-related adverse events (irAEs) in metastatic melanoma
patients. Additionally, the authors identified a notable correlation
between early T cell clonal expansion and the onset of severe irAEs
in patients treated with combination ICI (Lozano et al., 2022). A
subsequent study found that metastatic melanoma patients who
responded to anti-LAG-3 and anti-PD-1 combination therapy had
higher baseline TCR clonality with CD8+LAG-3+ clones that
expanded and shifted to a more cytotoxic phenotype resembling
NK cells (Huuhtanen et al., 2023). These studies have exemplified
the versatility of sc-RNAseq across different modalities for the
management of melanoma.

Multiplexed IF

Typical approaches to immunohistochemistry (IHC) evaluation
of tissue from melanoma patients have several limitations including
inter-observer variability and the labeling of just a single biomarker
for each tissue section. Emerging techniques, namely, multiplex IHC
or immunofluorescence (mIHC/IF), have attempted to address these
limitations by detecting multiple biomarkers in a single tissue
section through high-throughput staining and quantitative
analysis (Tan et al., 2020; Ugolini et al., 2022; Yaseen et al.,
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2022). This technology deters from using a cocktail of antibodies
reared in separate hosts and instead relies on cycles of single
antibody stains added in sequential order, which are
subsequently removed in order for the next antibody to be added
without cross-reaction (Nguyen et al., 2021). Studies utilizing
mIHC/IF have focused largely on identification of specific cell
populations in the melanoma tumor microenvironment (TME) to
evaluate prognosis and assess response to melanoma
immunotherapies.

TILs, a major component of the TME, have been implicated in
the prevention or progression of tumor growth and invasion leading
to significant interest in TILs as a potential prognostic biomarker
(Oble et al., 2009; Gartrell et al., 2018; Rizk et al., 2019; Gartrell-
Corrado et al., 2020). Conventional IHCmethods have found that as
melanocytic lesions transform from benign nevi to malignant
melanomas, the absolute number of TILs rises (Hussein et al.,
2006; Rizk et al., 2019). The use of mIHC has elaborated on
these findings to show that the presence of TILs, particularly in
the stroma, is a favorable prognostic indicator (Gartrell et al., 2018).
Aside from TILs, melanoma-associated tertiary lymphoid structures
(TLS) are associated with improved OS and lower risk of tumor
recurrence following metastasectomy (Lynch et al., 2021; Mauldin
et al., 2021).

Regarding predicting response to ICI, a multiplex chromogenic
and IF study of melanoma samples showed that proximity between
PD-1 and PD-L1+ cells was associated with response to anti-PD-
1 therapy. Similarly, high co-localization of PD-L1 and
CD8 expression was associated with increased response to
targeted immunotherapy (Tumeh et al., 2014). In another study,
depleting mast cells in the TME was found to improve
responsiveness to anti-PD-1 therapy (Somasundaram et al., 2021).

Further, the AstroPath platform, a multistep framework for
multispectral mIF, produces high quality datasets at the single
cell level for biomarker development and quantitative pathology
to inform precision ICI. Leveraging concepts drawn from the field of
astronomy, this study was able to classify PD-1 and PD-L1
expression intensity on different cell types in the TME in situ on
pretreatment melanoma specimens from advanced melanoma
patients on ICI. In this study, higher density of early effector
T cells (CD8+FoxP3+) correlated with response to anti-PD-
1 therapy whereas the CD163+PD-L1- myeloid phenotype was
associated with lack of response to PD-1 blockade (Berry et al.,
2021).

Multiple studies have also integrated mIHC/IF with additional
technologies to identify predictive biomarkers. Digital spatial
profiling (DSP) with multiplex IF demonstrated that PD-L1
expression in macrophages but not tumor cells was a predictive
marker for PFS, OS, and treatment response. Further, specific
immune markers associated with PFS and OS, respectively (Toki
et al., 2019). Cytometry time-of-flight imaging mass cytometry
(CyTOF) is another tool that has been used in conjunction with
multiplexing to show that proximity of antigen-experienced
cytotoxic T cells (CD8+CD45RO + Ki67+) to melanoma cells was
associated with positive response to ICI (Moldoveanu et al., 2022).
In the metastatic setting, multiplexed mass cytometry-based
imaging has shown that enrichment of B cell patches and
follicles with naïve-like TCF7+ T cells is a favorable predictive
indicator of ICI response (Hoch et al., 2022).

Artificial intelligence and multi-
parameter biomarkers

While AI, a set of sophisticated algorithms and highly advanced
machine learning tools to simulate some aspects of human
intelligence, has greatly expanded its reach across all of medicine,
it has demonstrated new potential horizons for melanoma
biomarker development.

Machine learning, a subset of AI that involves computers
improving performance from learned experience and pattern
recognition, has been leveraged as an important tool for the
identification of prognostic biomarkers. A study in 2022 utilized
a machine learning classifier that accounted for multiple variables of
TILs including cell type (e.g., tumor cells, immune cells) and area of
interest (e.g., tumor, adjacent stroma) to validate the prognostic
value of TILs for potential pathologist-independent use in future
clinical trials. In this study, machine learning found that automated
TIL score is prognostic in clinically-localized primary melanoma
and may assist in isolating a subgroup of stage II patients with high
recurrence risk. This will ultimately enable identification of patients
who would likely benefit from adjuvant therapy (Aung et al., 2022).
In another study, machine learning contributed to the development
of immune diagnostic models to accurately classify melanoma
patients from normal patients (Kulkarni et al., 2020; Du et al.,
2022). Moreover, these authors could develop prognostic models to
estimate composite risk score with clinical parameters to predict
survival of over three to 5 years in melanoma patients. Patients can
then be stratified based on these models into high versus low risk
subgroups with different life expectancies (Du et al., 2022). A
subsequent study, using machine learning, confirmed the
prognostic value of TNM staging and also found that
clinicopathological variables such as sex, tumor site, histotype,
growth phase, and age, were linked to OS. The authors
transformed their results into an online tool for prognostication
for patients with melanoma (Cozzolino et al., 2023). Other AI
techniques have been leveraged for biomarker discovery
implicated in melanoma metastatic progression and have
identified novel prognostic biomarkers (Miñoza et al., 2022).

Aside from prognostication, AI may process large amounts of
available clinical and histopathologic data to aid physicians in
determining the most favorable therapeutic choices for each
patient and avoid treatments that are more likely to fail or lead
to adverse events (Johnson et al., 2021; Guerrisi et al., 2022). A study
has found that deep learning, another AI tool that uses algorithms
modeled to operate similar to the human brain (i.e., artificial neural
networks), applied to histology specimens and clinical data may
predict ICI response in advanced melanoma (Johannet et al., 2021).
Recent studies have integrated clinical outcomes and transcriptomic
data frommelanoma patients on ICI and have generated predictions
for ICI treatment responses (Ahmed et al., 2022b; Kong et al., 2022).
One study in particular was able to develop four machine learning
models utilizing random-forest classification (RFC) incorporating
clinical and genomic features (RFC7), differentially expressed genes
(DEGs, RFC-Seq), survival-related DEGs (RFC-Surv) and a
combination model. All models achieved high area under the
curve (AUC), suggesting strong performances. These authors
found that TMB, as well as the novel genes GSTA3 and VNN2,
were important features in predicting ICI response (Ahmed et al.,
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2022b). Studies have also found that, in addition to clinical and
transcriptomic data integration, simple segmentation of melanoma
whole slide pathology images using machine learning can indicate
ICI predictive biomarkers (Johannet et al., 2021; Li et al., 2021;
Grossarth et al., 2023). Segmentation analyzes images at the pixel
level to classify specific melanoma cells on the slide and ignore
uninvolved tissue. This AI-based method has even achieved high
sensitivity in detecting morphological changes in BRAF-mutated
melanomas, providing additional information on targeted therapies
(Kim et al., 2022).

Discussion

Melanoma is an aggressive skin cancer with rising yearly
incidence. The growing field of biomarker detection in melanoma
is very promising for determining prognosis and predicting
treatment response. These biomarkers have tremendous
implications for future therapeutic decision-making and drug
development.

Currently, standard clinical care algorithms utilize TNM staging
for prognosis. IHC has been able to elucidate many prognostic and
predictive biomarkers including MART1/Ki-67, preferentially
expressed antigen of melanoma (PRAME), makers of
lymphovascular invasion (e.g., CD31/SOX-10) and mismatch
repair (MMR) proteins, among many others (Torres-Cabala
et al., 2020). However, a number of these markers are not
routinely used in the clinic due to a variety of reasons, including
lack of validation or accurate predictive potential (Diamandis, 2012).
Thus, newer technologies are necessary for more robust analyses of
biomarkers. For example, scRNA-seq and spatial transcriptomics
have accounted for heterogeneity in melanoma which was a
limitation of gene expression profiling of bulk tumor tissue. The
latter technique has identified key genetic signatures such as
BRAFV600E which have been considered when treating patients
with ICI. However, it is possible that analysis of crosstalk between
individual cells or the spatial influence of 1 cell on another may lead
to identification of novel targets for treatment. Genomic immune-
based (e.g., interferon) signatures have also stratified melanoma
patients into low and high risk groups based on level of immune
surveillance, which can further guide precision ICI. Subsetting these
signatures based on single cell data may allow for improved
accuracy.

Additional technologies that have elucidated cellular
interactions in the TME include the use of multiplexed,
quantitative IHC which has allowed for the analysis of multiple
cellular phenotypes at a time, in addition to assessing proximity of
individual cells to each other. In particular, multiplexing has better
characterized TILs and their role in the TME.

AI-based analyses have also expanded biomarker discovery in
melanoma. By simulating some aspects of human intelligence in a
sophisticated and automated platform, these tools have the
propensity to decrease inter-observer variability and error in
order to more reliably quantify biomarker presence in patient
samples based on integrated clinical and histopathologic data
along with image analysis.

In the prognostic setting, the GEP test that classifies melanoma
patients as Class 1 (low-risk) or Class 2 (high risk) for recurrence or

metastasis is commercially available, which may allow clinicians to
modify screening intervals and treatment regimens depending on a
patient’s individual disease risk. However, studies have assessed the
performance of this tool and while this GEP test generally identifies
recurrence in patients with stage II disease, correctly identifying
recurrence in stage I patients is poor, limiting its clinical utility
(March et al., 2020). Thus, some of the aforementioned prognostic
biomarkers will require further investigation for integration into
standard AJCC staging and use in the clinic.

In the predictive setting, therapeutically targeting PD-1 and
CTLA-4 correlate with clinical benefit. However, given intratumoral
heterogeneity and limited ICI options, these markers are insufficient
to capture the nature of all patient tumors. Additional biomarkers
that have been well-explored such as the TMB and inflammatory
mediators may soon be utilized in clinical settings. Newly discovered
biomarkers such as antigen experienced cytotoxic T cells are likely to
require additional evaluation, although preliminary data shows
promise for predicting ICI treatment response.

While biomarkers may serve as independent prognostic or
predictive indicators, a single biomarker is usually inadequate to
precisely stratify patients. Thus, multimodal investigation of
biomarkers using a combination of the techniques described
while also prioritizing sensitivity, specificity and cost will be
important for timely assessment of future patient risk and response.
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