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Cell level functions underlie tissue and organ physiology. Gene expression
patterns offer extensive views of the pathways and processes within and
between cells. Single cell transcriptomics provides detailed information on
gene expression within cells, cell types, subtypes and their relative proportions
in organs. Functional pathways can be scalably connected to physiological
functions at the cell and organ levels. Integrating experimentally obtained
gene expression patterns with prior knowledge of pathway interactions
enables identification of networks underlying whole cell functions such as
growth, contractility, and secretion. These pathways can be computationally
modeled using differential equations to simulate cell and organ physiological
dynamics regulated by gene expression changes. Such computational systems
can be thought of as parts of digital twins of organs. Digital twins, at the core, need
computational models that represent in detail and simulate how dynamics of
pathways and networks give rise to whole cell level physiological functions.
Integration of transcriptomic responses and numerical simulations could
simulate and predict whole cell functional outputs from transcriptomic data.
We developed a computational pipeline that integrates gene expression timelines
and systems of coupled differential equations to generate cell-type selective
dynamical models. We tested our integrative algorithm on the eicosanoid
biosynthesis network in macrophages. Converting transcriptomic changes to a
dynamical model allowed us to predict dynamics of prostaglandin and
thromboxane synthesis and secretion by macrophages that matched
published lipidomics data obtained in the same experiments. Integration of
cell-level system biology simulations with genomic and clinical data using a
knowledge graph frameworkwill allow us to create explicit predictivemodels that
mechanistically link genomic determinants to organ function. Such integration
requires a multi-domain ontological framework to connect genomic
determinants to gene expression and cell pathways and functions to organ
level phenotypes in healthy and diseased states. These integrated scalable
models of tissues and organs as accurate digital twins predict health and
disease states for precision medicine.
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Introduction

Accurate multiscale computational models of physiological
functions of different organs within the human body have the
potential to revolutionize our understanding of human biology
and greatly advance the practice of medicine. Vast amounts of
data are being collected in different domains of genomics,
biochemistry, cell biology and physiology and clinical sciences. It
will be necessary to bring together these data to understand the
physiology of organ systems. Physiology is dynamics (Rubin et al.,
2019). Understanding how the function of organs changes over time
is essential for understanding both homeostasis for health and
disease origins and progression. The functions of organs arise
from cell-level physiological activity. Examples include the heart,
where ability of cardiomyocytes to contract in a rhythmic and
coordinated fashion underlie the beating of heart, and the kidney
where ability of different cell types of the nephron to filter large
molecules and reabsorb ions, water and small molecules underlie our
ability to regulate water balance, excrete end products of
metabolism, maintain pH balance in blood, and control blood
pressure. Thus, to generate accurate predictive models of organ
function, the first step is to build accurate models of whole cell
functions. Such models should consider the key components and
pathways within the cell; the networks that arise from interactions
between pathways and pathway components; the topological
features of the networks including the feedback loops,
feedforward loops and bifans (Milo et al., 2002) which enable
processing of information within the cell (Ma’ayan et al., 2005);
and state changes driven by bistable switches (Bhalla and Iyengar,
1999; Tanaka and Augustine, 2008).

To go from cell-based models to organ level models we need to
consider how the different cell types in the organ function and
interact as well as the role of the extracellular matrix in controlling
the mechanical and signaling properties of the organ. Multiple
anatomical structures make up each organ. Blood vessels are one
example of tissue components contributing to an organ’s
physiology. Blood vessels have vascular smooth muscle cells,
fibroblasts, endothelial cells (Sturtzel, 2017) that line the wall of
the blood vessels and make up the capillaries, as well as pericytes
(Lee and Chintalgattu, 2019) in some organs. The latter two cell
types are often the source of important signaling molecules and
sense mechanical forces such as the pressure from blood flow to
control organ function.

Changes in cell state are driven by changes in gene expression
patterns that control whole cell responses. Transcriptomic profiles
represent cell identity as well as cell state. Hence, we hypothesize that
changes in gene expression patterns can be used to predict dynamic
physiological capabilities. We describe our initial approach to test
this hypothesis and provide preliminary evidence that the approach
we propose could work. Our approach consists of two sets of
operations that integrate two different modeling approaches.
First, we take a ranked list of genes, typically differentially
expressed mRNAs indicative of two different conditions (states)
the cells or organs are in and create networks using pathway
information from prior knowledge databases. These interacting
pathways are enriched for the differentially expressed genes and
could account for change in activity. Going from genes to pathways
using prior knowledge is a very widely used statistical modeling

approach called gene-set enrichment analysis (Subramanian et al.,
2005). Second, the reactions participating in identified pathways that
together make up edges in directed subgraphs or graphs are readily
converted to systems of coupled differential equations. These
systems of coupled differential equations are dynamical models
that can be used to run simulations to predict how cell
biochemical or physiological functions change with time. Here,
we describe how this two-step algorithm can work, and
eventually become part of a larger algorithm for a digital twin. In
biology, digital twins can be thought of multi-scale computational
models that can predict physiological events from genomic and
molecular data. Such predictions may be at the cell level, tissue/
organ level or at the whole organism level. In this review we consider
the cell and organ levels.

Computational approaches to
modeling dynamics

To support widespread use of single cell transcriptomics
multiple approaches to conduct trajectory analyses from time
series and single timepoint experiments have been published, and
these approaches are described and compared in a review article
(Ding et al., 2022). This approach has been particularly useful in
mapping trajectories during developmental processes and provide
useful insight into precursor and differentiated cell types in many
organ systems. However, all these approaches provide pseudo-time
series outputs that can only be constrained by experimental time
series analyses. Pseudo time series order entities with respect to one
another to infer trajectories. For example, ligand activation of
receptor and stimulation of membrane effectors occur prior to
activation of protein kinases. This information can be used to
develop trajectories from receptors to physiological effectors such
as channels and metabolic enzymes. Pseudo time series analyses do
have value in understanding the progression of biological states and
we had used pseudo time series in a 2005 study (Ma’ayan et al., 2005)
to understand the role of regulatory motifs such as feedforward and
feedback loops in signal propagation from receptor to transcription
factors to control the duration of transcription factor activation.
Orthogonal experimental approaches such as single nucleus ATAC
Seq and CRISPR/Cas9 mediated gene modification provide
mechanistic insights into trajectory analyses and together they
may help define realistic time-dependent predictions in the
future. The limitation of pseudo-time series to capture
physiological dynamics lies in its inability to be scalable and
hence is likely to be of limited value in realistic digital twins.

A combination of proteomic and phenotypic feature
measurements to identify new drug combinations that would
work on drug resistant cells uses differential equation-based
modeling to develop predicted responses of cancer cells (Frohlich
et al., 2018). The approach is similar to the PK/PD modeling widely
used in pharmacology that is a mainstay in the drug discovery
process. Such approaches that integrate perturbation data with prior
pathway information can predict drug responses, especially
responses to combination therapy. The Cell Box Software suite
(Yuan et al., 2021) provides a useful tool set for such analyses
including network development in a purely data driven manner.
Limitations of such a modeling approach is that the captured
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perturbation dynamics depend on many undefined reactions and
rate constants and hence it is uncertain whether such an approach
will work under different physiological states and conditions
without specific large-scale gathering of experimental data for
each condition.

An integrative dynamical model using coupled differential
equations that are solved in a standard solver using MATLAB
has been developed to predict macrophage polarization (Zhao
et al., 2021; Zhao and Popel, 2021). The scope of the model is
extensive and impressive, although surprisingly the prostaglandin
biosynthesis and signaling pathways are missing. Nevertheless, the
model represents an important step in the development of the virtual
macrophage that can predict macrophage polarization and functions
in various physiological states. Such models could well be adapted to
describe other types of blood cells although and their trajectories in
health and disease. Beyond cell level models, these researchers have
proposed approaches that integrate omics data and dynamical
models for tissue level angiogenesis models that represent
communication between different cell types (Zhang et al., 2022).
Such approaches are likely to be useful in developing digital twins for
angiogenesis.

The approach we propose here has some similarities and
differences with these previously described models. Our approach
is focused on getting the cell-level molecular and pathway details
“right” and then determining if dynamical models based on granular
biochemical and biophysical reactions can be used to predict and
understand physiological behaviors at the cell level and at the organ
level. The pros and cons of this approach and its use as the core of
digital twins of organs are discussed below.

Advantages and challenges in the use of
numerical analyses to predict
physiological dynamics

Modeling biochemical and physiological processes using
standard chemical kinetics is better than most other approaches
because this is the most realistic representation of these processes
including those involved in generation and sensing of forces. We
have long favored the use of chemical kinetics representations and
shown that we can make non-intuitive experimentally verifiable
predictions. Our model using systems of ordinary differential
equations (Bhalla and Iyengar, 1999) that predicted the existence
bistable positive feedback loops that can enable switching cellular
states has been experimentally validated by others in cerebellar long-
term depression (Tanaka and Augustine, 2008). Our spatial partial
differential equation model predicting selective cAMP accumulation
in dendrites as compared to cell body of neurons (Neves et al., 2008)
was validated using a cAMP biosensor inmouse brain slice tissues by
Castro et al. (2010). We have continued to use this approach to
develop predictive models of interactions between subcellular
processes. We predicted that dynamic balance between
membrane vesicle transport and microtubule growth is required
for neurite outgrowth (Yadaw et al., 2019). We used gene
knockdown of vesicle transport and docking protein to
demonstrate the validity of our prediction (Yadaw et al., 2019;
Hansen et al., 2022). Despite these successes, challenges have
always been present. Initially some of the challenges were

computational, such as computational costs and propagation of
errors. With the exponential increase in computational capability
these challenges have become less of a barrier. However, the
biological challenges persist. The cellular concentrations of most
proteins have yet to be explicitly measured in most cell types of the
human body, although it is often possible to estimate or guesstimate
them from the vast biochemistry and cell biology literature. Also,
reaction rates are often not known. Databases such as BRENDA
(Schomburg et al., 2017) are useful, although kinetic information
regarding mammalian systems is limited. Another useful resource is
Bionumbers which contains many “average” values used to set up
the models for numerical simulations (Milo et al., 2010).

Gene expression changes to neurite
outgrowth, a whole cell response:
identifying and modeling cell
regulatory pathways and networks

In a recent study, we have shown how transcriptional patterns
can be used by cells to drive cell state changes and whole cell
responses to external signals through well-known canonical
pathways (Hansen et al., 2022). Although our study is based on
bulk transcriptomics and discovery proteomics obtained from only
one cell line cultured in isolation, our analysis strategy should be
applicable to single cell transcriptomics and other omics
technologies as well. Briefly, we treated the neuronal cell line
Neuro2A (N2A) with an agonist for the cannabinoid receptor 1
(CB1R) to induce neurite outgrowth. Differentially expressed genes
and proteins induced after different stimulation periods were
subjected to pathway enrichment analysis (Figure 1), using the
Molecular Biology of the Cell Ontology (MBCO), a cell biology
focused ontology that was generated in our lab (Hansen et al., 2017).

We identified many subcellular processes (SCPs), which are
commonly thought of as constitutive pathways that are operational
in many, if not all cell types. While these SCPs such as alternative
splicing, pyrimidine salvage and membrane protein synthesis are
universal, the ability of the extracellular signal to regulate them in a
coordinated manner gives the cell additional capacity to mount the
whole cell response. Our data documents that the canonical SCPs are
activated in a chronological order that matches their dependencies
(Figure 2). It can be readily seen that many cellular pathways in
different organelles such as the nucleus, endoplasmic reticulum
(ER), cytosol and growing neurite compartments are involved.
Although shown in an abstracted form for clarity, each of the
SCPs shown in Figure 2 contains multiple interacting proteins
that come together to form larger functional networks. The
different pathways must work in a highly coordinated fashion
and imbalances in their coordination can lead to stoppage of the
cellular responses. This conclusion is supported by dynamical
modeling of one set of SCPs involved in transporting newly
synthesized membranes as cytosolic vesicles from the Trans-
Golgi network (TGN) through the neurite shaft to the growing
tip at the end of the neurite. The new membrane is needed to build
the axonal shaft as neurite grows. The importance of dynamics is
inferred from the multicompartment ordinary differential equation
(ODE) model that simulates the movement of newly synthesized
vesicles from the TGN in the cell body to the growing tip. After
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developing an analytical solution for the prediction of parameter
settings that allow neurite outgrowth at a given velocity and
literature-curated model constraints with high accuracy, we could
show howmultiple pathways interact with each other to generate the
whole cell response. Our analysis revealed that increased neurite
outgrowth depends on increased backward vesicle traffic from the
neurite tip to the TGN (Figure 3). This initially counter intuitive
dependency ensures back transport of components needed for
forward vesicle traffic. Such focused simulations within the larger
overall computational model are likely to be critical parts for
verification of the underlying pathways and validation of
mechanisms at the subcellular levels could also be used to
parameterize and identify the uncertainty in how interactions
between SCP subnetworks as well as interactions with the cell
and extracellular matrix lead to dynamics of organ level functions.

Predicting cardiomyocyte
electrophysiology and contractility
from transcriptomic changes

The ability to develop a dynamical model for cell functions is
dependent on the pathways and networks inferred from the DEGs
and DEPs. Once these networks are identified, pathway activities can
be readily connected to systems of coupled differential equations
that can be used for multi-compartment ODE models or PDE
models. Although most models that capture biochemical SCPs
use a pathways framework, biophysical models can also capture
changes in gene expression to predict responses to perturbation. In a

recent study using cardiomyocytes differentiated from healthy
human subjects, gene expression changes induced by tyrosine
kinase inhibitor drugs that are effective cancer therapeutics was
used to develop computational models that predict arrhythmogenic
responses to cancer drug therapy in individuals (Shim et al., 2023).
Changes in levels of gene expression of different channel proteins by
drugs were scaled and incorporated as changes in level of channel
proteins into a multicompartment ODE model of cardiomyocyte
action potential and contractility. Experimental measurements of
cardiomyocyte action potentials, intracellular calcium, and
contraction in the cardiomyocytes demonstrated that modeling
predictions were mostly (80%) accurate. The simulations were
also able to predict responses to drugs and a second perturbation
such as hypokalemia (low potassium). Together the biochemical and
biophysical models demonstrate the ability of numerical simulations
to use transcriptomic data for predictions.

An integrated algorithm to go from
differentially expressed genes to
biochemical dynamics: eicosanoid
biosynthesis network in macrophages

We developed a computational pipeline that integrates a
canonical model of interest with transcriptomic or proteomic
data – either bulk or single cell - to develop cell-type selective
dynamical models for the prediction of cell-type selective whole cell
responses (Figure 4). The canonical model would involve all known
enzymes and reactions described for any cell type of the same

FIGURE 1
A flow chart showing the steps used for building networks of subcellular pathways (SCPs) underlying neurite outgrowth (NOG). Standard and
dynamic enrichment analysis refer to methods used inferring pathway from differentially expressed genes (DEGs) or proteins (DEPs). Reproduced from
and for details see Hansen et al. (2022).
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organism. Like others (Frohlich et al., 2018), we assume that the
reaction rate parameters are canonical as well, i.e., they are the same
for all cell types within an organism. Experimental confirmation of
our spatial cAMPmodels (Neves et al., 2008) by others (Castro et al.,
2010) indicate that this is likely to be true. Starting sources for the
construction of a canonical model could be the KEGG metabolic
networks (Kanehisa et al., 2017) or Reactome pathways (Gillespie
et al., 2022) for reaction schemas and BRENDA database
(Schomburg et al., 2017) for reaction rate parameters. Using
transcriptomic and/or proteomic data our computational pipeline
adds cell-type selectivity to canonical dynamical models by adjusting
steady-state or time-dependent concentrations of enzymes and
other proteins to experimentally observed levels.

In more detail, our computational script converts the canonical
model into cell-type selectivemodels by first removing enzymes that are
not expressed and all reactions that as a consequence lost connection to
precursor metabolites because of interrupted substrate flow. In the case
of transcriptomic data, our pipeline automatically adds translation and
protein degradation reactions to each proteoform in each compartment
that can be linked to experimentally determined mRNA levels.
Canonical models can be updated based on new knowledge, and
our pipeline will generate updated cell-type selective models as well.
The individualization of dynamicalmodels from cell-type selective omic
datasets has been implemented by other authors as well, studying drug
effects on the survival of cancer cell lines (Frohlich et al., 2018).
Currently, our algorithm allows compartmentalization of the cell

and is capable of predicting metabolite profiles in addition to
protein states. After generation of cell-type selective models, our
script writes functional MATAB code for each cell type, allowing
simulation of cell-type selective responses using standard ODE
solvers. Our algorithm can be readily modified to write code for
modeling software such as Octave, or Python ODE solvers.

To test our algorithm, we selected arachidonic acid (AA)
metabolism that is operative in many cell types and organs. The
metabolites generated by this network are important signaling
mediators with physiological effects on kidney, uterus and blood
vessels as well as other organ systems. Due to the availability of
proteomic, transcriptomic and metabolomic datasets from the same
experiments, we selected a macrophage cell line, bone-marrow
derived macrophages (BMDM), to develop the model and assess
its predictive capability.

Our canonical model (Figure 4) focused on the synthesis of the
major derivatives of AA, i.e., prostaglandins, prostacyclins,
thromboxane, leukotrienes and the products of 12- and 15-
lipoxygenases (Wang et al., 2021). AA is generated from intracellular
membranes by cytosolic phospholipase A2 that is recruited to the site of
action by an intracellular calcium peak induced by macrophage
activation (Leslie, 2015). Canonical reaction parameters were curated
from the literature, if available (PENTACON, 2023). To generate a cell-
type-selective dynamic model, we used freely available transcriptomic,
proteomic and lipidomic datasets generated from BMDM. The
proteomic data described protein expression values in unstimulated
BMDMs (Qie et al., 2022) andwas used to determine protein expression
values at baseline. The published transcriptomic and lipidomic data was
generated after BMDM activation by sequential stimulation with Lipid
A, an LPS analogue and ATP (Kihara et al., 2014). Both ligands work
through cell surface receptors. We used the transcriptomic data to
predict how the enzyme expression levels obtained from the proteomic
data change in response to macrophage activation. After
individualization of the canonical model our script wrote the related
MATLAB code that allowed simulation of metabolite profiles after
macrophage activation (Figure 5).

The researchers who generated the transcriptomic and lipidomic
datasets also published a dynamical model of arachidonic acid
metabolism that predicts experimental lipid profiles with high
accuracy and showed functional coupling between cyclooxygenases
and the terminal synthases (Kihara et al., 2014). We outline the major
differences between their and our approaches. These researchers a)
simulated reactions using flux dynamics, where fluxes depend on
enzyme-specific rate parameters as well as time-dependent enzyme
and substrate concentrations. Our equations are based explicitly on
Michaelis Menton Kinetics. b) They assumed enzyme protein
concentrations follow gene expression values with a delay of 4 h.
We use mRNA translation and protein degradation rates to simulate
changes of baseline enzyme expression that we predicted from
proteomics data. In our model using translation and degradation
rates protein expression profiles follow the gene expression profiles
with only a short delay. c) The original study focused on the reactions
downstream of AA and use the experimental AA time course as a given
input for their reactions. Our model includes simulation of AA
production and recycling. d) our model contains multiple subcellular
compartments, i.e., cytoplasm, endoplasmic reticulum/nuclear
membranes, and the Golgi apparatus whose sizes are determined
from experimental data. Inclusion of multiple different

FIGURE 2
Whole cell response requires deep and distributed responses. All
shown SCPs are related to growth of the neurite shaft or scaffold.
Described functions summarize pathway activities predicted at indicated
time points from gene expression profiles induced by CB1R
stimulation. MTOC: Microtubule organization center, PE/PS:
Phosphatidylethanolamine/-choline, GM: Ganglioside, ER: Endoplasmic
reticulum. Adapted from and for details see Hansen et al. (2022).
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compartments allows consideration of different intracellular
localizations of downstream enzymes (Yuan and Smith, 2015;
Calder, 2020), simulation of enzyme membrane recruitments
triggered by the calcium peak (Leslie, 2015) as well as vesicular
enzyme trafficking (Yuan and Smith, 2015). These realistic details
allow for better specification of cell type identity. Overall, our
automated algorithm works well (Figure 5). Generally, if initial
simulations are substantially different from experimental
observations, the model can be revised to add additional cell
biological details such as post-translational regulation or additional
subcellular compartments. Such variations on a canonical thememodel
provide a feasible approach to model cell type selective metabolic
changes and can be readily adapted to single cell transcriptomic data.

Dynamical models from single cell
transcriptomic data—use of ML-AI
approaches

The rapid advances in transcriptomics at the single cell has
greatly enhanced our understanding of tissue and organ function.
Single cell transcriptomics not only allows us to document the

abundances of the different cell types and subtypes in an organ,
but also to estimate their capacities for physiological functions.
Further, in disease states, single cell transcriptomic measurements
enable us to identify infiltrating immune cells and the mechanisms
by which they control inflammation and organ responses that can
drive disease initiation and progression. Developing accurate
computational models of physiological dynamics at the single cell
level will be a necessary first step in creating digital twins to
understand how organ function changes in disease states. Once
an ML or AI algorithm is trained on a particular model, its use can
significantly decrease the time needed for simulation with a
previously untested sets of expression levels, without loss of
quality of the predictions (Nilsson et al., 2022). Such models can
also be used to understand the molecular and cellular basis of organ
robustness, wherein the organ remains resilient to damage from
different types of perturbation including external insults. ML and AI
algorithms can also be trained to generate predictions in the
opposite direction, i.e., to predict the underlying expression levels
from the observed output of the dynamical system. ML and AI
algorithms could also help to identify suited drug combinations that
generate the desired effect in one cell type, while avoiding the
unwanted side effect in another cell type.

FIGURE 3
Multicompartment ODEmodel showing the necessity for vesicle recycling (i.e., membrane back transport) for neurite growth. Recycling is required
to maintain the dynamic concentrations of the motor protein kinesin and the fusion protein v-SNARE for the whole cell response. TGN, Trans-Golgi
Network; PM, Plasma Membrane. Reproduced from Hansen et al. (2022). For details see Hansen et al. (2022) and Yadaw et al. (2019).
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Advances in hardware technologies including the development
of increasingly fast GPU processers have made the running of
thousands to millions of models both cheap and fast.
Commercial software such as MATLAB or freeware such as
Octave offers programs that that can be used for such
simulations. The barriers to using these technologies are mostly
at the biological level. The overall biological knowledge of the system
being simulated should be utilized to constrain the development of
the large-scale simulations with flexibility. Such an approach would
prevent simulation of the proverbial spherical cow, but at the same
time allow detection of black swans - rare variations in whole cell
functions with high impact on physiology.

To fully utilize the knowledge from single cell transcriptomic data, a
systematic approach to build organ level dynamical models from single
cell transcriptomic data starts with building reasonable models for each
cell type and each cell assigned to a cell type (Figure 6). Single cell
transcriptomic data indicate that different components of a pathway are
expressed at varying levels in individual cells. Model simulations can
generate outputs for all observed expression profiles. Additional
synthetic training data can be generated by introduction of random
variations in enzyme concentrations that lie within biologically
reasonable constraints. If the model contains equations describing
drug actions, their concentration can be varied in the synthetic and

experimental training data using the same rules. Overall, such an
approach could allow the generation of thousands or even millions
of different models, each of which will link its own enzyme and drug
profile to its simulated molecular response profile. Training of ML and
AI algorithms on all profiles can unveil relationship patterns between
individual molecules or groups of molecules across the three
different profiles.

Machine learning approaches are already used as an alternative
to classical dynamical modeling for signaling pathways from
receptors to transcription factors (Nilsson et al., 2022). Using a
genome-scale artificial neural network and synthetic data based on
canonical pathways and parameters the model predicted with
reasonable accuracy the relationship between ligand receptor
interactions and transcription factor activation in macrophages as
assessed by transcriptomics.

In other fields that use numerical simulation extensively, neural
networks have been successfully used to develop models and make
reasonably accurate predictions. Adaptation of graph neural
networks that use a “encode-process-decode” approach as
described by the authors has been used to develop accurate
medium range weather predictions (Lam et al., 2023). This
machine learning approach uses network framework where
system states (e.g., reactant identity, reactant concentrations) are

FIGURE 4
An algorithm that integrates canonical networks of subcellular processes with gene expression profiles to produce cell type specific networks and
systems of reactions that can be used for dynamical modeling. AA, arachidonic acid.
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represented as nodes and dynamics are approximated by message-
passing between these nodes. Such systems do not require explicit
formulation of the system in terms of differential equations
(Sanches-Gonalez et al., 2020), nevertheless are able to learn and
produce complex simulations with mesh-based systems (Sanchez-
Gonzalez and Battaglia, 2021). Although we have not yet seen the
use of such graph neural systems-based models for dynamics from
single cell transcriptomics data, it is likely that such simulations will
be useful to extract deep knowledge as we accumulate spatial
transcriptomic data at the single cell level.

Cell to tissue models and disease
states–integrating with clinical and
pathology phenotypes

Cell models as cores of digital twins presume a middle-out
format. This format uses a cell centric approach in going from genes
to organ level physiological functions. The components (mostly
proteins) of pathways and functional units within cells can be
connected to genes and their genomic and epigenetic
determinants at one end and organ physiology and organismal
phenotypes at the other end. Changes in cellular components in

different physiological and pathophysiological states are
experimentally identified from omics analyses. To make these
connections in an explicit manner so distant functional
relationships are not only computable but also findable at every
scale of organization and traceable across scales we need knowledge
graphs that connect components and features both within and
between knowledge domains.

An example of framework that connects physiological and
pathophysiological characteristics (phenotypes) to genomics at an
individual level is the Global Alliance for Genomics and Health
(GA4GH) Phenopacket schema (Jacobsen et al., 2022). This schema
uses ontology terms across various domains such as genomic
variants, pathology, clinical measurements, and therapeutic
actions to connect features from one domain to another.
Developing Phenopacket-like schemas as knowledge graphs will
be the next challenge to be solved to connect cell level physiology to
organ phenotypes. In addition to pathways and processes within
each cell type at a single cell level, such connections will have to
include molecular details of cell-cell interactions and cell-matrix
interaction. Technologies advances in spatial transcriptomics,
metabolomics, and proteomics, at the single cell level are making
it possible to identify and map spatial relationships between
individual cells in a single cell type, and between different cell

FIGURE 5
Comparison of simulation and experimental data for production of lipid messengers in macrophages. (A)Gene expression profiles (light blue circles
in left figure column, n ≥ 3) induced by sequential treatment of Bone-marrow-derived Macrophages with the LPS analogue Lipid A and ATP (Kihara et al.,
2014) were mapped to the canonical network of Arachidonic Acid Metabolism and subjected to spline interpolation (light blue dashed lines). Assuming
high turnover rates, protein expression time series (dark blue lines) were predicted frommRNA profiles. To allow direct comparison we adjusted the
mRNA profile values to lie within the same range as the protein concentrations. ATP stimulation generates a cytoplasmic calcium burst that triggers
translocation of multiple eicosanoid enzymes, including cytoplasmic phospholipase A2 (PLA2G4A) from the cytoplasm (Cyt) to intracellular membranes,
e.g., the endoplasmic reticulum or Golgi membranes (ERMem, GolgiMem, respectively). Simulated concentrations of the lipid messengers (PGD2 and
TXB2 - green lines in right column) agree with lipidmessengers measured in the extracellular space (Ecs) (culturemedium) in the same experiment (green
circles and standard deviations). AA: Arachidonic Acid, PGD2: Prostaglandin D2, TXB2: Thromboxane B2. PTGDS: Prostaglandin D2 synthase, TBXA1:
Thromboxane A1 synthase 1. (B) Enzyme kinetics in our model are simulated by Michaelis Menton kinetics.
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types. A simplified schematic of a digital twin for organ function
prediction is shown in Figure 7. The genomic interpretation
workflow is taken from the Phenopackets schema (Jacobsen
et al., 2022).

Relationships between multicellular structures within an organ
such as blood vessels and nephrons in kidney or blood vessels and
chambers (e.g., left ventricle) in the heart will be specified in terms of
molecular interactions. This spatial knowledge will have to be
incorporated into functional models to accurately simulate how
cell-level physiology functions enable the emergence of organ

phenotypes that are clinically measured, such as estimated
glomerular filtration rates for kidney and left ventricular ejection
fraction for heart. At the other end of a multilayered knowledge
graph, we will have to connect the transcriptomic data in different
cell types and subtypes to genomic determinants such as single
nucleotide polymorphisms, copy number variations and other
features. We will also have to connect epigenetic determinants to
transcriptomic profiles. The effects of non-coding RNAs in
controlling transcription will have to be mapped to the
knowledge graph to fully describe the various modes of
regulation that control mRNA levels for translation.

Cell endowment is a concept that emerges from single cell
transcriptomics. Cell endowment states that normal function of
organ level physiological functions is dependent on the levels of key
cell types. Single cell transcriptomic data sets provide information
regarding the number of cells in each cell type and subtype in
addition to the gene expression profiles and this information will be
the basis for important parameters that connect cell physiological
events to organ phenotypes. This information can be captured in the
knowledge graphs as node attributes at the cell level and used in a
quantitative fashion in the numerical models The ability to encode
cell endowment within the graph structure is a good example of
power of graphs in representing multidimensional biological
systems. For such graphs to be properly constructed it is essential
that the semantic frameworks within different domains are
appropriately and correctly harmonized and that ontology
integration is an early focus in development of digital twins.

Conclusion and perspective

Challenges in building realistic digital twins
for organ function

Organ structure
The conversion of cell-level physiology into organ function is in

part controlled by the spatial organization of the different cell types
within the organ in the context of the extracellular matrix.
Additionally, both local and global geometries in the organ will
shape biophysical forces that in turn control cell-level physiology
through mechanotransduction. Here, we have to account both for
the contributions of the extracellular matrix to the overall
biomechanical properties of the tissue and organ as well as the
interactions of matrix proteins with cell membrane proteins to
communicate both biomechanical and biochemical signals to the
different cell types. It is likely that these properties will vary from
organ to organ and even within regions of an organ. How these
similarities and differences are encoded in the knowledge graphs is a
challenge that needs to be addressed.

Cell biological rules
Physiological functions at the whole cell level are governed by a

myriad of rules including those that specify constitutive properties.
Such rules need to consider the regulation by the vast signaling
networks that transduce external and intracellular signals to control
effector functions, such as cytoskeletal dynamics or intracellular
degradation pathways. Rules governing the relationship between
mRNA and protein levels are of importance as well, when building

FIGURE 6
Workflow for ML and AI-based extraction of molecular
relationships from simulations of dynamic models. Dynamic models
that incorporate experimental or synthetic enzyme concentrations as
independent variables allow generation of dependent large-
scale simulated response profiles. Statistical, ML and AI algorithms can
allow identification of hidden relationships between individual
enzyme, drug, and response molecule concentrations.

FIGURE 7
A simplified schema adopted from (Jacobsen et al., 2022) of how
genomic descriptors (red boxes) within the Phenopacket schema can
be connected to single cell transcriptomic data andmodels to develop
digital twins of organ function. ACMG, American College of
Medical Genetics; VCF, variant call format.
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functional networks from single cell or bulk transcriptomic data.
Rules for protein turnover and location are also important and need
to be appropriately coded as node attributes. Although there is
general concordance between mRNA and protein levels (Buccitelli
and Selbach, 2020) this needs to be ascertained for individual
proteins of interest and can be done by parameter variation
exercises in dynamical models.

Not every cellular function is required for simulation of whole cell
physiology that drives organ phenotype. However, for an organ
function of interest, it is essential to generate rules on how to
simulate the activities of relevant pathways and their functional
interactions. For example, for simulating organ functions such as
nutrient absorption in the intestines (Kellett et al., 2008), glucose
reabsorption in the kidney proximal tubule cells (Chichger et al., 2016)
or water reabsorption in the kidney principal cells (Zhao et al., 2023) it
is essential that rules governing trafficking (i.e., transport and
recycling) of the appropriate transporters, channels and pumps are
specified for the cell types of interest. Many of these rules can be
generated from the vast experimental literature in cell biology,
biochemistry and physiology that have studied individual processes
in depth. The rules can be encoded as edge specifications. However, in
using prior knowledge, it is important to have strict guidelines in
interpreting the experiments to avoid artefactual conclusions. A
common example is the caution we need to exercise in extracting
rules from studies that overexpress proteins of interest in exogenous
systems to obtain insight into native physiological functions.

Parameters for interactions
For building dynamical models, obtainment of kinetic parameters

for the reactions and concentrations of reactants has remained among
the most intractable problems, although databases such as BRENDA
(Schomburg et al., 2017) offer great help for this task. Since our early
work on bistable switches for cell states in the late nineties (Bhalla and
Iyengar, 1999) till today, 25 years later, no systematic effort to develop
catalogs of quantitative parameters has been undertaken. This lack of
data sets has led us to estimate and guesstimate parameters (Bhalla and
Iyengar, 1999; Rangamani et al., 2011) or calculate parameter
dependencies (Yadaw et al., 2019) over the years. Others have used
the Hill equation approximation (Ryall et al., 2012) which provides
biologically relevant simulations as assessed by experiments that test
simulation predictions.

Specification of reaction rates is complicated by the fact that
often post-translational modifications such as phosphorylation
change reaction rates. Hence, these rates need to be specified for
different states of the same proteins (proteoforms) (Melani et al.,
2022). Additionally, initial concentrations of protein reactants arise
from mixtures of these proteoforms and knowledge of the relative
proportions of the proteoforms is very valuable in accurately
specifying initial concentrations for a group of reactions. Such
detailed knowledge exists for very few pathways within the
mammalian cell but can be estimated from experimentally
obtained overall profiles of pathways activities.

The issues regarding kinetic parameters can lead one to conclude
that dynamical models are often not worth the effort. However, this
is not so. Dynamical models are important because physiology is
dynamics. Unless we can develop and integrate dynamical models
with the growing array of informatics and statistical reasoning
models we will not achieve the full predictive capability that

current large datasets can enable. Artificial intelligence (AI) and
machine learning (ML) algorithms that sort through vast arrays of
parameter variations in a combinational manner can help. Steady
state behavior of stimulated signaling networks has already been
successfully modeled with high computational performance using
recurrent neuronal networks that reflect network topologies and
approximate protein interactions with a perturbation-specific
activation function (Nilsson et al., 2022). AI and ML algorithms
incorporated at the interface of transcriptomic data derived
networks and their casting as dynamical models can help sort
through both the rules required to specify and constrain and the
parameters needed to run the simulations. Initially such integration
will be by trial and error. However, as we develop large libraries of
models that predict a range of organ physiological behaviors, we will
be able to select well-constrained models for understanding and
predicting an organ state or function of interest.

Error propagation, uncertainty and accuracy of
predictions

The advances in data gathering and enormous growth in
computing capability have brought us to the cusp of building
accurate computational representations of many organ systems in
our body. Integration of the different modeling approaches will
ensure that we do not produce spherical cows, rather multiscale
models with zoom-in zoom out capabilities where macroscopic
functions of the whole organs can be understood and predicted
from genomic characteristics underlying molecular and cellular
properties. While at 30,000 feet view the ability to develop digital
twins that predict organ behavior from genomic information based
on mechanistic functions at the molecular and cell level appear
achievable given the vast amounts of data in different domains cheap
high-performance computing and current advance in machine
learning and artificial intelligence algorithms, the picture at the
ground level is considerably more complex. There are multiple levels
of uncertainty that can lead to propagation of errors resulting in
diminishing the accuracy of predictions. At a minimum there are
many types of uncertainty 1) within a data domain there can be
uncertainty regarding node size and attributes 2) within molecular
interaction domains uncertainty regarding the existence of edge and
edge strength 3) uncertainty in connections between edges and
potential interdomain edges being affected by distal domains. 4)
errors in computations arising frommethods of simulations, such as
errors due to large time steps in ODE models. There is a need to
develop methods to quantify each of these uncertainties and error
generating steps and develop an overall numerical score that reflects
the reliability and accuracy of prediction. It is likely this will be a
separate sub-field in the development of digital twins for organs.

It is commonly understood that each individual is different from
others, but nevertheless belongs to groups or categories of
physiological functions such that disease states in these groups
can be treated with similar therapeutic approaches. It is also
commonly observed in clinical practice that some individuals
within a therapeutically defined group need to have a
personalized therapeutic strategy that is optimal to control their
pathophysiology. Currently this is done empirically by trial and
error. As accurate digital twins are developed, we should be able to
predict the clinical responses of these individuals for optimal
therapeutic benefits.
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