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Background: Patients with late-stage mild cognitive impairment (LMCI) have a
higher risk of progression to Alzheimer’s disease (AD) than those with early-stage
mild cognitive impairment (EMCI). However, previous studies have often pooled
EMCI and LMCI patients into a single MCI group, with limited independent
investigation into the pathogenesis of LMCI.

Methods: In this study, we employed whole-genome methylation association
analysis to determine the differences in peripheral blood methylation profiles
between 663 cognitive aging (CN) and 554 LMCI patients.

Results: Our results revealed 2,333 differentially methylated probes (DMPs) and
85 differentially methylated regions (DMRs) specific to LMCI. The top hit
methylation sites or regions were associated with genes such as SNED1,
histone deacetylases coding gene HDACs, and HOX and ZNF gene family. The
DNA methylations upregulated the expression of HDAC4, HDAC8, and HOX
family genes HOXC5 and HOXC9, but they downregulated the expression of
SNED1, ADCYAP1, and ZNF family genes ZNF415 and ZNF502. Gene Ontology
(GO) and KEGG analysis showed that the genes associatedwith thesemethylation
sites were predominantly related to the processes of addiction disorders,
neurotransmission, and neurogenesis. Out of the 554 LMCI patients included
in this study, 358 subjects (65%) had progressed to AD. Further association
analysis between the LMCI subjects with a stable course (sLMCI) and those
who progressed to AD (pLMCI) indicated that the methylation signal intensities
of HDAC6, ZNF502, HOXC5, HOXC6, and HOXD8 were associated with
increased susceptibility to AD. Protective effects against progression to AD
were noticed when the methylation of SNED1 and ZNF727 appeared in
LMCI patients.

Conclusion: Our findings highlight a substantial number of LMCI-specific
methylated biomarkers that differ from those identified in previous MCI
case–control studies. These biomarkers have the potential to contribute to a
better understanding of the pathogenesis of LMCI.
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1 Introduction

Mild cognitive impairment (MCI) is a complex and heterogeneous condition between
normal cognitive aging (CN) and dementia, specifically Alzheimer’s disease (AD) (Petersen
et al., 2001; McGirr et al., 2022). Patients with MCI have memory complaints and objective
memory impairment that is abnormal for their age, while their general cognitive function
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remains relatively preserved, enabling them to perform everyday
activities independently (Petersen, 2004; Chen et al., 2022). MCI can
be subcategorized into early-stage MCI (EMCI) and late-stage MCI
(LMCI), where LMCI is accompanied by more severe memory
decline in cognitive domains, such as language, executive
function, and visuospatial skills (Aisen et al., 2010; Zhang et al.,
2019). It has been reported that approximately 10%–15% of patients
each year, MCI progresses to AD, and 75% of such individuals have
LMCI (Petersen et al., 2001; Farias et al., 2009; Jessen et al., 2014;
Tábuas-Pereira et al., 2016). Therefore, the early recognition of MCI,
especially LMCI, is essential for preventing AD.

Epigenetic changes in the central nervous system (CNS) and
peripheral blood have widely been used for the early diagnosis of
MCI and AD (Lunnon et al., 2014; Madrid et al., 2018; Roubroeks
et al., 2020; Vasanthakumar et al., 2020; Li et al., 2021). These
changes reflect potential immune system disorders, altered
proteostasis, neuronal decay, and changes in brain structure that
are associated with the disease (Lunnon et al., 2014; Madrid et al.,
2018; Roubroeks et al., 2020; Vasanthakumar et al., 2020; Li et al.,
2021). However, most studies have pooled patients with EMCI and
LMCI into a single MCI group, which may obscure the different
disease progression risks between these two subgroups (Zhang et al.,
2019; Vasanthakumar et al., 2020; Li et al., 2021). Given that the risk
of conversion to AD is higher for LMCI than for EMCI (36% vs.
15%) (Jessen et al., 2014), identifying epigenetic biomarkers specific
to LMCI can be more beneficial in reducing the incidence of AD and
improving the effectiveness of rehabilitation exercises and
medication. In this study, we compared the peripheral blood
methylome of CN individuals and LMCI patients. We revealed a
significant number of LMCI-specific methylated biomarkers, which
differ from those identified in previous MCI case–control studies.
These biomarkers may help to elucidate the pathogenesis of LMCI.

2 Materials and methods

2.1 Subjects

The data utilized in this study were sourced from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
The ADNI is a multicenter, longitudinal study encompassing
approximately 50 sites across the United States and Canada, and
it was initiated in 2003 with the primary aim of monitoring the
progression of AD through the use of clinical and cognitive
assessments, magnetic resonance imaging (MRI), fludeoxyglucose
positron emission tomography (PET), amyloid PET, cerebrospinal
fluid analysis, and blood biomarker analysis. For the purposes of
ADNI research, a total of 1,720 samples from 653 individuals who
participated in two phases of ADNI (ADNI2 and ADNIGO) were
selected for DNA methylation analysis. These samples were
randomized using a modified incomplete balanced block design,
in which all of the samples from a single subject were placed on the
same chip, while the remaining space on the chip was filled with age-
matched samples from a subject of the opposite sex with a
different diagnosis.

Amnestic MCI was defined in accordance with the diagnostic
criteria established by ADNI as detailed in the ADNI protocol
(http://adni.loni.usc.edu/methods/documents/). Specifically, the

criteria were as follows: a) a score of 24–30 on the Mini-Mental
State Examination (MMSE); b) a self-reported memory complaint,
as well as objective evidence of memory loss as measured by
education-adjusted scores on the Wechsler Memory Scale Logical
Memory II; c) a Clinical Dementia Rating (CDR) score of 0.5; and d)
the absence of significant impairment in other cognitive domains, as
well as the preservation of activities of daily living and the absence of
dementia (Jack Jr et al., 2008). MCI was further classified into two
subtypes, namely, EMCI and LMCI based on the severity of memory
impairment. The criteria for LMCI were the same as those for EMCI,
with the exception that the memory impairment on the Logical
Memory II subscale had to be more severe. Specifically, the cutoff
scores for LMCI were ≤8 for individuals with 16 or more years of
education, ≤4 for 8–15 years of education, and ≤2 for 0–7 years of
education. The corresponding cutoff scores for EMCI were 9–11 for
individuals with 16 or more years of education, 5–9 for 8–15 years of
education, and 3–6 for 0–7 years of education (Jack Jr et al., 2008).

The datasets utilized in this study included clinical information
and epigenetic data obtained from the ADNI database (http://adni.
loni.usc.edu), accessed on 12 June 2021. The methylation profile
pertained to 1,220 samples, including 665 individuals with CN status
and 555 individuals with LMCI status. Data processing and quality
control procedures were performed on the collected data, which
resulted in the selection of 663 CN and 554 LMCI samples for
downstream analysis.

2.2 Data quality control

The analysis was conducted in accordance with the previously
outlined protocol (Fortin et al., 2017; Tian et al., 2017). Specifically,
we employed a rigorous quality control and preprocessing approach
utilizing the Minfi package from the R software. The detection p
values (detP) were calculated through the “m + u” method, which
compared the total DNA signal (methylated + unmethylated) for
each probe to the background signal level. None of the samples had
mean detP value higher than 0.05, but three samples were excluded
due to a low ratio of unmethylated to methylated sites (uMeth/
mMeth), i.e., less than 10.5 (as shown in Supplementary Figure S1).
The call rate was determined as the proportion of probes present in
each sample. The probes with a detection p-value of 0.05 or higher in
at least 1% of the samples were filtered out. Finally, a total of
1,217 samples (663 CN and 554 LMCI) comprising 823605 probes
were retained for downstream analysis.

2.3 Identification of differentially methylated
probes (DMPs)

We performed a probe-wise analysis to identify DMPs using the
Bioconductor package limma. To ensure statistical validity, beta
values were converted to M-values, which are considered more
statistically robust than beta values due to their higher detection
rates and true positive rates for both highly methylated and
unmethylated CpG sites. The experimental design was modeled
as follows: ≈class (disease status) + age + gender + education + DNA
source (buffy coat or whole blood) + B cells + CD4 T + CD8 T +
Mono + Neu + NK, where the last six terms represent cell type
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composition estimations obtained using estimateCellCounts from R
Package FlowSorted.Blood.EPIC at default settings. The
estimateCellCounts function combined the reference library from
FlowSorted.Blood.450K with the target methylation dataset to build
the model with cellular deconvolution algorithms for the relative
quantification of the proportion of cell types (Houseman et al., 2012;
Fortin et al., 2017; Tian et al., 2017). Because the study was prone to
significant inflation and bias of test statistics, we applied a Bayesian
method based on estimation of the empirical null distribution in the
Bioconductor package limma to control for inflation of test statistics
and for lambda inflation factors. A stringent threshold using
Bonferroni correction was used to declare study-wide significance
(adjusted p-value <0.05).

2.4 Identification and annotation of
differentially methylated regions (DMRs)

We employed a DMR analysis in the R package DMRcate to
identify a group of CpGs associated with LMCI. DMRcate models
Gaussian kernel smoothing within a predefined distance (1 kbp in
this study) and collapses contiguous significant CpGs (p < 0.05) after
multiple testing correction. The default algorithm parameters were
utilized, which included the following: a) regions with
gaps ≥1,000 nucleotides between significant CpG sites were
separated; b) regions containing at least two different CpGs
within 1 kb with a minimum methylation difference of 10% were
included in the analysis. The regions with an adjusted p-value lower
than 0.05 from Stouffer’s, Harmonic, and Fisher’s tests were
considered to be significant. Visualization and functional analysis
of DMRs were performed by means of the R package coMET.

2.5 Functional analysis of DMPs

Using the missMethyl R package, we performed a generalized
gene set enrichment analysis to assess pathway enrichment through
a hypergeometric test, which took into account the number of CpG
sites per gene on the EPIC array. The analysis included curated gene
sets from the KEGG database and Gene Ontology (GO) gene sets
related to biological processes, cellular components, and molecular
functions. The pathways or terms with a Benjamini–Hochberg false
discovery rate (FDR)–corrected p-value lower than 0.05 were
considered significant. The ratio values of the number of
significantly annotated genes in a particular pathway to the total
number of genes in the pathway were calculated.

2.6 Gene expression profile

We utilized the microarray expression data of 318 samples
(207 CN, 175 LMCI) in the ADNI cohort to investigate the effect
of DNAmethylation on the overlapping genes. A total of 28 protein-
coding genes (PCGs) overlapping between DMPs or DMRs were
included. We processed the raw data based on the standard quality
control (QC) procedures described in ADNI (http://adni.loni.usc.
edu/methods/documents/). The raw expression values were
normalized for differential gene expression (DEG) analysis with

the Bioconductor package limma. The model design was similar to
the previously described DMP analysis. Specifically, we adjusted for
the effect of age, gender, education, DNA source, and cell type
compositions. The genes with a Benjamini–Hochberg FDR-
corrected p-value lower than 0.05 were considered to be DEGs.

2.7 Serum proteomic profiling

We further employed the serum proteomic profile data of
20 samples (10 with CN, 10 with LMCI) in the ADNI cohort to
validate the results of epigenome-wide association studies (EWAS).
The data were obtained from the Gene Expression Omnibus (GEO)
under accession number GSE74763. Due to the limitation of
fluorescence probes for specific proteins, we could only filter out
the proteomic data of HDAC4, HDAC6, HDAC8, HOXC5,
HOXC6, HOXC9, ZNF415, and ZNF502. The raw data were
processed and normalized in line with Invitrogen’s standard
instructions (www.invitrogen.com/protoarray). One-way ANOVA
was used for statistical analysis. Proteins with a
Benjamini–Hochberg FDR-corrected p-value lower than 0.
05 were considered to be differentially expressed across the groups.

2.8 Association analysis between DMPs and
conversion from LMCI to AD

A logistic regression model was built to evaluate the effects of
27 candidate methylation probes on the conversion from LMCI to
AD. These DMPs were associated with SNED1, RP11-526P5.2,
ADCYAP1, HDACs, and HOX and ZNF gene family (listed in
Figure 6; Supplementary Table S12). A total of 554 LMCI subjects,
including 196 subjects with a stable course (sLMCI) and 358 subjects
who had progressed to AD (pLMCI), were involved in the analysis.
The effects of age, gender, education, DNA source, and
ApoEε4 alleles were adjusted for in the model. We calculated the
odds ratio (OR) and confidence interval of each DMP to assess the
effect of DNAmethylation on the progression to AD. OR values with
p-value lower than 0.05 were considered significant.

Furthermore, we filtered pLMCI subjects and evaluated the
association of DMPs with the progression time and cognitive
impairment levels. We checked the Pearson correlation
coefficients between DMP signal intensity and indicators related
with cognitive impairment, such as the scores at the baseline
diagnosis with the mini-mental state examination (MMSE), the
clinical dementia rating scale sum of boxes (CDRSB), the
modified preclinical Alzheimer cognitive composite using digit
symbol substitution test (mPACCdigit), and the modified
preclinical Alzheimer cognitive composite using trail-making test
part B (mPACCtrailsB). Higher MMSE, mPACCdigit, and
mPACCtrailsB scores indicate better cognitive function. However,
a higher CDRSB score represents more severe cognitive impairment.
Correlation coefficients with a p-value lower than 0.05 were
considered significant.

Besides, we measured the speed of cognitive decline based on
MMSE (MMSE_speed), CDRSB (CDRSB_speed), mPACCdigit
(mPACCdigit_speed), and mPACCtrailsB (mPACCtrailsB_speed).
The speed scores were calculated as |Score (first diagnosis as AD)–Score
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(baseline diagnosis as LMCI)|/progression time (months). Higher MMSE_
speed, CDRSB_speed, mPACCdigit_speed, and mPACCtrailsB_
speed scores represent greater speeds of cognitive decline. We
also calculated the Pearson correlation coefficients between DMP
signal intensity and scores of cognitive decline speed. Correlation
coefficients with a p-value lower than 0.05 were considered
significant.

3 Results

3.1 Study participants

The association of DNA methylation with LMCI was analyzed
by using the Illumina EPIC array datasets from the ADNI. We
filtered three samples that had been lost during processing or
excluded during the QC procedure, and we finally kept
1,217 samples for peripheral blood DNA methylation analysis
(Table 1; Supplementary Figure S1; Supplementary Table S1).
The demographic characteristics and cognitive assessments of the
samples used in the comparative analysis are presented in Table 1.

3.2 Alterations of blood cell composition in
different groups

Altered blood cell composition has been observed in various
neurodegenerative disorders, thus suggesting the possibility of
systemic immune perturbations. DNA methylation signals offer a
promising approach for estimating the relative abundance of
different lymphocyte subpopulations. Compared with the CN
cases, the patients with LMCI presented a smaller estimated
proportion of B cells and CD8 T cells (p = 2.75E-04 and p = 6.3E-

06, respectively, t-test with Wilcoxon post hoc test), a higher
proportion of neutrophils (p = 3.87E-04), and no significant
changes in CD4 T cells, monocytes, and natural killer cells (NK)
(p > 0.05) (Figure 1A). We also evaluated the changes in blood cell
composition driven by sex distribution (Figure 1B) and DNA
sources (buff coat or whole blood; Figure 1C). Except for
CD8 T cells and NK cells, the overall blood composition varied

between the male and female groups, where the female cases showed
an increased proportion of B cells and CD4 T cells (p = 1.35E-09 and
p = 2.78E-11, respectively, t-test with Wilcoxon post hoc test), but a
reduced proportion of monocytes and neutrophils (p = 2.76E-11 and
p = 8.1E-05, respectively). Previous studies have reported that
differences in the storage of the sample used for DNA isolation
(buff coat or whole blood) influence the cell composition. However,
in our study, the whole-blood samples only demonstrated significant
alterations in neutrophils and NK cells compared with the buff-coat
samples (Figure 1C), showing increased neutrophils (p = 9.84E-03)
and reduced NK cells (p = 2.54E-02). Moreover, we assessed the effect
of APOE4 gene alleles on blood lymphocyte composition. There
were significant differences in lymphocyte composition only
between individuals with zero alleles and those with one allele
(p < 0.05; Figure 1D).

3.3 DMPs in LMCI vs. CN

A cross-sectional analysis of blood methylation was performed
in LMCI and CN cases. Linear regression models were employed,
adjusting for age, gender, education, DNA source, and blood cell
composition. We identified 2,333 DMPs in LMCI vs. CN (raw p <
1.42 E-06; adjusted p < 0.05), 709 of which reached genome-wide
significance at adjusted p < 0.01 (raw p < 8.56E-06; Table 2; Figure 2;
Supplementary Table S2). The Quantile–Quantile plot showed that
the genomic inflation factor (lambda) was less than 1.10 (lambda =
1.0115; Figure 2; Supplementary Figure S2). Overall changes in
methylation were modest, with |log2 of fold-change| ≤ 0.8 (Table 2;
Supplementary Table S2). Among these DMPs, 1,608 CpG sites
showed increased methylation in the LMCI patients (625 of them
without overlapping annotated genes, e.g., cg03709428 and
cg07934746; Table 2; Supplementary Table S2), while the rest
showed lower levels of methylation in the LMCI cases compared
with the CN group (Supplementary Table S2).

We found 74 sex-linked DMPs, 2 DMPs with unknown
chromosome location, and 2,257 DMPs uniformly distributed
across the autosomal chromosomes. Six of the 10 most
significant CpGs were associated with PCGs (Table 2;
Supplementary Table S4), including DMPs annotated to SNED1

TABLE 1 Demographic data of the selected ADNI subjects separated by diagnosis group.

Variable CN LMCI p-value

N 663 554

Age 74.77 ± 5.46 73.07 ± 7.22 3.35E-06

Education 16.45 ± 2.65 16.01 ± 2.87 5.20E-03

Gender (proportion of males) 50.53% 61.55% 9.99E-01

Gender (proportion of females) 49.47% 38.45%

ApoEε4 (proportion of subjects with 0 alleles) 73.30% 45.13% 9.12E-01

ApoEε4 (proportion of subjects with 1 alleles) 24.74% 43.68%

ApoEε4 (proportion of subjects with 2 alleles) 1.96% 11.19%

ApoEε4, the ε4 allele of the Apolipoprotein E gene; CN, cognitive normal; EMCI, early mild cognitive impairment; LMCI, early mild cognitive impairment; AD, Alzheimer’s disease. Data were

expressed as mean ± standard error of the mean (SEM). One-way ANOVA, was used for statistical analysis of age and education across groups. Chi-square test was used for statistical analysis of

gender and ApoEε4 allele across groups.
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(cg15361291, chr2: 242,003,523, adjusted p = 6.89E-08; cg21239079,
chr2: 242,003,549, adjusted p = 7.14E-08), ADCYAP1 (cg16288125,
chr18: 904,243, adjusted p = 6.89E-08), CYLD (cg21228068, chr16:

50,827,518, adjusted p = 9.63E-07), HOXD9 (cg09173768, chr2:
176,989,349, adjusted p = 1.59E-06), and ATG4C (cg24082680,
chr1: 63,249,199, adjusted p = 6.95E-06). Four non PCGs (NCGs;

FIGURE 1
Analysis of estimated blood cell type composition in late-stage mild cognitive impairment (LMCI) versus normal cognitive aging individuals (CN).
Abundance of specific blood cell types was estimated based on unique methylation markers for cell identity. Estimated proportions of B lymphocytes
(Bcell), CD4T cells (CD4T), CD8T cells (CD8T), monocytes (mono), neutrophils (Neu) and natural killer cells (NK) were compared across disease groups
(A), genders (B), sample sources (C) and Apoe4 alleles (D). Significant differences across groups are estimated by usingWilcoxon test after correction
for multiple observations (A–C) or one-way analysis of variance with Bonferroni correction for multiple observations (D).

TABLE 2 List of differentially methylated probes (DMPs) with adjusted p less than Bonferroni correction threshold of 0.05.

Probes Chr Pos Strand GencodeCompV12 LogFC Ave M-value t p-value Adjusted p-value

cg15361291 Chr2 242,003,523 − AC005237.4; SNED1 −0.28 −0.58 −7.48 1.45E-13 6.89E-08

cg09261703 Chr10 2,543,967 + RP11-526P5.2 −0.41 1.10 −7.42 2.16E-13 6.89E-08

cg16288125 Chr18 904,243 + ADCYAP1 −0.30 0.71 −7.40 2.51E-13 6.89E-08

cg21239079 Chr2 242,003,549 − SNED1; AC005237.4 −0.32 −0.86 −7.36 3.47E-13 7.14E-08

cg17750572 Chr10 2,544,120 + RP11-526P5.2 −0.29 1.29 −6.95 5.86E-12 9.63E-07

cg21228068 Chr16 50,827,518 + CYLD; RP11-327F22.4 −0.48 2.89 −6.93 7.02E-12 9.63E-07

cg09173768 Chr2 176,989,349 − HOXD9; HOXD-AS2 −0.19 −0.32 −6.83 1.35E-11 1.59E-06

cg03709428 Chr6 31,275,741 + 0.31 0.82 6.79 1.72E-11 1.68E-06

cg07934746 Chr19 15,774,266 + 0.21 −0.41 6.78 1.84E-11 1.68E-06

cg24082680 Chr1 63,249,199 + ATG4C 0.26 −0.25 6.55 8.44E-11 6.95E-06

Chr, chromosome; Pos, DNA, base position; Strand, DNA, strand; GencodeCompV12, GENCODE, Comprehensive database version 12 containing all transcripts at protein-coding loci; LogFC,

log2 of fold change of M-value across groups; Ave M-value, average M–value across all samples.
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Table 2; Supplementary Table S4), namely, AC005237.4
(cg15361291, chr2: 242,003,523, adjusted p = 6.89E-08;
cg21239079, chr2: 242,003,549, adjusted p = 7.14E-08), RP11-
526P5.2 (cg09261703, chr10: 2,543,967, adjusted p = 6.89E-08;
cg17750572, chr10: 2,544,120, adjusted p = 9.63E-07), RP11-
327F22.4 (cg21228068, chr16: 50,827,518, adjusted p = 9.63E-07),
and HOXD-AS2 (cg09173768, chr2: 176,989,349, adjusted p =
1.59E-06) were annotated by six of the top 10 DMPs. The most
significant site was cg15361291, located in chr2: 242,003,523, which
showed 21% lower methylation (variation = |1−2−logfc|×100%) in the
LMCI subjects than in the CN individuals (Table 2). The second

CpG site (cg09261703), located in Chr10: 2,543,967, had 33% lower
methylation (variation = |1−2−logfc|×100%) in the subjects with
LMCI than in the CN participants (Table 2).

3.4 DMR analysis

DMR analysis enabled identification of the regions in the
genome that showed concerted changes in methylation and were
deemed to have a large impact on modulating transcription. Overall,
the DMRcate algorithm identified 85 DMRs as significantly

FIGURE 2
Analysis of blood methylation in late-stage mild cognitive impairment (LMCI) versus normal cognitive aging individuals (CN). (A) Manhattan plot
compiling genome-wide methylation sites for the comparison of LMCI versus CN. Differentially methylated probes (DMPs) above short dashed line
showed genome-wide significance (adjusted p ≤ 1E−06). (B) Representative violin plots of select top 10 significant DMPs showing increased or decreased
methylation in LMCI cases compared to CN cases.
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associated with cognitive decline in the participants with LMCI
(Table 3; Supplementary Table S3). All of the DMRs in the genome
were located in autosomal chromosomes (Figure 3). Among them,
we identified 46 DMRs annotated to PCGs (Supplementary Table
S5), such as DMRs annotated to SNED1 [chr2: 242,002,695 to
242,003,549 (4 probes), Fisher-corrected p = 1.58E-12],
ZNF727 [chr7: 63,505,584 to 63,506,261 (9 probes), Fisher-
corrected p = 2.34E-10], COL5A2 [chr2: 190,043,537 to
190,044,983 (8 probes), Fisher-corrected p = 3.01E-10],
NTNG1 [chr1: 108,022,767 to 108,023,486 (7 probes), Fisher-
corrected p = 5.72E-10], and CREBZF [chr11: 85,393,571 to
85,394,069 (6 probes), Fisher-corrected p = 3.73E-09]. Recent
studies have underlined the potential involvement of these genes

in regulating immune cell function and inflammation, as well as
their potential implication in the pathogenesis of various
neurological disorders, such as AD and Parkinson disease (Naba
et al., 2014; Cassandri et al., 2017; Krushkal et al., 2020; Barqué et al.,
2021; Bu et al., 2021; Vallet et al., 2021; Arunachalam et al., 2022;
Raouf Issa et al., 2022). The methylation region associated with the
crucial gene TTC23, which plays a vital role in protein QC during
brain development (Roubroeks et al., 2020; Vasanthakumar et al.,
2020; Li et al., 2021; Lee et al., 2022), had the second highest density
of significant CpG probes (13 probes; Supplementary Table S3;
Supplementary Figure S4).

Moreover, DMRcate detected 12 DMRs annotated to NCGs
(Supplementary Table S5), such as DMRs annotated to

TABLE 3 List of differentially methylated regions (DMRs) ranked by Fisher’s multiple comparison statistics.

Chr Start End Width No.
DMPs

Min.
FDR

Stouffer HMFDR Fisher Mean.
diff

Overlapping
genes

Chr10 2,543,474 2,544,596 1,123 8 1.30E-46 1.13E-18 5.07E-07 4.33E-21 −0.0345 RP11-526P5.2

Chr2 242,002,695 242,003,549 855 4 6.73E-28 9.65E-10 1.40E-07 1.58E-12 −0.0288 SNED1; AC005237.4

Chr7 63,505,584 63,506,261 678 9 1.57E-30 4.87E-09 6.13E-05 2.34E-10 0.0252 ZNF727; RP11-3N2.13

Chr2 190,043,537 190,044,983 1,447 8 1.78E-28 6.38E-05 6.75E-04 3.01E-10 0.0145 COL5A2

Chr1 108,022,767 108,023,486 720 7 2.20E-26 1.86E-09 1.52E-03 5.72E-10 0.0262 NTNG1

Chr11 85,393,571 85,394,069 499 6 7.68E-24 3.49E-10 1.32E-03 3.73E-09 0.0308 CREBZF

Chr5 1,102,675 1,104,195 1,521 6 1.19E-18 5.78E-09 1.39E-03 5.84E-08 0.0126 SLC12A7

Chr1 63,249,197 63,249,765 569 9 1.06E-26 3.79E-02 6.02E-05 6.43E-08 0.0163

Chr16 53,543,684 53,544,321 638 5 2.44E-18 1.90E-08 6.85E-04 1.33E-07 0.0201

Chr15 99,789,622 99,791,336 1715 13 3.04E-22 3.90E-07 3.25E-03 2.59E-07 0.0183 TTC23

Chr, chromosome; Start, start base position of region; End, end base position of region; Width, width of region; No. DMPs, number of DMPs, within the region; Min. FDR, the minimum

adjusted p from the CpGs constituting the significant region; Stouffer, the adjusted p of Stouffer’s test; HMFDR, the adjusted p of Harmonic test; Fisher, the adjusted p of Fisher’s test; Mean. diff,

the mean methylation difference across groups in Fisher’s test.

FIGURE 3
Differentially Methylated Regions (DMRs) distribution along the chromosomes. The red vertical lines indicate upregulated DMRs, while the blue
vertical lines indicate downregulated DMRs. All identified DMRs are localized within autosomes; no DMRs were detected within sex chromosomes.
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AC005237.4 [chr2: 242,002,695 to 242,003,549 (4 probes), Fisher-
corrected p = 1.58E-12], RP11-3N2.13 [chr7: 63,505,584 to
63,506,261 (9 probes), Fisher-corrected p = 2.34E-10],
LINC00116 [chr2: 110,969,641 to 110,970,909 (8 probes),
Fisher-corrected p = 3.21E-07], CTC-281F24.1 [chr17:
6,557,720 to 6,559,109 (7 probes), Fisher-corrected p = 3.75E-

06], and MIR4520A [chr17: 6,557,720 to 6,559,109 (7 probes),
Fisher-corrected p = 3.75E-06]. The most significant DMR
identified in this study that was associated with conversion
status in the patients with LMCI was annotated to RP11-
526P5.2 [chr10: 2,543,474 to 2,544,596 (8 probes), Fisher-
corrected p = 4.33E-21; Table 3; Supplementary Table S3].
Six DMPs in this region, including the second significant CpG-
site cg09261703, were highly correlated and located in the
upstream CpG island of the RP11-526P5.2 gene
(Supplementary Figure S4).

3.5 Methylation profiles in HOX and ZNF
family genes

Some of the top hit DMPs and DMRs were closely associated
with HOX and ZNF family genes. We summarize the significant
methylation sites of HOX and ZNF family genes in Tables 4, 5;
Supplementary Table S6; Supplementary Figure S5. The results
showed that nine DMPs, such as cg09173768 (chr2: 176,989,349,
adjusted p = 1.59E-06) and cg15410411 (chr2: 54,392,884, adjusted
p = 3.59E-04), were enriched in the gene regions of HOXC4,
HOXC5, HOXC6, HOXC9, HOXC-AS1, HOXD3, HOXD8,
HOXD9, HOXD-AS1 and HOXD-AS2. However, no significant
DMRs were found in HOX family genes. In the case of ZNF family
genes, 31 methylation sites, such as cg13947469 (chr7: 63,505,871,
adjusted p = 1.53E-05) and cg14768256 (chr3: 44,754,587, adjusted
p = 1.09E-04), were shown to be significant in the LMCI patients.
Two DMRs overlapping with ZNF727 or ZNF502 were associated
with LMCI (adjusted p < 0.05).

3.6 DNA methylation in genes associated
with histone modification

To investigate the DNA methylation status of genes that encode
the enzymes of histone modification, we summarized the DMPs and
DMRs related to histone acetyltransferases (HATs), histone
deacetylases (HDACs), histone methyltransferases (HMTs),
histone demethylases (KDMs), protein kinases (PTKs), and
protein phosphatases (PPs) in Table 6; Supplementary Figure S6.
Unfortunately, we did not find any DMPs in HATs, HMTs, KDMs,
PTKs, and PPs. Only five DMPs in HDAC4, HDAC6, or HDAC8,
such as cg14865678 (chr2: 239,984,042, adjusted p = 1.71E-02) and
cg20784693 (chr2: 239,984,030, adjusted p = 1.94E-02), were
identified. There were no DMRs in the region overlapping
HMTs, HDACs, KDMs, PTKs, and PPs.

3.7 Enriched pathways related to
neurotransmission

Generalized gene set enrichment analysis with the
hypergeometric test in the R package missMethyl was performed
to gain biological insight from these epigenetic differences. GO
terms and KEGG pathways with adjusted p values less than
0.05 were selected to annotate the PCGs of differential CpG sites
(Supplementary Table S4). This selection yielded 503 GO terms
(Supplementary Table S7), including 357 terms of biological
processes (BP), 75 terms of cell components (CC), and 71 terms
of molecular functions (MF), and 20 KEGG pathways
(Supplementary Table S8). A total of 157 of the identified GO
terms reached enrichment significance at an adjusted p < 0.0001
(99 BP, 28 CC, and 30 MF; Supplementary Table S7). The results of
GO analysis showed that the DMPs annotated genes were involved
in nervous system development, neurogenesis, and cell (neuron)
projection pathways (adjusted p < 0.05, ratio values of DMPs
annotated genes in the pathways ranging between 0.67 and 1;

TABLE 4 List of differentially methylated probes (DMPs) related with HOX family genes.

Probes Chr Pos Strand GencodeCompV12 LogFC Ave
M-value

t p-value Adjusted
p-value

cg09173768 Chr2 176,989,349 − HOXD9; HOXD-AS2 −0.19 −0.32 −6.83 1.35E-11 1.59E-06

cg15410411 Chr12 54,392,884 + HOXC9; HOXC-AS1; HOXC5;
HOXC6

−0.19 −1.16 −5.56 3.30E-08 3.59E-04

cg21336435 Chr12 54,398,561 − HOXC5; HOXC6 −0.14 −0.96 −4.91 1.04E-06 2.90E-03

cg08254359 Chr12 54,398,518 − HOXC5; HOXC6 −0.15 −0.59 −4.62 4.32E-06 6.41E-03

cg05611263 Chr12 54,425,634 − HOXC4; HOXC5 −0.12 1.30 −4.28 2.00E-05 1.66E-02

cg06316886 Chr2 177,027,043 − HOXD3 −0.13 −1.82 −4.23 2.47E-05 1.86E-02

cg22934308 Chr2 177,038,617 − HOXD3; HOXD-AS1 0.14 −0.22 4.22 2.65E-05 1.94E-02

cg07783843 Chr2 176,997,311 + HOXD-AS2; HOXD8 0.10 −0.56 3.91 9.65E-05 4.04E-02

cg14324370 Chr2 177,042,789 − HOXD-AS1; AC009336.24 0.08 −4.23 3.88 1.09E-04 4.29E-02

Chr, chromosome; Pos, DNA, base position; Strand, DNA, strand; GencodeCompV12, GENCODE, Comprehensive database version 12 containing all transcripts at protein-coding loci; LogFC,

log2 of fold change of M-value across groups; Ave M-value, average M–value across all samples.
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Figure 4; Supplementary Tables S4, S7). Parallel testing in the KEGG
gene sets showed a marked enrichment in addiction disorders
and neurotransmission, such as morphine addiction, the calcium
signaling pathway, and GABAergic synapses (adjusted p < 0.05,
ratio values of DMPs annotated genes in the pathways
ranging between 0.73 and 0.92; Figure 4; Supplementary
Tables S4, S8).

3.8 Influence of DNA methylation on gene
expression

To investigate the influence of DNA methylation on the gene
expression, we examined the expression levels of 28 PCGs that
overlapped with DMPs or DMRs. In general, these target genes
exhibited low expression abundance, that is, their average expression
counts were lower than 50 (Table 7; Supplementary Table S9). As
shown in Table 7, a total of 11 genes were significantly differentially
expressed between the LMCI and CN individuals. Four of the DEGs
were HOX or ZNF family genes, namely, HOXC9 (adjusted p =
5.49E-03), HOXC5 (adjusted p = 1.15E-02), ZNF415 (adjusted p =
7.17E-05), and ZNF502 (adjusted p = 7.17E-05). In addition, we found
that the expression of HDAC8 (adjusted p = 8.75E-03) and HDAC4

(adjusted p = 1.03E-02) was significantly upregulated in the LMCI
patients. In contrast, SNED1 and ADCYAP1, which were annotated
by the top hit DMPs and DMRs, were downregulated in the
LMCI patients.

3.9 Validation with proteomic profiling

The serum proteomic profile analysis of the eight proteins
associated with DMPs further validated the EWAS results. The
results showed that six of these proteins, namely, HDAC4, HOXC5,
HOXC6, HOXC9, ZNF415, and ZNF502, were significantly
differentially expressed between LMCI and CN (adjusted p <
0.05; Figure 5; Supplementary Table S10). Consistent with the
results of the gene expression profile analysis, the expression of
proteins HDAC4 (adjusted p = 2.70E-02), HOXC5 (adjusted p =
1.30E-03), and HOXC9 (adjusted p = 1.46E-02) was significantly
upregulated in the LMCI patients (Figure 5; Supplementary Table
S10). However, the proteomic results of proteins ZNF415 and
ZNF502 were opposite those of the results of the gene expression
profile analysis. Both of ZNF415 and ZNF502 were also significantly
upregulated in the LMCI patients (adjusted p < 0.05; Table 7;
Figure 5; Supplementary Tables S9, S10).

TABLE 5 List of top 10 differentially methylated probes (DMPs) related with ZNF family genes.

Probes Chr Pos Strand GencodeCompV12 LogFC Ave M-value t p-value Adjusted p-value

cg13947469 Chr7 63,505,871 − ZNF727; RP11-3N2.13 0.27 −1.43 6.36 2.78E-10 1.53E-05

cg14768256 Chr3 44,754,587 + ZNF502 0.25 1.06 5.90 4.82E-09 1.09E-04

cg06088684 Chr2 180,610,608 − ZNF385B −0.13 2.79 −5.41 7.44E-08 5.83E-04

cg18831899 Chr17 5,019,056 − ZNF232; USP6 0.16 2.03 5.33 1.17E-07 7.57E-04

cg09560297 Chr19 37,406,349 − ZNF568; ZNF829 0.14 0.94 5.11 3.65E-07 1.52E-03

cg05769153 Chr19 53,636,398 + ZNF415 0.20 1.75 5.04 5.36E-07 1.89E-03

cg05223766 Chr19 53,590,304 + ZNF160 0.15 −2.07 4.86 1.33E-06 3.36E-03

cg01511534 Chr16 3,284,640 − ZNF200 0.14 −1.72 4.80 1.81E-06 4.02E-03

cg16428517 Chr16 3,317,428 + ZNF263 0.12 2.51 4.71 2.75E-06 4.91E-03

cg05241461 Chr19 22,816,980 − ZNF492 0.15 −3.48 4.71 2.82E-06 4.99E-03

Chr, chromosome; Pos, DNA, base position; Strand, DNA, strand; GencodeCompV12, GENCODE, Comprehensive database version 12 containing all transcripts at protein-coding loci; LogFC,

log2 of fold change of M-value across groups; Ave M-value, average M–value across all samples.

TABLE 6 List of differentially methylated probes (DMPs) related with HDAC family genes.

Probes Chr Pos Strand GencodeCompV12 LogFC Ave M-value t p-value Adjusted p-value

cg14865678 Chr2 239,984,042 + HDAC4 0.13 0.83 4.27 2.10E-05 1.71E-02

cg20784693 Chr2 239,984,030 + HDAC4 0.15 0.55 4.22 2.67E-05 1.94E-02

cg04067339 ChrX 71,760,492 − HDAC8 0.09 −1.28 3.94 8.76E-05 3.85E-02

cg24616736 ChrX 48.659,713 − HDAC6 0.10 −1.84 3.92 9.24E-05 3.95E-02

cg09155776 Chr2 239,984,105 − HDAC4 0.11 −0.22 3.90 1.03E-04 4.18E-04

Chr, chromosome; Pos, DNA, base position; Strand, DNA, strand; GencodeCompV12, GENCODE, Comprehensive database version 12 containing all transcripts at protein-coding loci; LogFC,

log2 of fold change of M-value across groups; Ave M-value, average M–value across all samples.
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FIGURE 4
Pathway enrichment analysis of DMPs annotated genes. (A) Top gene ontology (GO) enrichment terms with adjusted p < 0.05 (tomato color bars:
BP; grey color bars: CC; orange color bars: MF). (B) Top KEGG pathways (blue color bars: pathways with ratio of genes annotated by DMPs ≤ 0.8; red color
bars: pathways with ratio of genes annotated by DMPs >0.8).

TABLE 7 Gene expression validation of candidate DMPs or DMRs related protein-coding genes (11 significant genes).

Genes LogFC AveExpr t p-value Adjusted p-value

NTNG1 −1.34 2.31 −9.80 2.45E-20 6.87E-19

COL5A2 1.41 2.48 9.04 8.75E-18 1.23E-16

ADCYAP1 −1.06 2.72 −7.09 6.71E-12 6.26E-11

ZNF415 −0.75 2.63 −4.47 1.02E-05 7.17E-05

CYLD −1.48 7.55 −3.63 3.23E-04 1.81E-03

HOXC9 0.71 3.58 3.27 1.18E-03 5.49E-03

HDAC8 0.71 4.43 3.08 2.19E-03 8.75E-03

HDAC4 0.79 4.19 2.99 2.94E-03 1.03E-02

HOXC5 0.64 4.15 2.92 3.70E-03 1.15E-02

SNED1 −0.57 3.98 −2.45 1.47E-02 4.12E-02

ZNF502 −0.72 5.25 −2.38 1.80E-02 4.57E-02

LogFC, log2 of fold change of expression counts across groups; AveExpr, the average value of log2 expression count.
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3.10 Association of DNA methylation level
with progression to AD

We screened the samples (756 with EMCI and 1,120 with LMCI)
in the ADNI cohort to calculate the proportion of MCI progression
to AD. As shown in Figure 6A; Supplementary Table S11, we found
that the probability of LMCI progressing to AD was about three
times higher than that of EMCI (49% vs. 17%). The average
progression speed of the LMCI patients was much faster than
that of the EMCI patients (26 months vs. 46 months; Figure 6B;
Supplementary Table S11). Out of the 554 LMCI patients included
in this study, 358 subjects (65%) had progressed to AD. The OR
values from the logistic regression model indicated that HDAC6-
associated DMP cg24616736 [OR = 1.67, 95% CI (1.08–2.62), p =
2.33E-02], ZNF502-associated DMP cg14768256 [OR = 1.53, 95% CI
(1.16–2.02), p = 2.57E-03], HOXC5- and HOXC6-associated DMP
cg08254359 [OR = 1.41, 95% CI (1.01–1.97), p = 4.30E-02], and
HOXD8-associated DMP cg07783843 [OR = 1.75, 95% CI
(1.15–2.71), p = 1.04E-02] were associated with increased
susceptibility to AD in LMCI subjects (Figures 6C, D;
Supplementary Table S12). SNED1-associated DMPs
cg15361291 [OR = 0.48, 95% CI (0.36–0.65), p = 2.49E-06] and
cg21239079 [OR = 0.55, 95% CI (0.43–0.71), p = 5.53E-06] and
ZNF727-associated DMP cg13947469 [OR = 0.74, 95% CI

(0.58–0.94), p = 1.33E-02] showed protective associations with the
risk of progression to AD from LMCI (Figures 6C, D;
Supplementary Table S12). DMP cg21336435 highly correlated
with cg08254359 (Supplementary Figure S5), and both of them
were associated with the expression of HOXC5 and HOXC6
(Figures 6C, D; Supplementary Table S12). However, the OR of
cg21336435 was not significant [OR = 1.49, 95% CI (1.00–2.23), p =
5.22E-02; Figures 6C, D; Supplementary Table S12].

Two methylation sites, namely, cg24616736 (r = −0.26, p =
9.73E-07) and cg13947469 (r = 0.17, p = 1.59E-03) were significantly
associated with progression time from LMCI to AD (Supplementary
Table S13). The distribution curve of methylation signal intensity
over time clearly showed that subjects with a weaker methylated
signal of cg24616736 had slower progression speed (Figure 6E).
Progression speed of subjects with a high unmethylated signal of
cg24616736 was mainly between 96 and 120 months (Figure 6E). A
similar trend was noticed in the distribution of cg21336435
(Figure 6E). Although there was no significant correlation
between progression time and signal intensity of protective
DMPs cg21239079 and cg15361291 (p > 0.05), we found that
subjects with a high methylated signal needed more time for
progression from LMCI to AD (Figure 6E). The progression
speed in subjects with a high methylated signal of cg21239079 or
cg15361291 mainly ranged between 84 and 120 months (Figure 6E).

FIGURE 5
Proteomic profile of candidate DMPs or DMRs related proteins (8 candidate proteins).
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Among the DMPs increasing susceptibility to AD, HDAC6-
associated DMP cg24616736 was significantly correlated with
cognitive scores at baseline diagnosis (Figure 7; Supplementary
Table S14), namely, MMSE_bl (r = −0.15, p = 5.36E-03), CDRSB_
bl (r = 0.12, p = 2.20E-02), mPACCdigit_bl (r = −0.22, p = 1.77E-05),
and mPACCtrailsB_bl (r = −0.17, p = 1.23E-03), and was also
significantly correlated with the speed of cognitive score decline
(Figure 8; Supplementary Table S14), namely, MMSE_speed (r =
0.19, p = 3.95E-04), CDRSB_speed (r = 0.13, p = 1.49E-02),
mPACCdigit_speed (r = 0.20, p = 1.40E-04), and mPACCtrailsB_
speed (r = 0.20, p = 1.20E-04). As shown in Figures 7, 8, ZNF502-
associated DMP cg14768256 was significantly correlated with
MMSE_speed (r = −0.11, p = 3.79E-02), CDRSB_bl (r = −0.10,
p = 4.75E-02), mPACCdigit_speed (r = −0.13, p = 1.45E-02), and
mPACCtrailsB_speed (r = −0.13, p = 1.24E-02). HOXC5- and

HOXC6-associated DMP cg08254359 was significantly correlated
with the cognitive decline speed (Figure 8; Supplementary Table
S14), namely, mPACCdigit_speed (r = −0.12, p = 2.76E-02) and
mPACCtrailsB_speed (r = −0.12, p = 2.92E-02). DMP cg21336435,
which was highly correlated with cg08254359, was the only DMP
that was significantly correlated with CDRSB_bl (r = 0.16, p = 3.20E-03;
Figure 7; Supplementary Table S14). There was no significant
correlation between HOXD8-associated DMP cg07783843 and the
cognitive scores at baseline diagnosis or the speed of cognitive score
decline (p > 0.05; Figures 7, 8; Supplementary Table S14). Moreover,
we found that the LMCI patients with a higher intensity of
cg21239079, which was associated with SNED1, had better
cognitive ability as measured by the MMSE_bl (r = 0.12, p =
2.29E-02) and mPACCtrailsB_bl (r = 0.11, p = 4.37E-02) scores, but
also had a higher CDRSB_bl score (r = 0.17, p = 1.37E-03), which

FIGURE 6
Association analysis of AD progression from LMCI. (A) Comparison of progression probability between EMCI and LMCI. (B) Comparison of
progression time between EMCI and LMCI. (C) Odds ratio values from logistic regression with comparison between sLMCI and pLMCI. (D) Box plot of
methylation signal intensity across groups. (E) Distribution curve of methylation signal intensity over time.
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FIGURE 7
Correlation of methylation signal intensities of DMPs with the cognitive scores at baseline diagnosis. MMSE, mini-mental state examination; CDRSB,
clinical dementia rating scale sum of boxes; mPACCdigit, modified preclinical Alzheimer cognitive composite that used digit symbol substitution test;
mPACCtrailsB, modified preclinical Alzheimer cognitive composite that used trail-making test part B. Higher scores of MMSE, mPACCdigit, and
mPACCtrailsB, represent better cognitive function. However, higher score of CDRSB represent more severe cognitive impairment. Correlation
coefficients with p-value lower than 0.05 were considered to be significant.
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FIGURE 8
Correlation of methylation signal intensities of DMPs with the speed of cognitive decline. The speed scores were calculated as |Score (first diagnosis as

AD)–Score (baseline diagnosis as LMCI) |/progression time (months). MMSE_speed: the speed of cognitive decline based on MMSE; CDRSB_speed: the speed of
cognitive decline based on CDRSB; mPACCdigit_speed: the speed of cognitive decline based on mPACCdigit; mPACCtrailsB_speed: the speed of
cognitive decline based onmPACCtrailsB. Higher scores of MMSE_speed, CDRSB_speed, mPACCdigit_speed, andmPACCtrailsB_speed, represent
higher speed of cognitive decline. Correlation coefficients with p-value lower than 0.05 were considered to be significant.
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represents declined cognitive function (Figure 7; Supplementary Table
S14). Similarly, cg15361291, another protective DMP associated with
SNED1, was positively correlated with both MMSE_bl (r = 0.10, p =
4.99E-02; Figure 7; Supplementary Table S14) and CDRSB_bl (r = 0.15,
p = 5.68E-03; Figure 7; Supplementary Table S14). ZNF727-associated
DMP cg13947469 was negatively correlated with CDRSB_bl
(r = −0.11, p = 3.93E-02; Figure 7; Supplementary Table S14), but
positively correlated with mPACCtrailsB_bl (r = 0.13, p = 1.17E-02;
Figure 7; Supplementary Table S14).

4 Discussion

Both patients with EMCI and LMCI generally exhibit preserved
daily activities but present slight cognitive deficits (Grundman et al.,
2004; Petersen, 2004; Zhang et al., 2019). Patients with LMCI show
more severe impairment in episodic memory than those with EMCI,
which has led to the belief that LMCI typically arises during a
progression from EMCI (Aisen et al., 2010; Zhang et al., 2019).
Previous studies that pooled patients with EMCI and LMCI into a
single MCI group have hindered research into the pathogenic
mechanisms of LMCI and the elucidation of factors that
contribute to LMCI progression to AD (Jessen et al., 2014; Zhang
et al., 2019; Vasanthakumar et al., 2020; Chen et al., 2022).

In this study, a total of 2,333 DMPs and 85 DMRs were found in
the LMCI patients. The high-risk genes identified in previous EWAS
that combined EMCI and LMCI groups into a single MCI group for
comparison with CN (Lo et al., 2011; Dumurgier et al., 2017;
Chouliaras et al., 2018; Roubroeks et al., 2020; Vasanthakumar
et al., 2020), such as FLRT2, were not confirmed to be associated
with LMCI in the present study. It is possible that LMCI patients
have a higher likelihood of progression to AD than those with EMCI
(Jessen et al., 2014); thus, the comparative analysis of LMCI and CN
showedmore similar results with the studies of AD progression from
CN or MCI. Previous EWAS and molecular genetic studies have
shown that the DMPs or DMRs associated with HOX and ZNF
family genes are closely associated with the onset of AD or
progression from MCI to AD (Cassandri et al., 2017; Smith et al.,
2018; Roubroeks et al., 2020; Bu et al., 2021; Li et al., 2021;
Arunachalam et al., 2022). In this study, gene expression and
proteomic profile analysis confirmed that the DNA methylations
in LMCI could disrupt the expression of HDAC, HOX, and ZNF
family genes. These methylations were closely associated with the
cognitive impairment in LMCI patients as measured by the scores of
MMSE, CDRSB, mPACCdigit, and mPACCtrailsB.

In the case of HOX family genes, aberrantly expressed HOXB
and HOXA genes have been validated as high-risk genes for AD
(Smith et al., 2018; Roubroeks et al., 2020; Li et al., 2021;
Arunachalam et al., 2022). However, few studies have directly
linked HOXC genes to AD or the direct formation of MCI. Only
one study has shown that HOX Antisense Intergenic RNA
(HOTAIR), transcribed from the antisense strand of the HOXC
locus, may be associated with central nervous system inflammation
and potentially induce AD (Lu et al., 2022). In this study, we revealed
that upregulated expression of HOXC5, HOXC6, and HOXC9 may
be associated with the onset of LMCI. Results from EWAS and
proteomic profiling showed that increased unmethylated signals of
positions such as cg08254359 and cg21336435 could cause high

expression levels of HOX family proteins in LMCI patients. These
alterations in specific sites of HOX family genes may be related to the
cognitive decline in LMCI, and further influence the progression
speed from LMCI to AD. While the precise molecular biology links
between HOXC genes and LMCI remain unclear, it is apparent that
HOX family genes play a crucial role in the occurrence of LMCI.

Peripheral blood EWAS is helpful for identifying the changes in
common methylation status across tissues, such as brain and
peripheral lymphocytes. This is the reason why the GO and
KEGG analyses revealed that the DMPs-associated genes were
significantly enriched in the pathways of addiction disorders,
neurotransmission, and neurogenesis. The results from peripheral
blood EWAS may provide new insights into the link between
immune dysfunction and neurodegeneration. Based on DNA
methylation signals, we could estimate the composition of
lymphocyte subpopulations. We found that the patients with
LMCI had lower abundance of B cells and CD8+ T cells and
higher abundance of neutrophils (Neu) compared with the CN
individuals. These findings suggest that LMCI patients exhibit signs
of abnormal immune function. Most of the genes associated with
DMPs were closely associated with the maintenance of both neural
and immune systems. For example, SNED1, which is associated with
the top hit DMPs, has been demonstrated to function as a promoter
of breast cancer metastasis and amyotrophic lateral sclerosis, and its
abnormal expression significantly affects the survival outcome of
these patients (Naba et al., 2014; Tarr et al., 2019; Krushkal et al.,
2020; Barqué et al., 2021; Vallet et al., 2021). Similarly, the HOX and
ZNF family genes have been proven to influence immune function
and contribute to the development of neurological system disorders,
such as glioblastoma and Parkinson’s disease (Cassandri et al., 2017;
Bu et al., 2021; Arunachalam et al., 2022; Raouf Issa et al., 2022).

Investigation in the large population of the ADNI cohort showed
that the probability of progressing to AD was about three times
higher from LMCI than from EMCI (49% vs. 17%), which is
consistent with the findings reported by other research groups
(Jessen et al., 2014; Zhang et al., 2019; Vasanthakumar et al.,
2020; Chen et al., 2022). Furthermore, we found that the average
progression speed of the LMCI patients was much faster than that of
the EMCI patients (26 months vs. 46 months). These results
demonstrate the importance of independently exploring the
pathogenesis of each stage of MCI. Progression analysis indicated
that DMPs associated with HDAC6, ZNF502, HOXC5, HOXC6,
and HOXD8 were associated with increased susceptibility to AD in
LMCI subjects. In contrast, DMPs associated with SNED1 and
ZNF727 showed protective associations with the risk of
progression from LMCI to AD. In particular, DMP cg24616736,
which was associated with HDAC6, showed the strongest
correlation with progression time and the speed of cognitive
decline in the LMCI patients. We found that both the
methylation status and protein expression level of HDAC6 were
different between LMCI and CN. This finding suggests that
HDAC6 may be a crucial histone deacetylase in the whole
process from CN to MCI and further progression to AD.
Previous evidence has indicated the important role of HDAC6 in
tau-mediated neurodegeneration, and HDAC6 may be involved in
various neurodegenerative diseases such as AD, Parkinson disease,
amyotrophic lateral sclerosis, and Huntington disease (Zhang et al.,
2013; Trzeciakiewicz et al., 2020; Li et al., 2022). However, the
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epigenetic regulation mechanism behind the expression of
HDAC6 is not yet clear. Both LMCI and AD exhibit symptoms
of cognitive decline; therefore, targeted inhibition or degradation of
HDAC6 as a therapeutic approach for AD could potentially have
preventive effects on the occurrence of LMCI.

This study also demonstrated the presence of an association
between ZNF family genes and cognitive impairment in LMCI
patients. Most of them, including ZNF502, ZNF727, ZNF415,
ZNF385B, ZNF232, ZNF200, and ZC3H14, have been validated
as critical genes implicated in the pathogenesis of AD (Cassandri
et al., 2017; Roubroeks et al., 2020; Vasanthakumar et al., 2020; Bu
et al., 2021; Li et al., 2021). However, their roles in the molecular
process of cognitive decline are not yet clear. We found that
methylations of ZNF727 and ZNF502 have opposite effects on
the progression of LMCI to AD. Consistent with this, previous
studies have shown that the function of ZNFs could be distinct in
altering cerebrospinal fluid (CSF) tau/ptau levels, promoting or
inhibiting neuroinflammation in different regions, protecting or
exposing neurons to oxidative stress–induced apoptosis, and
interfering with the differentiation potential of neural stem cells
(Cassandri et al., 2017; Calderari et al., 2018; Lopez et al., 2019; Baker
et al., 2020; Bu et al., 2021). ZNFs act as transcription factors that
modulate the expression of crucial genes involved in cellular
biochemical processes by specifically binding to DNA or RNA
(Farmiloe et al., 2020). Further studies of gene expression
regulation related to these candidate ZNFs may be helpful to
explore the onset and progression of cognitive impairment.

To the best of our knowledge, this is the first comprehensive
genome-wide DNAmethylation association analysis for LMCI. This
analysis serves to elucidate the mechanisms of LMCI development,
and aid in the prevention of LMCI progression to AD. However, due
to the absence of relevant cellular biological experiments, the
functionality of the noncoding gene RP11-526P5.2, which is
associated with the top DMPs, could not be validated. It is
important to mention another limitation of this study, namely,
we only collected the methylation data from the ADNI cohort;
thus, the results may be affected by the limitations imposed by the
experimental design of the ADNI study. Therefore, it is imperative
to expand the sample size and validate the experimental findings
using datasets from other research centers to ensure the reliability of
the results.
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