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Neural stem cells (NSCs) exhibit self-renewing and multipotential properties.
Adult NSCs are located in two neurogenic regions of adult brain: the ventricular-
subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone of
the dentate gyrus in the hippocampus. Maintenance and differentiation of adult
NSCs are regulated by both intrinsic and extrinsic signals that may be integrated
through expression of some key factors in the adult NSCs. A number of
transcription factors have been shown to play essential roles in transcriptional
regulation of NSC cell fate transitions in the adult brain. Epigenetic regulators
have also emerged as key players in regulation of NSCs, neural progenitor cells
and their differentiated progeny via epigenetic modifications including DNA
methylation, histone modifications, chromatin remodeling and RNA-mediated
transcriptional regulation. This minireview is primarily focused on epigenetic
regulations of adult NSCs during adult neurogenesis, in conjunction with
transcriptional regulation in these processes.
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Introduction

Adult neurogenesis is a process that generates functional neurons and glial cells from
adult neural stem cells (NSCs) (Ming and Song, 2011; Hsieh and Zhao, 2016; Kuhn et al.,
2018; Cope and Gould, 2019; Bond et al., 2021). There are two neurogenic regions in adult
mouse brain, the ventricular-subventricular zone (V-SVZ) located in the lateral ventricle
and the subgranular zone (SGZ) located in the dentate gyrus (DG) of hippocampus (Bond
et al., 2021; Kobayashi and Kageyama, 2021). Adult NSCs at the DG niche often adopt a
radial glial morphology and thus they are also called radial glia-like neural stem cells
(RGLs), whereas those at the V-SVZ niche are termed B cells (Bond et al., 2021). The adult
NSCs in V-SVZ have embryonic origin and enter a quiescence state during embryonic
development. They are reactivated by both intrinsic and extrinsic signals before they give
rises to neurons and small populations of glial cells (Delgado et al., 2021). First, they
generate intermediate progenitor cells (IPCs), which undergo further differentiation to
become immature neurons called neuroblasts (Lim and Alvarez-Buylla, 2016). Neuroblasts
are precursors of neural cells. They migrate through the rostral migratory stream (RMS) to
the olfactory bulb (OB) where they turn into mature inhibitory interneurons that are
essential for olfaction. Occasionally adult NSCs located in the V-SVZ region can also give
rise to oligodendrocytes which subsequently migrate to the corpus callosum and striatum
where they further differentiate into myelinated or unmyelinated oligodendrocytes. The
adult NSCs in the SGZ region are located in the granular cell layer and hilus of the dentate
gyrus (Vicidomini et al., 2020; Kobayashi and Kageyama, 2021). These adult NSCs are
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released from the quiescent state in response to neural activity and
environmental factors surrounding the niche of adult NSCs. They
enter dentate migratory stream (DMS) to cross the granular cell
layer radially before they give rise to IPCs, which in turn become
neuroblasts and undergo further differentiation in the CA3 region
of the hippocampus. They are integrated into the existing neural
circuits to induce plasticity with important functions in cognition
such as learning and memory (Goncalves et al., 2016). A small
number of NSCs in SGZ can also migrate to the hilus and granular
layers of hippocampus to generate oligodendrocytes and
astrocytes. In summary, adult NSCs may remain quiescent to
maintain a pool of stem cells in the V-SVZ and SGZ regions.
They may undergo proliferation, differentiation, migration and
integration into existing neural circuits to function as mature
neurons. Besides neurons, NSCs may also give rise to glial cells
(Figure 1; Figure 2).

Balancing maintenance and differentiation of adult NSCs is
controlled by both intrinsic and extrinsic signals. Intrinsic signals
include some key transcription factors produced in the NSCs and
IPCs that are important for maintenance and/or differentiation of
these cells, whereas extrinsic signals generally refer to growth factors
and neurotrophins secreted in the surrounding niche (Covic et al.,
2010; Matsubara et al., 2021). There are a lot of studies indicating the
important roles of transcription factors in NSCs and their neural
development (Harada et al., 2021; Fong et al., 2022; Guo et al., 2022;

Li et al., 2022; Qin et al., 2022; Fan et al., 2023). Epigenetic
modifications in response to both kinds of signals are crucial for
maintaining the quiescence state of NSCs and dictating their cell
lineage differentiation by spatial and temporal regulation in
expression of some key factors in the NSCs (Yao et al., 2016).
These epigenetic regulations are mediated through DNA
methylation, histone modifications, chromatin remodeling, and
non-coding RNAs, etc. This review primarily focuses on
epigenetic and transcriptional regulations of adult NSCs located
in the V-SVZ and SGZ of the adult mouse brain, together with some
referenced studies in mouse embryos or cell culture in support of the
findings and conclusions in adult mice (see below).

DNA methylation

Cytosine DNA methylation is essential for mammalian
development by regulating lineage commitment in cell
differentiation in embryos or stem cells (Li and Zhang, 2014; Dor
and Cedar, 2018; Zeng and Chen, 2019; Chen and Zhang, 2020). It is
altered in many human diseases including neurological diseases
(Hamidi et al., 2015; Xie et al., 2023). It occurs primarily at the CpG
sites in mammals, with S-adenyl methionine (SAM) as the donor
(Zeng and Chen, 2019; Chen and Zhang, 2020). In the human and
mouse brains, DNAmethylation also occurs at the CpH sites (H = A,

FIGURE 1
Epigenetic regulation of the neural stem cells in the ventricular-subventricular zone (V-SVZ) of adult brain. Adult neural stem cells (NSCs) in the
V-SVZ give rise to intermediate progenitor cells (IPCs) before occurrence of neuroblasts. The immature neuroblasts enter rostral migratory stream (RMS)
before they turn into mature neurons in the olfactory bulb. The epigenetic regulators shown in this figure are known to play important roles in
maintenance, proliferation and differentiation of adult NSCs in the V-SVZ region.
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C or T), with generally much lower frequencies compared with those
of CpG methylation (Guo et al., 2014).

DNA methylation is catalyzed by DNA methyltransferase
(DNMT). The mammalian DNMT family mainly consists of
DNMT1, DNMT3A and DNMT3B. Among them, DNMT3A and
3B are the major DNMTs for de novo DNA methylation, while
DNMT1 is primarily involved in themaintenance DNAmethylation
(Chen and Zhang, 2020). DNMT1 is highly expressed in the central
nervous system (CNS) of bothmouse embryos and postnatal mice. It
is crucial for neurogenesis as well as survival of newly generated
neurons in SGZ although it does not appear to be required for the
existing mature neurons (Noguchi et al., 2015; Cui and Xu, 2018).
Dnmt3a is expressed in the NSCs of the SVZ of the mouse
embryonic brain from E10.5 until E17.5, whereas Dnmt3b
expression is detected in the ventricular zone of the brain in
mouse embryos from E10.5 to E13.5 (Feng et al., 2005).
Expression of both genes decreases postnatally. Nevertheless, loss
of DNMT3A results in reduced number of newborn neurons in the
SVZ and SGZ regions of the postnatal mouse brain (Wu et al., 2010).
DNMT3A is shown to bind to the intergenic regions as well as across
the transcribed regions or gene bodies of lowly expressed genes in
newborn pups, in which DNAmethylation occurs at the CpA sites of
these regions that is required for fine-tuning of neuronal subtype-
specific transcription in the adult brain (Stroud et al., 2017).
DNMT3A and DNMT3B are also associated with the enhancers
and gene bodies of the neuronal target genes in adult neurogenesis to
establish neuron-specific methylomes and gene expression patterns
that are essential for maturation and integration of newborn

neurons in the adult brain (Zocher et al., 2021). They do not
appear to affect proliferation or cell fate specification of newborn
neurons in the adult hippocampus though. Interestingly, growth of
dendrites and synaptogenesis are impaired when both DNMT3A
and DNMT3B are ablated in adult NSCs, which causes learning and
memory defects in the hippocampus (Zocher et al., 2021). In
addition, phosphorylation of DNA methylation binding protein
MeCP2 by Aurora kinase B is required for balancing
proliferation and differentiation of NSCs in the adult brain
through NOTCH signaling pathway (Li et al., 2014).

Ten-eleven translocation (TET) proteins are α-ketoglutarate-
dependent and Fe2+-dependent dioxygenases that catalyze
conversion of 5-methylcytosine (5 mC) to 5-
hydroxymethylcytosine (5hmC), which ultimately leads to DNA
demethylation (He et al., 2011; Ito et al., 2011; Wu and Zhang, 2017;
Xu and Bochtler, 2020). There are three TET proteins in mammals,
namely TET1, TET2 and TET3. Although it is much less abundant
than 5 mC in most cell types, 5hmC is relatively enriched in the
brain (Santiago et al., 2014; MacArthur and Dawlaty, 2021).
TET1 may participate in SGZ neurogenesis by regulating NSC
proliferation and differentiation as well as cognition in adult
mice (Zhang et al., 2013). Knockdown of Tet1 causes promoter
hypermethylation in the Dll3 (Delta-like 3) and Notch1 genes that
leads to inhibition of NOTCH signaling pathway and results in
decreased NSC proliferation (Chen et al., 2021). Similarly, TET1 can
also affect neurogenesis in the adult hippocampus by modulating
miR-124 expression (Choi et al., 2019). Hippocampal aging is
accompanied by reduction in the TET2 protein and 5hmC levels,

FIGURE 2
Epigenetic regulation of the neural stem cells in the subgranular zone (SGZ) of the adult brain. SGZ is located in the dentate gyrus (DG) of
hippocampus. Upon activation, adult neural stem cells (NSCs) in SGZ give rise to intermediate progenitor cells (IPCs), astrocytes and oligodendrocytes.
IPCs become neuroblasts, and then immature neurons before they further differentiate into mature neurons after they enter dentate migratory stream
(DMS). The epigenetic regulators involved in these processes are shown in the figure.
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and Tet2 knockdown causes impairment of neural regeneration and
cognitive function. In contrast, restoration of TET2 in the mature
adult hippocampus can rescue these brain defects in the
hippocampus (Gontier et al., 2018). Loss of TET3 causes
proliferation and differentiation defects in neural progenitor cells.
Intriguingly, TET3 has been shown to maintain the stem cell pool of
the V-SVZ region by binding directly to the Snrpn gene and
represses its transcription from the paternal allele (Montalban-
Loro et al., 2019).

In mammals, DNA methylation plays an important role in
genomic imprinting characterized by parent-of-origin-dependent
mono-allelic expression (Li, 2013; Barlow and Bartolomei, 2014;
Monk et al., 2019; Tucci et al., 2019; Bartolomei et al., 2020).
Genomic imprinting has been implicated in regulating dosage-
sensitive gene expression in the neurogenic niche (Montalban-
Loro et al., 2015; Perez et al., 2016; Lozano-Urena et al., 2017).
So far, about 200 known imprinted genes have been discovered to
exhibit parent-of-origin–dependent monoallelic expression patterns
(Tucci et al., 2019; Xu et al., 2022). Tissue-specific imprinting has
been observed for some imprinted genes such as the Ube3a
imprinted gene at the Snrpn imprinted region that shows mono-
allelic expression in the brain but not in the other organs (Hsiao
et al., 2019; Jiang et al., 2021). It is not expressed in the embryos
either. Normally, Dlk1 is almost exclusively expressed from the
paternal allele in mouse embryos, whereas it is bi-allelically
expressed in the NSCs and niche astrocytes in the adult V-SVZ
and SGZ regions (Ferron et al., 2011; Montalban-Loro et al., 2021).
The Dlk1 gene expresses multiple transcript isoforms encoding
membrane-bound and secreted proteins of DLK1. It is reported
that the secreted DLK1 by niche astrocytes interacts with its
membrane-bound DLK1 present on NSCs, which is important
for neurogenesis and cognition (Montalban-Loro et al., 2021).
The imprinted Igf2 gene is expressed solely from the paternal
allele in the NSCs of SGZ that encodes an autocrine factor to
prevent NSCs from apoptosis. In contrast, biallelic expression of
Igf2 is observed in the cerebrospinal fluid and endothelial cells of
V-SVZ (Ferron et al., 2015). It is possible that dosage-sensitive
transcriptional regulation of Igf2 through its imprinted expression
may be crucial for adult neurogenesis. Interestingly, IGF2 is also
important for terminal differentiation of NSCs into neurons,
astrocytes and oligodendrocytes through regulation of another
imprinted gene Cdkn1c encoding a cell-cycle inhibitor p57
(Lozano-Urena et al., 2023). Thus, DNA methylation plays
diverse and important roles in the maintenance, proliferation and
differentiation of NSCs.

Histone post-translational modification

Histone post-translational modifications (PTMs) refer to the
covalent chemical modification on histone proteins, including
acetylation, methylation, ubiquitination, phosphorylation,
ribosylation, and SUMOylation, etc. (Bannister and Kouzarides,
2011; Suganuma and Workman, 2018; Talbert et al., 2019;
Millan-Zambrano et al., 2022). Many transcription factors are
known to be important for CNS development and adult
neurogenesis. Histone PTMs facilitate recruitment of these
transcription factors to their binding sites on chromatin to

promote transcriptional activation or repression in the brain
(Adam and Harwell, 2020; Chen and Zhang, 2020). Histone
acetylation catalyzed by histone acetyltransferases (HATs) is a
marker of transcriptional activation, whereas deacetylation
catalyzed by histone deacetylases (HDACs) inhibits transcription.
QKF, a member of the MYST family of HAT, is highly expressed in
the adult V-SVZ. Its loss causes reduced neuroblast migration
through RMS, and accordingly fewer interneurons can reach OB
(Merson et al., 2006; Sheikh et al., 2012). TRRAP-mediated histone
acetylation regulates SP1-dependent transcription in adult
neurogenesis, and TRRAP deletion inhibits self-renewal and
differentiation potentials of adult NSCs (Yin et al., 2023).
Furthermore, activation of adult NSCs is shown to be dependent
on regulation of histone acetylation via ATP-citrate lyase (Liu et al.,
2023b). In contrast, HDACs remove acetyl groups from histones to
repress transcription (Chen and Zhang, 2020; Li et al., 2020). There
are eighteen known HDACs that are classified into four groups
(Class I, Class II, Class III and Class IV). HDAC2 and
HDAC3 belong to class I HDACs. HDAC2 is shown to be
required for transcriptional silencing during neuronal
differentiation in adult neurogenesis, and its loss results in death
of neurons at the maturation stages during adult neurogenesis
(Jawerka et al., 2010). HDAC3 regulates proliferation and cell
cycle progression in adult neurogenesis mainly through
acetylation of G2/M cyclin-dependent kinase 1 (CDK1) (Jiang
and Hsieh, 2014). HDAC5 belongs to class II HDACs and it is
reported to interact with the orphan nuclear receptor TLX, a
transcription factor necessary for NSC proliferation and self-
renewal in cell culture (Sun et al., 2007). This interaction causes
transcriptional repression of some TLX target genes in cell cycle
regulation, including the cyclin-dependent kinase inhibitor p21 and
the tumor suppressor gene pten in the NSC cell culture experiments
(Sun et al., 2007). Class III HDACs consist of sirtuins such as
SIRT1 and SIRT5 that are required for cell fate determination of
adult NSCs and maintenance of the nervous system during aging,
although the specific mechanism is still unclear (Rafalski and
Brunet, 2011; Herskovits and Guarente, 2014; Santos et al., 2021).
HDAC11 is the only member of Class IV HDAC family that is
currently known to act in neuronal maturation by regulating
dendritic length and complexity (Nunez-Alvarez and Suelves, 2022).

Histone methylation modification is catalyzed by histone
methyltransferases (HMTs), with methyl group added onto the
lysine (K) and arginine (R) residues. These may be either
transcriptional activation marks or repression marks (Bedford
and Clarke, 2009; Guccione and Richard, 2019; Jambhekar et al.,
2019; Morgan and Shilatifard, 2020). Polycomb (PcG) proteins are
important for formation of some repressive chromatin marks. There
are two types of PcG complexes: polycomb repressive complex 1
(PRC1) and polycomb repressive complex 2 (PRC2) (Almeida et al.,
2020; Blackledge and Klose, 2021). Both PRC complexes regulate
chromatin accessibility and expression of region-specific
transcription factors in NPC differentiation and brain
regionalization (Eto and Kishi, 2021). EZH2 is a key member of
PRC2 that catalyzes H3K27me3 formation. It is expressed in the
V-SVZ and SGZ of adult mice, and loss of EZH2 in these regions
affects both differentiation andmaintenance of neural stem cells and
progenitor cells (Rhodes et al., 2018). MLL1 is an HMT of the
Trithorax (TrxG) complex, and it is required for neurogenesis in
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V-SVZ by regulating transcription factor DLX2 (Lim et al., 2009).
MLL1-deficient NSCs in SGZ can survive and proliferate. And they
can differentiate into glial cell lineages, but their neuronal
differentiation potential is severely impaired. MLL1 is also
required for maintaining NSC positional identity through
regulation of region-specific transcription factors such as NKX2-1
(Delgado et al., 2020). Without MLL1, expression of some dorsal
identity genes increases in the neurons derived from adult NSCs.
SETD4, an H4K20me3 writer, maintains the NSC population in the
adult brain, and loss of SETD4 leads to depletion of adult NSCs in
the mutant mice (Cai et al., 2022). In contrast, lysine-specific
demethylase 1 (LSD1) that catalyzes histone lysine demethylation
is required for NSC proliferation. It is recruited by TLX to suppress
expression of its target genes after removal of activation methylation
marks (Sun et al., 2010). JMJD3, a histone H3 lysine 27 (H3K27)
demethylase, regulates the Dlx2 enhancer during NSC
differentiation (Park et al., 2014).

Other histone modifications also play crucial roles in
neurogenesis. BMI1 that is a member of the PcG family proteins
and a component of polycomb repressive complex 1 (PRC1),
cooperates with RING1, another component of PRC1, in
ubiquitination of K119 of H2A. Loss of Bmi1 affects self-renewal
of NSCs in the SVZ of adult mice partly through deregulation of cell
cycle inhibitors such as p16Ink4a and P19Arf (Pardal et al., 2005).
There are some well-documented studies regarding the important
functions of other components of PRC1 such as RYBP, YAF2,
PCGF5 and PCGF6 in neural differentiation from mouse
embryonic stem cells (ESCs) or from human induced pluripotent
stem cells (iPSCs) (Yao et al., 2018; Lan et al., 2022; Liu et al., 2023a).
It is worth noting that RING1 (also called PCGF1) is required for
neuronal subtype specification in the enteric nervous system of adult
mouse (Putra et al., 2023). Nevertheless, it awaits further
investigation if they may play similar roles in adult NSCs.

Taken together, histone modifications catalyzed by different
enzymes are important for adult neurogenesis that can either
activate or repress key target genes required for proper neurogenesis.

Chromatin remodeling

Chromatin-remodeling complexes contain ATPases to
modulate chromatin structure and gene expression (Becker and
Workman, 2013; Hota and Bruneau, 2016; Ahmad et al., 2022). In
mammals, they can be divided into four major subfamilies based on
the characteristics of their ATPase catalytic domains: BAF (SWI/
SNF), ISWI, CHD/NuRD and INO80/SWR (Hota and Bruneau,
2016). Bcl11b/Ctip2 encodes a subunit of BAF regulating survival,
differentiation as well as circuit integration of the granule neurons
generated from SGZ. Loss of Ctip2 expression in the adult
hippocampus and dentate gyrus results in reduced proliferation
and differentiation of NSCs (Simon et al., 2012; Simon et al., 2016).
Deletion of BRG1 in the BAF family, which directly interacts with
the transcription factor PAX6, causes differentiation of adult NSCs
into ependymal lineages in the V-SVZ, whereas migrating
neuroblasts become glial cells in the RMS during their migration
to OB (Ninkovic et al., 2013). BRG1 is also involved in the
maintenance and proliferation of hippocampal progenitor cells
through regulation of the p53-p21 axis (Petrik et al., 2015). Loss

of BAF170, another subunit of the BAF complex, results in
premature differentiation of NSCs into astrocytes in the SGZ that
causes depletion of NSCs (Tuoc et al., 2017). CHD7, a member of the
CHD family, maintains the NSC quiescent status in the
hippocampal SGZ through induced expression of Hes5, a target
gene of NOTCH signaling (Jones et al., 2015). It is required for
expression of SOX4 and SOX11, two transcription factors necessary
for neuronal differentiation (Feng et al., 2013). Taken together,
chromatin-remodeling complexes are required for neurogenesis by
modulating chromatin structure and gene expression.

Nucleosome and chromatin
organization

Nucleosome positioning affects transcription. It is also
important for neural development. Indeed, high-mobility group
nucleosomal binding domain 2 (HMGN2) was shown to be
expressed in the SVZ and SGZ regions of adult mouse brain and
loss of HMGN2 caused reduced self-renewal and increased
differentiation of adult NSCs, which resulted in microcephaly
(Gao et al., 2020). There was correlation between nucleosome
occupancy and histone modifications in the genome, and there
was also an increase in average length of the nucleosomes in the
differentiated neuronal cells derived from mouse ESCs (Teif et al.,
2012). Nucleosome positioning may be also important for neural
differentiation from human iPSCs, with an increase in the number of
positioned nucleosomes as well as repositioning of nucleosomes
upon differentiation of human iPSCs (Harwood et al., 2019). CTCF
is an important regulator in enhancer-promoter interactions and 3D
genome organization necessary for proper gene expression
(Ghirlando and Felsenfeld, 2016; Chen and Long, 2023). It is
required for embryonic neural development and neural
differentiation from mouse and human ESCs (Bonev et al., 2017;
Modrek et al., 2017; Arzate-Mejia et al., 2018; Pekowska et al., 2018;
Kubo et al., 2021; Dong et al., 2022). However, it remains to be tested
if similar nucleosome positioning and CTCF-mediated 3D
chromatin organization effects may be observed in the process of
neural differentiation of the adult NSCs.

Non-coding RNAs

Non-coding RNA (ncRNA) does not appear to encode any long
peptide in its sequence (Chen and Rechavi, 2022; Nojima and
Proudfoot, 2022; van Zonneveld et al., 2023). However, some
ncRNAs have been shown to display important biological
functions in many cellular processes including neural
development (Soutschek and Schratt, 2023). Huge numbers of
ncRNAs have been discovered and millions of ncRNAs may exist
in the mammalian genome. There are a few known kinds of ncRNAs
such as microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs).

One of the first discovered ncRNAs is miRNA that contains a
small single-stranded RNA molecule with approximately
22 nucleotides in length (Shang et al., 2023). More than one
thousand miRNAs have been discovered in mouse or humans. In
mammals miRNA usually targets the 3′UTR of mRNAs with
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imperfect complementary to cause translational inhibition,
whereas it may trigger transcriptional repression or RNA
degradation with nearly perfect complementation to its targets
in plants (Chen and Rechavi, 2022). miR124 is one of highly
abundant miRNAs present in the brain (Sun et al., 2013). It
targets Sox9, a key transcription factor in neural development,
to regulate neural regeneration in the V-SVZ region during the
transition from IPCs to neuroblasts (Cheng et al., 2009). EZH2 is
targeted bymiR137, another miRNA, to regulate NSC proliferation
and differentiation which is under the control of MeCP2 and SOX2
(Szulwach et al., 2010). It has been shown that miR137 plays a role
in neuronal maturation and dendritic morphogenesis by targeting
MIB1 in the ubiquitin-regulated pathway (Smrt et al., 2010).
Another miRNA miR184 which is regulated by MBD1 promotes
proliferation but inhibits differentiation of NSCs (Liu et al., 2010).
A cluster of six miRNAs have been shown to be required for NSC
proliferation at the expense of oligodendrocytes (Favaloro
et al., 2022).

Generally, lncRNAs are more than 200 nucleotides in length,
with no obviously translated protein product (Yao et al., 2019;
Andergassen and Rinn, 2022; Nojima and Proudfoot, 2022;
Mattick et al., 2023). There are hundreds of thousands of
lncRNAs in mammals. The imprinted H19 gene product is the
first discovered lncRNA (Brannan et al., 1990; Bartolomei et al.,
1991). Xist involved in mammalian X chromosome inactivation is
another well-known founding member of lncRNAs (Loda et al.,
2022). LncRNAs may regulate gene expression in a tissue-specific
pattern (Ernst and Morton, 2013; Zhang et al., 2019; Statello et al.,
2021). They are prevalently expressed in the brain that contains
the highest number of tissue-specific lncRNAs (Francescatto
et al., 2014; Washietl et al., 2014; Ninou et al., 2021).
Depletion of two lncRNAs, Six3os and Dlx1as, in the NPCs of
the adult V-SVZ region results in increased astrocyte
differentiation at the expense of neurons (Ramos et al., 2013).
The lncRNA Pnky interacts with PTBP1 to regulate neural
differentiation from NSCs in vivo, and Pnky knockdown
increases neural commitment in differentiation of NSCs
(Ramos et al., 2015). However, further studies are needed to
elucidate the molecular mechanisms of lncRNAs in
transcriptional regulation of adult NSCs.

RNA methylation

There are already more than 100 different kinds of known
RNAmodifications. RNAmethylation is among the most common
RNA modifications that may play important roles in neural
development (Yoon et al., 2018). Without an rRNA
methyltransferase FBL, neural differentiation and neuronal
progression from NSCs is inhibited in mouse embryos because
there is reduced translation of EZH2 and KDM6b (Wu et al., 2022).
YTHDF2, an m6A reader, is required for self-renewal and neural
differentiation of embryonic NSCs in mouse through RNA
degradation (Li et al., 2018). It has also been shown that FMRP
is a reader for m6A modified mRNAs and promotes their nuclear
export in order to fulfill their roles in cell cycle progression and
maintenance of neural progenitors derived from NSCs in mouse
embryos (Edens et al., 2019). These findings may need to be tested

and confirmed in adult NSCs. Interestingly, ablation of
METTL1 inhibits m7G RNA methylation and causes reduced
hippocampal neurogenesis from NSCs in adult mice (Li et al.,
2023). Therefore, at least some RNA methylation seems to be
important for adult NSCs.

Perspectives

The stem cell state of adult NSCs is maintained by both
intrinsic factors and extrinsic signals. Through spatial and
temporal regulation of expression of key transcription factors
and signaling pathway modulators, many epigenetic regulators
have already been shown to be required for maintenance of NSCs
in the adult brain. They also play important roles in balancing
proliferation and differentiation of NSCs in adult neural
development. Interestingly, the epigenetic modifications
established during early development may exert significant
influence on neurogenesis in the adult brain. Consistent with
this, adult NSCs are thought to be derived from embryonic
radial glial (RG) cells and reversibly enter the quiescent state
after they exit cell cycle. This also implies that the impact of
epigenetic modifications established during early development
may need to be taken into account in analyses of the
mechanisms underlying maintenance, proliferation and
differentiation of adult NSCs.

DNA and RNA methylation, histone modifications,
chromatin remodeling, nucleosome positioning, 3D chromatin
organization as well as non-coding RNAs may function in
distinct pathways to ensure adult neurogenesis to progress in
an orderly fashion. As shown in other cells and model systems,
these epigenetic modifications do not act alone and may indeed
function synergistically in order for adult NSCs to attain various
cellular states. The cross-talk among different epigenetic
modifications may be important for integration of intrinsic
and extrinsic factors in cell fate transition of adult NSCs.
Furthermore, there are a lot more epigenetic modifications
that have yet to be discovered, and undoubtably some of them
may be involved in regulation of adult NSCs. It remains to be
explored how other new epigenetic modifications may modulate
adult NSCs. It is also important to examine how many
transcription factors and epigenetic regulators may share their
functions in the adult NSCs in the V-SVZ and SGZ regions
(Figure 1; Figure 2). It remains to be tested if these findings may
be applicable to adult NSCs in human brains.

Despite much progresses in adult NSCs over the last few
decades, it is not that clear how adult NSCs maintain their
quiescent cellular state and how external signals and intrinsic
factors drive them to re-enter cell cycle and give rise to different
cell lineages before integration into the neural circuits.
Application of high-throughput technologies in epigenetic
research such as RNA-seq, WGBS, ChIP-seq and ATAC-seq,
in combination with single cell analyses, will help us to better
understand dynamic transcriptional regulation of adult NSCs in
their cell fate transition and specification. It is still in the infancy
stage to uncover epigenetic regulators and modifications in
adult NSCs and their roles in adult neurogenesis and neural
plasticity.
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