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The retina is part of the central nervous system specialized for vision. Inherited retinal
diseases (IRD) are a group of clinically and genetically heterogenous disorders that
lead to progressive vision impairment or blindness. Although each disorder is rare, IRD
accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently,
the pathophysiological mechanisms of IRD are not fully understood and there are
limited treatment options available. Most IRD are caused by degeneration of light-
sensitive photoreceptors. Genetic mutations that abrogate the structure and/or
function of photoreceptors lead to visual impairment followed by blindness
caused by loss of photoreceptors. In healthy retina, photoreceptors structurally
and functionally interact with retinal pigment epithelium (RPE) and Müller glia
(MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor
degeneration as a major phenotype are caused by mutations of RPE- and/or MG-
associated genes. Recent studies also reveal compromised MG and RPE caused by
mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor
degeneration could be a direct consequence of gene mutations and/or could be
secondary to the dysfunction of their interaction partners in the retina. This review
summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting
retinal functions and discusses how the disruption of these processes could lead to
photoreceptor degeneration, with an aim to provide a unique perspective of IRD
pathogenesis and treatment paradigm. Wewill first describe the biology of retina and
IRD and then discuss the interaction between photoreceptors andMG/RPE as well as
their implications in disease pathogenesis. Finally, we will summarize the recent
advances in IRD therapeutics targeting MG and/or RPE.
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1 Introduction

Among the five senses of humans (vision, taste, touch, smell, hearing), vision is
considered as the most important one for most people (Hutmacher, 2019).
Approximately a hundred years ago, research on perception and perceptual memory
was mainly focused on the vision, through which we perceive most of information
(Ripley and Politzer, 2010; Hutmacher, 2019). Vision starts with light entering the eye,
being filtered through the cornea, and focused onto the retina by the lens. The retina is a
multi-layered structure specialized for vision. The light-sensitive photoreceptors in the
retina capture photons and convert them into electrical impulses, which are integrated and
processed by interneurons, and transmitted to the lateral geniculate nucleus, pretectal
nuclei, and superior colliculus in the brain by retinal ganglion cells (Smith and Czyz, 2023).
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Up to 75% of people consider losing the sense of vision the scariest
compared to the other four senses (Hutmacher, 2019). Vision loss stems
from the inability of the retina to detect the light and/or transmit visual
signals to the brain (Wright et al., 2010; Veleri et al., 2015; Chen et al.,
2021b). Amongst the plethora of blinding disorders, inherited retinal
diseases (IRD) have particular significance. IRD are a group of clinically
and genetically heterogeneous disorders characterized by progressive
vision impairment or loss. Although individually rare, IRD have an
accumulative prevalence of up to 5.5 million cases globally (Ben-Yosef,
2022). As a major cause of childhood blindness (John et al., 2022), IRD
frequently destine children to a lifetime of severe vision impairment
and/or blindness and cause a considerable burden on family and
societies (Leroy et al., 2021). In 2019, the total costs spent on IRD
were estimated between $13.4 and $31.8 billion in the United States and
between $1.6 and $6.7 billion in Canada (Gong et al., 2021). Currently,
there is only one FDA-approved gene therapy drug voretigene
neparvovec (Luxturna®) to treat IRD caused by RPE65 mutations
(Pierce and Bennett, 2015), and the long-term effect seems variable
(Gardiner et al., 2020; Wang et al., 2020; Leroy et al., 2022). In addition,
with over 280 disease-causing genes of IRD (RetNet, https://sph.uth.
edu/retnet/), the development of individualized gene therapy protocols
would not be an optimal option particularly for an individually rare
disease (Tambuyzer et al., 2020). Therefore, gene-agnostic paradigms
are being developed as a more desirable therapeutic approach (Scholl
et al., 2016) and a comprehensive understanding of the cellular and
molecular mechanisms of IRD is a premise for designing effective and
long-lasting therapeutics.

A majority of IRD are due to dysfunction and/or degeneration of
the light-sensitive photoreceptors (Wright et al., 2010; Verbakel et al.,
2018), with disruption of photoreceptor outer segment biogenesis/
function, phototransduction, synapses, metabolism the most frequent
causes (Veleri et al., 2015; Zelinger and Swaroop, 2018). We note that
development and homeostasis of photoreceptors heavily rely on the

interaction with the retinal pigment epithelium (RPE) and Müller glia
(MG). Consistently, an increasing number of studies suggest that
pathologies of RPE or MG may compromise photoreceptor survival
(Wright et al., 2010; Mysore et al., 2014; Pellissier et al., 2015; Veleri
et al., 2015; Duncan et al., 2018; Amato et al., 2021; Chen et al., 2023a).
Therefore, degeneration of photoreceptors in IRD could be a direct
consequence of genetic mutations and/or secondary to compromised
RPE/MG. This review aims to summarize our current understanding in
the interaction among these cell types and explore how dysfunction of
one cell type could compromise the other one, a process that is
particularly important in designing long-lasting and efficacious
therapeutics. As some of these mechanisms could be common
among various mutations, a comprehensive understanding of the
mechanisms underlying the cell-cell interaction in the outer retina
should hold the promise to identify therapeutic targets for gene-
agonistic therapies.

2 Retinal structure and function

When light strikes the eye, the cornea and the lens bend and
invert the light to focus it on the retina, a receptive inner layer lining
the posterior part of the eyes (Masland, 2012; Erskine and Herrera,
2014). The retina is comprised of neurons (photoreceptors, bipolar
cells, horizontal cells, amacrine cells, and retinal ganglion cells) and
glial cells (MG) forming three distinct cellular layers [the outer
nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell
layer (GCL)] and two plexiform layers (the outer plexiform layer and
inner plexiform layer) enriched in cellular processes and synapses
(Figure 1) (Hoon et al., 2014).

Every retinal cell type has its unique and vital role inmaintaining
the retinal function. Photoreceptors are light-sensitive neurons
located at the ONL and can be further categorized into rod and

FIGURE 1
Layers of the retina and their respective cell types. Genes associated with inherited retinal degeneration expressed in retinal pigment epithelium
(RPE), photoreceptors (PR), and Müller Glia (MG) are listed.
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cone photoreceptors based on their morphology and function. Rod
photoreceptors were historically considered to function under dim
light for night vision. Recent studies reveal they also support cone
survival and function (Leveillard et al., 2004; Pahlberg et al., 2017;
Tikidji-Hamburyan et al., 2017). Cone photoreceptors operate at
bright illumination conditions and are responsible for color and
high acuity vision as well as non-image forming responses (Gooley
et al., 2010; Lall et al., 2010; Molday and Moritz, 2015; Walmsley
et al., 2015). Retinal interneuron bipolar, horizontal, and amacrine
cells are mainly located at the INL. Bipolar cells process visual
signals from photoreceptors and transmit them to retinal ganglion
cells, a process modulated by horizontal cells and amacrine cells with
both excitatory and inhibitory properties (Diamond, 2017). Visual
signals are transmitted to the brain via the optic nerves, which are
axons of the retinal ganglion cells (Mead and Tomarev, 2016).

The structure and function of the retina is maintained by MG,
which are the most abundant glial cells in the retina. They play a
crucial role in maintaining the homeostasis of retina and provide
structural, metabolic, and functional support to retinal neurons
(Reichenbach and Bringmann, 2013; Tworig and Feller, 2021).
RPE is another type of supporting cell for the retina. Located
juxtaposed to photoreceptors (Figure 1), RPE form the outer
retina-blood barrier, with their apical and basal side interfacing
with photoreceptors and the Bruch’s membrane, respectively
(Lakkaraju et al., 2020). RPE tightly interact with photoreceptors
to coordinate metabolism and visual cycle (Palczewski and Kiser,
2020; Hurley, 2021; Nolan et al., 2021). We will further discuss the
interaction between photoreceptors and their interaction
partners MG and RPE in the following sections.

3 Genetics and biology of inherited
retinal degenerative diseases

The genesis and health of the retina are maintained by numerous
structural and functional components. Mutations in genes encoding
for these components could lead to progressive, visually debilitating
diseases collectively termed as IRD. The discovery of the first two
IRD-causing genes (RHO and CHM) can be traced back to 1990
(Cremers et al., 1990; Dryja et al., 1990). With the advances in
sequencing technologies and genetic mapping, more than 300 IRD-
associated loci are mapped and over 280 disease-causing genes with
diverse roles in the retina have been identified (RetNet; https://web.
sph.uth.edu/RetNet/).

IRD are highly heterogeneous both genetically and
phenotypically. They can be monogenic, digenic, or even more
complex, and inherited as autosomal recessive, autosomal
dominant, or X-linked. Recently, a comprehensive analysis on
1243 proband-parent trios in 22 subgroups of inherited eye
disorders by targeted exome sequencing reveals de novo
mutations contributes to approximately 7% of pathogenicity (Li
et al., 2023). De novo mutations could arise from patients with a
simplex disease and cause autosomal dominant phenotypes, such as
in the case of the Arg677Ter mutation of RP1 (Schwartz et al., 2003).
The presence of de novo mutations supports the hypothesis of
mutational hotspots (Schwartz et al., 2003; Daiger et al., 2007).
Besides RP1, a recent study on a large cohort indicates the high
prevalence of ABCA4 and USH2A mutations (Karali et al., 2022).

The pleiotropic effect of numerous IRD-causing genes, in which
mutations in one gene could cause diverse phenotypes, adds more
complexity to the clinical manifestations (den Hollander et al., 2010;
Valente et al., 2006; Siemiatkowska et al., 2014; Daiger et al., 2007).
More than 50 major types of IRD have been documented globally,
with retinitis pigmentosa (RP), Leber congenital amaurosis (LCA),
Stargardt disease as the most common forms (Duncan et al., 2018;
Schneider et al., 2022). RP, which is the most prevalent IRD and
contributes to approximately half of the IRD cases (Daiger et al.,
2013), is characterized by initial rod photoreceptor degeneration
followed by gradual loss of cone cells (Verbakel et al., 2018). LCA is a
group of severe retinal dystrophy and the leading cause of inherited
childhood blindness (Kumaran et al., 2017). Visual impairment or
blindness caused by dysfunction or degeneration of photoreceptors
is congenital or manifested within the first few months after birth in
LCA patients (Cideciyan and Jacobson, 2019). Different from RP
and LCA, in which compromised peripheral vision caused by
dysfunctional rods is the earliest and most common phenotype
(Shintani et al., 2009; Chacon-Camacho and Zenteno, 2015),
Stargardt disease is the most prevalent inherited macular
dystrophy characterized by gradual loss of central vision
(Gelisken and De Laey, 1985; Weleber, 1994). Most Stargardt
patients experience significant reduction in visual acuity in their
first or second decade of life, which is associated with loss of
photoreceptors and/or RPE (Molday, 2015).

While dysfunction or death of photoreceptors is a common
phenotype shared by almost every type of IRD, disease-causing
genes encode for proteins involved in diverse cell types, signaling
pathways, and cellular functions. Notably, numerous IRD with
photoreceptor degeneration are caused by mutations in genes
associated with RPE and MG structure/function (Table 1, 2).
Therefore, photoreceptor degeneration in IRD could be a direct
cause of genetic mutations and/or secondary to pathologies of its
interaction partner such as MG and RPE. In favor of the latter,
therapeutic approaches targeting MG and RPE show promising
outcome in maintaining photoreceptor survival and function in
preclinical models and clinical trials (Cideciyan et al., 2009; Jacobson
et al., 2012; LaVail et al., 2016; Buck et al., 2021). In the following
sections, we will focus on the function of RPE and MG as well as
their interaction with photoreceptors, with an aim to unravel their
potential role in IRD pathogenesis.

4 Photoreceptor-RPE interaction in IRD

RPE form a monolayer between the outer retina and the
choroidal layer (Figure 1). The basolateral side of RPE faces the
Bruch’s membrane, an elastin- and collagen-rich extracellular
matrix between the RPE and the fenestrated choroidal capillaries
of the eye, and the apical side is juxtaposed to photoreceptors
(Strauss, 2005; Booij et al., 2010). The tight junction of RPE
enables the layer to act as a semipermeable membrane to provide
structural and functional support for the retina. Due to the close
relationship between photoreceptors and RPE, mutations in RPE
genes are often associated with photoreceptor degeneration in IRD
(Table 1). In this section, we will discuss how mutations in RPE-
associated disease-causing genes abrogate RPE function and lead to
photoreceptor degeneration in IRD (Figure 2).
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TABLE 1 Retinal pigment epithelium (RPE) genes associated with inherited retinal degenerationa.

OMIM# Gene Protein Cell type Function Phenotypeb

604210 CRB1 Crumbs homolog 1 RPE Maintenance of retinal cell
junction and retinal polarity

Leber congenital amaurosis (LCA)
8; Retinitis Pigmentosa (RP) 12;
Pigmented paravenous
chorioretinal atrophy

300757 RP2 RP2 activator of ARL3 GTPase Photoreceptor; RPE (Schwarz et
al., 2015)

Activating GTPase in tubulin
cellular pathway; ciliary traffic

RP 2

609868 SPATA7 Spermatogenesis-associated
protein 7

Photoreceptor; RPE (Sengillo et
al., 2018)

Manufacturing of RPGRIP1
protein complex in the cilia

RP 94; LCA 3

604863 LRAT Lecithin retinol acyltransferase RPE Processing visual cycle molecules Juvenile RP; LCA 14; Retinal
dystrophy

601691 ABCA4 ATP-binding cassette superfamily
transmembrane protein

Photoreceptor; RPE (Lenis et al.,
2018)

Removing the toxic byproduct of
the visual cycle

RP 19; Stargardt disease 1; Macular
degeneration; Fundus
flavimaculatus

604705 MERTK MER tyrosine kinase proto-
oncogene

RPE Modulating the RPE
phagocytosis pathway

RP 38

600342 RGR RPE-retinal G protein-coupled
receptor

RPE; Müller glia (MG) Facilitating the isomerization of
11-cis-retinal

RP 44

180069 RPE65 Retinoid isomerohydrolase RPE Converting all-trans-retinyl ester
to 11-cis-retinol in the visual
cycle

RP 20 and 87; LCA 2

607854 BEST1 Bestrophin 1 RPE; MG Formation and function of
chloride ion channels

RP 50; Vitreoretinochoroi-
dopathy; Bestrophinopathy;
Macular dystrophy

606151 BBS2 Bardet-Biedl syndrome 2 (part of
the BBSome)

Photoreceptor; RPE Ciliogenesis RP 74; Bardet-Biedl syndrome 2

607292 SEMA4A Semaphorin 4A RPE; Retinal ganglion cells;
Amacrine cells

Retinal development RP 35; Cone-rod dystrophy 10

608132 TTC8 Tetratricopeptide repeat domain-
containing protein 8 (part of the
BBSome)

RPE Ciliogenesis RP 51; Bardet-Biedl syndrome 8

607056 IMPG2 Interphotoreceptor matrix
proteoglycan 2

Photoreceptor; RPE A component of the extracellular
matrix between RPE and
photoreceptors

RP 56; Macular dystrophy

300170 OFD1 OFD1 centriole and centriolar
satellite protein

RPE A modulator of centriole length RP 23, Joubert Syndrome 10

608845 ARL6 ADP-ribosylation factor-like
GTPase 6

RPE Binding the BBS complex to the
cilia membrane

RP 55; Bardet-Bledl syndrome 1
and 3

617539 CLCC1 Chloride channel CLIC-like 1 RPE; Photoreceptor (Li et al.,
2018)

Chloride channel activity and
transport on the cellular and
mitochondria-associated ER
membrane

RP 32

609507 TOPORS Topoisomerase I-binding arginine/
serine-rich protein

RPE; photoreceptor; retinal
ganglion cells

Ubiquitin-protein E3 ligase RP 31

617509 VWA8 von Willebrand factor A domain
containing 8

RPE Potential functions in
mitochondria, autophagy,
apoptosis, and retinal
development

RP 97

602280 TULP1 TUB-like Protein 1 Photoreceptor; RPE; MG; Retinal
ganglion cells (Palfi et al., 2020)

Protein trafficking; Ligand in the
MERTK pathway for RPE
phagocytosis (Palfi et al., 2020)

RP 14; LCA 15

146690 IMPDH1 IMP Dehydrogenase 1 Photoreceptor; RPE (Kennan et
al., 2003)

Precursor of GMP and guanin;
Modulating the formation
of IMP

RP 10; LCA 11

(Continued on following page)
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4.1 Absorption of light and reduction of
oxidative stress

While light is essential for vision, exposure to bright
illumination could cause permanent photic damage to the
retina (Youssef et al., 2011). Human RPE contain three types
of pigment granules at various stages, which absorb and filter
approximately 60% of light with various wavelengths to protect
the retina. Melanin-containing melanosomes are formed between
early embryogenesis and up to 2 years in humans. Lipofuscin
granules accumulate with increasing age and melanolipofuscin
granules are a feature of aged RPE (Feeney, 1978; Boulton, 2014).
When the filtered light reaches the retina, it initiates the visual
process, which requires tremendous amount of energy. Reactive
oxygen species (ROS) is thus generated as a by-product of active
metabolism by mitochondria in photoreceptors (Wong-Riley,
2010). ROS triggers oxidative stress and subsequent retinal
damage and is strongly implicated in retinal degeneration (Ray
et al., 2012; Bellezza, 2018; Ozawa, 2020). RPE harbor a high
concentration of cellular enzymatic antioxidants (Newsome et al.,
1990; Blanks et al., 1992; Oliver and Newsome, 1992; Miceli et al.,
1994; Tate et al., 1995; Feng et al., 2010; Murthy et al., 2014; Biswal
et al., 2018; Sun et al., 2018; Zheng et al., 2022b), which should
facilitate the alleviation of oxidative stress in RPE themselves as
well as the outer retina. Melanosomes also have been
demonstrated to have a potential antioxidant role in RPE
(Burke et al., 2011).

4.1.1 MYO7A-associated Usher syndrome 1B
MYO7A encodes myosin VIIA in photoreceptors and RPE.

Mutations in MYO7A are associated with the most common
Usher Syndrome type 1B characterized by congenital deafness
and progressive retinal degeneration (Smith et al., 1994). Myo7a-
null mice reveals the function of Myo7a in the apical localization of
melanosomes and phagosomes via actin-based motor activity in
RPE as well as the selective transport of opsins and other
phototransduction proteins to the outer segments in
photoreceptors (Lopes et al., 2011). Consequently, mutations in
MYO7A disrupt the proper function of melanosomes for light
absorption to protect the retina as well as the localization of
phototransduction machineries to initiate vision, which lead to
visual impairment and retinal damage in patients.

4.2 Visual cycle

Phototransduction is a visual process that converts light into
electrical signals in photoreceptors. Photoreceptors contain a high
concentration of visual pigment (i.e., opsin) at the outer segments
(Ebrey and Koutalos, 2001). The type of opsin defines the
photoreceptor subtype. Rod photoreceptors harbor rhodopsin.
Cone photoreceptors can be further categorized into L- (long,
564 nm), M- (medium, 533 nm) or S- (short, 437 nm) type
depending on the maximal spectral sensitivity of their opsins.
Rod and cone opsins are present in the membranous discs of

TABLE 1 (Continued) Retinal pigment epithelium (RPE) genes associated with inherited retinal degenerationa.

OMIM# Gene Protein Cell type Function Phenotypeb

604365 PROM1 PROMININ Photoreceptor; RPE Outer segment disc
morphogenesis

Cone-rod dystrophy; Macular
dystrophy; RP 41; Stargardt
disease 4

276903 MYO7A Myosin VIIA RPE; Photoreceptor Transport of melanosome and
phagosome

Usher syndrome

aUnless otherwise specified, this table summarizes information of RPE-associated genes in OMIM, Online Mendelian Inheritance in Man (https://www.omim.org/).
bWe note that multiple genes in inherited retinal degeneration are associated with syndromic disorders with multi-organ pathology. Only phenotypes associated with the retina are listed in the

table.

TABLE 2 Müller glia (MG) genes associated with inherited retinal degenerationa.

OMIM# Gene Protein Cell type Function Phenotypeb

600308 AQP4 Aquaporin 4 MG (Li et al., 2002) Modulating water
homeostasis in the retina

Inherited retinal dystrophy (Lassiale et al., 2016)

613858 PRSS56 Serine protease 56 MG (Paylakhi et al., 2018) Modulating ocular axial
growth

Microphthalmia, isolated 6

600342 RGR Retinal G protein-coupled
receptor

Retinal pigment epithelium
(RPE); MG (Jiang et al., 1993)

Converting all-trans
retinal to 11-cis retinal

Retinitis pigmentosa 44

180090 RLBP1 Retinaldehyde binding
protein 1

RPE and MG (Maw et al., 1997) Visual cycle Bothnia retinal dystrophy; Fundus albipunctatus;
Newfoundland rod-cone dystrophy; Retinitis punctata
albescenes

604210 CRB1 Crumbs cell polarity
complex component 1

Photoreceptor; MG (Pellissier et
al., 2014)

Cellular polarity Leber congenital amaurosis 8; Retinitis pigmentosa 12;
Pigmented paravenous chorioretinal atrophy

aUnless otherwise specified, this table summarizes information of MG-associated genes in OMIM, Online Mendelian Inheritance in Man (https://www.omim.org/).
bWe note that multiple genes in inherited retinal degeneration are associated with syndromic disorders with multi-organ pathology. Only phenotypes associated with the retina are listed in the

table.
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outer segments. Each opsin molecule is covalently bound to
chromophore 11-cis retinal to become light-sensitive. Upon
photon capture, 11-cis retinal is isomerized to all-trans form,
which triggers a conformational change in opsins and initiates a
cascade of biochemical events to initiate the phototransduction
cascade. The photobleached pigment releases all-trans retinal into
the disc bilayer. All-trans retinal cannot be processed by
photoreceptors and thus is transported back to RPE for recycling
and then returned to photoreceptors in the cis form as part of the
visual cycle (Strauss, 2005; Palczewski and Kiser, 2020).

4.2.1 ABCA4-associated Stargardt disease
ABCA4 is a member of the superfamily of ATP-binding cassette

transporters primarily localized along the rim region of
photoreceptor outer segment disc membranes (Allikmets et al.,
1997; Azarian and Travis, 1997; Illing et al., 1997) but is also
expressed by RPE (Lenis et al., 2018). Mutations in ABCA4 are
the major cause of Stargardt disease and a subset of cone-rod
dystrophy with progressive blindness in children and young
adults (Allikmets et al., 1997; Maugeri et al., 2000; Burke et al., 2014).

In photoreceptors, the free all-trans retinaldehyde combines
rapidly and reversibly with phosphatidylethanolamine (PE) in the
disc membrane to form N-retinylidene-phosphatidylethanolamine
(N-ret-PE). While the retinylidene-bearing head group facing the
outer segment cytoplasm is reduced to all-trans-retinol by retinol
dehydrogenase 8 in the first step to regenerate visual chromophore
(Rattner et al., 2000), the one located on the disc luminal surface is
flipped to cytoplasmic side by ABCA4 (Sun and Nathans, 1997;
Quazi et al., 2012). As retinaldehyde is toxic to photoreceptors
(Getter et al., 2019), its efficient clearance and recycle not only

facilitate the continuation of visual cycle but also maintain
photoreceptor survival. Therefore, mutations in ABCA4 lead to
accumulation of retinaldehyde and delay the visual cycle, which
contribute to visual impairment and photoreceptor degeneration in
IRD. A key pathologic feature of Stargardt disease is the
accumulation of fluorescent lipofuscin granules in RPE. As
ABCA4 has long been considered to be a photoreceptor-specific
gene, the RPE phenotype is thought to be the major lipofuscin
fluorophore A2E converted from bisretinoids from the outer
segments with accumulation of retinaldehyde (Mata et al., 2000).
However, ABCA4 is found to be expressed by RPE in a recent study
(Lenis et al., 2018). The RPE of dark-adapted Abca4 mice
accumulate lipofuscin the same rate as the ones under normal
diurnal cycle, suggesting the lipofuscin is not contributed by the
phagocytosed outer segments with accumulated retinaldehyde.
Further investigation reveals that ABCA4 recycles the
retinaldehyde released from the phagocytosed photoreceptor
outer segments in RPE endolysosomes (Lenis et al., 2018). RPE-
specific expression of ABCA4 show partial rescue of both the
lipofuscin accumulation and photoreceptor degeneration (Lenis
et al., 2018), suggesting that the phenotypes in ABCA4-Stargardt
are contributed by both RPE and photoreceptor pathologies.

4.2.2 LRAT-, RPE65-, RLBP1-associated RP
LRAT, RPE6, and RLBP1 encode for enzymes involved in the

visual cycle. Lecithin retinol acyltransferase encoded by LRAT
catalyzes the first critical step to esterify all-trans retinol from
photoreceptors into all-trans retinyl ester. Retinoid
isomerohydrolase encoded by RPE65 then converts the all-trans
retinyl ester to 11-cis retinol, which is transported to the
photoreceptors (4). Mutations in either of these two RPE-specific
genes limit the availability of 11-cis retinal to photoreceptors,
leading to early-onset visual impairment and subsequent
photoreceptor degeneration. The transport of all-trans retinol
from photoreceptors to RPE as well as 11-cis retinol from RPE to
photoreceptor are carried by Retinaldehyde-binding protein 1
(RLBP1) (Xue et al., 2015; Napoli, 2016). Therefore,
RLBP1 prevents the accumulation of toxic retinoid compounds
in photoreceptors and RPE and facilitate the completion of visual
cycle. Mutations of RLBP1 could lead to early-onset visual
impairment and retinal degeneration.

4.3 Metabolism

Photoreceptors and RPE share a unique symbiotic relationship
in their co-dependent metabolic pathways. Each day, approximately
10% of photoreceptor outer segments are phagocytosed by RPE for
daily renewal (Kevany and Palczewski, 2010; Viegas and Neuhauss,
2021). Phagocytosis of the outer segments also facilitates nutrient
supply to photoreceptors. Glucose is transported from the choroidal
circulation and supplied to photoreceptors by RPE through glucose
transporter 1 (GLUT1), which is maintained at the apical side of
RPE by phagocytosis of photoreceptor outer segments (Figure 2).
Glucose is preferentially supplied to photoreceptors to maintain
their high metabolic demand (Hurley, 2021). In photoreceptors,
glucose is converted to ATP as energy source and, to lactate, which is
shuttled to RPE for energy. Lactate is then converted to pyruvate by

FIGURE 2
Interaction of retinal pigment epithelium (RPE) and
photoreceptor and genes associated with inherited retinal
degeneration. RPE harbor melanosomes that absorb light. The
distribution of melanosomes is modulated by MYO7A. MERTK
and TULP1 facilitate phagocytosis of photoreceptor outer segments
and their mutations could disrupt themetabolic homeostasis between
photoreceptors and RPE. LRAT, RPE65, and ABCA4 encode for key
molecules in visual processing. The transport of 11-cis retinal fromRPE
to photoreceptors and all-trans retinol from photoreceptors to RPE
are facilitated by CRALBP encoded by RLBP1.
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lactate dehydrogenase (LDH) in RPE to produce ATP through the
Krebs or tricarboxylic acid (TCA) cycle and reduce NAD+ to NADH
to inhibit glycolysis (Kanow et al., 2017; Hurley, 2021). Another
approach to inhibit glycolysis in RPE is to activate the Akt pathway
by phosphatidylserine on the outer segments (Viegas and Neuhauss,
2021). As photoreceptors are rich in lipids, the remaining products
from phagocytosed outer segments contain sufficient phospholipids,
fatty acids, cholesterol, and proteins to support the energy demand
of RPE (Nolan et al., 2021; Ramachandra Rao and Fliesler, 2021;
Viegas and Neuhauss, 2021). These lipids are broken down into
ketone bodies by hydroxymethylglutaryl-coenzyme A (CoA)
synthase 2 in RPE through the mitochondrial β-oxidation
pathways (Nolan et al., 2021). The ketone bodies are released to
the apical side of the RPE probably to be taken up by photoreceptors
as another source of energy supply (Nolan et al., 2021).
Approximately 80% of materials in the phagocytosed outer
segments are recycled back to photoreceptors or removed to the
blood stream as waste, a process regulated by ATP-driven Na+/K+

pumps (Mazzoni et al., 2014; Country, 2017; Kwon and
Freeman, 2020).

4.3.1 MERTK- and TULP1-associated RP
MERTK encodes a widely expressed receptor tyrosine kinase

Mer, which is involved in numerous cellular processes and signal
transduction pathways. The onset of visual impairment inMERTK-
RP patients is within the second decade of life, with progressive
decline of visual acuity (Gal et al., 2000; Tschernutter et al., 2006).

In the retina, MERTK is expressed in RPE and involved in the
phagocytosis of outer segments of rod photoreceptors. Disruption of
this process caused by MERTK mutations could impede the energy
supply to RPE. Due to lack of lactate and reduced Akt activity, RPE
starts to uptake glycolysis and starve photoreceptors.

Tubby like 1 (TULP1) binds to MERTK to stimulate RPE
phagocytosis. Mutations of TULP1 are also associated with severe
early-onset IRD (Table 1). TULP1 is also expressed in
photoreceptors, in which it is localized in the inner segments and
engaged in the trafficking of photoreceptor opsins to the outer segments
(Grossman et al., 2011; Palfi et al., 2020). The essential roles of TULP1 in
both RPE and photoreceptors explain the more severe phenotypes in
RP carrying TULP1 mutations the MERTK ones.

4.3.2 PROM1-and VWA8-associated IRD
Autophagy is a surveillance mechanism to degrade nucleic acids,

lipids, and proteins to maintain cellular homeostasis. The autophagy
pathway is responsible to breakdown the phagocytosed outer segments.
Dysregulation of autophagy has been associated with various ocular
disorder (Frost et al., 2014). Mutations in PROM1 and VWA1, both of
which are implicated in autophagy, could interfere with RPE
metabolism and cause various types of IRD (Bhattacharya et al.,
2017; Kong et al., 2023). PROM1 encodes for Prominin-1 and is
located to the open rims of photoreceptor outer segments to
regulate disc morphogenesis in Xenopus laevis (Han et al., 2012;
Carr et al., 2021). PROM1-IRD could be contributed by impaired
disc formation. RPE-specific von Willebrand factor A domain
containing 8 encoded by VWA8 is well known for the regulation of
mitophagy (i.e., autophagy of the mitochondria). Mutations in VWA8
aberrantly activate the degradation of mitochondria and lead to
defective retinal development and subsequent retinal degeneration in

autosomal dominant RP (Kong et al., 2023). Surprisingly, treatment of
malaria drug chloroquine or hydroxychloroquine, both of which act as
autophagy inhibitor, could lead to damage to the macular cones outside
of the fovea due to reduced lysosomal activity and outer segment
phagocytosis (Stokkermans et al., 2023). Therefore, photoreceptor
degeneration in VWA8-RP could be caused by compromised RPE
metabolisms and/or retinal developmental defects.

4.3.3 Bietti’s Crystalline Dystrophy
First described by Italian Ophthalmologist Dr. G.B. Bietti in

1937, Bietti’s Crystalline Dystrophy (BCD) is a rare autosomal
recessive ocular disease characterized by yellow-white crystalline
lipid deposits in the retina and sometimes cornea, degeneration of
RPE, and sclerosis of the choroidal vessels (Saatci et al., 2023). The
typical onset of BCD is between the second and third decades of life,
and patients gradually lose peripheral and/or central visual acuity till
legal blindness (Sayadi and Mekni, 2022). Although the
pathophysiology of BCD is not yet fully understood, it is mainly
caused by biallelic mutations in CYP4V2 (Lin et al., 2005). CYP4V2
encodes for a member of the cytochrome P450 hemethiolate protein
superfamily which is involved in oxidizing fatty acid precursors.
Dysfunctional lipid metabolism in RPE may disrupt the metabolic
homeostasis between photoreceptors and RPE. Loss of fatty acid
metabolism reduces the ketone bodies supplied to photoreceptors.
RPE may consume glucose as energy supply, which disrupts
photoreceptor function and leads to their starvation.

4.4 Ion channels

RPE express voltage- and ligand-gated potassium ion (K+),
chloride ion (Cl−), and calcium ion (Ca2+)-conducting channels.
These ion channels are crucial not only for the normal physiology of
RPE but also for the interaction with photoreceptors. In the
darkness, the K+ ions enter RPE through their Na+/K+-ATPases
at the apical side and exit by the basolateral membrane to control the
K+ concentration in the subretinal space and maintain the Na+-K+

equilibrium in photoreceptors (Baylor, 1996). When exposed to
light, the hyperpolarization of photoreceptors reduces the release of
K+ and leads to hyperpolarization of the apical membrane of RPE
(Oakley, 1977), which subsequently inhibits the Na+/K+/2Cl− co-
transporters and results in an increase of Na+ and a decrease of the
intracellular Cl− concentration. Recent studies demonstrate that Na+

channels are strongly implicated in phagocytosis of photoreceptor
outer segments and the lateral spread of voltage spikes via gap
junctions in RPE (Johansson et al., 2019; Ignatova et al., 2023).
Besides the Na+ channels, Cl− and Ca2+ channels are also implicated
in the phagocytosis of photoreceptor outer segments and their
subsequent degradation by the autophagy pathway (Busschaert
et al., 2017; Zheng et al., 2022a). Genetic mutations of chloride
intracellular channel 4 (CLIC4) have been shown to lead to dry age-
related macular degeneration potentially via dysregulation of the
autophagy pathway, although the precise mechanisms require
further investigation (Chuang et al., 2022). Cl− channels, together
with the K+ and Ca2+ ones, also have an important function in
transepithelial transport of ions and water (Wollmann et al., 2006;
Wimmers et al., 2007). The retina generates a large amount of water
due to the high metabolic turnover. This water is eliminated by both

Frontiers in Cell and Developmental Biology frontiersin.org07

Du et al. 10.3389/fcell.2024.1332944

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1332944


RPE and MG. Transepithelial water transport from the apical to the
basolateral side of the RPE is achieved by Ca2+-dependent
modulation of K+ or Cl− channels and aquaporin-1 channels
(Stamer et al., 2003; Dvoriashyna et al., 2020).

4.4.1 KCNJ13-LCA
KCNJ13 encodes for potassium inwardly rectifying channel

subfamily J member 13 in RPE. Mutations in KCNJ13 lead to
LCA16 characterized by significant central and peripheral vision
loss in young children. Although the underlying mechanisms are not
yet fully understood, mutations in KCNJ13 lead to compromised cell
alignment and phagocytosis in human induced pluripotent stem
cell-derived RPE (Kanzaki et al., 2020), which was consistent with
the function of K+ and relevant ions (e.g., Cl−, Ca2+) in the regulation
of phagocytosis.

4.4.2 Bestrophinopathy
Bestrophinopathy is the collective term of a phenotypically

heterogeneous group of degenerative ocular diseases caused by
mutations in the Bestrophin (BEST) genes, specifically the BEST1
gene (Pasquay et al., 2015; Guziewicz et al., 2017). Initially BEST
mutations were identified in IRD including Best vitelliform
macular dystrophy (VMD), which is the most common form,
autosomal dominant vitreoretinochoroidopathy (ADVIRC), and
autosomal recessive bestrophinopathy (ARB). BEST1 mutations
are subsequently found to be implicated in more complex ocular
disorders with the involvement of the anterior segment such as
autosomal dominant microcornea, early-onset cataract, and
posterior staphyloma (MRCS) syndrome (Johnson et al., 2017;
Pfister et al., 2021). BEST1 is a Ca2+-activated Cl− channel
localized to the basolateral membrane of RPE (Marmorstein
et al., 2000). Although the exact role of BEST1 in RPE is
unclear, its mutations cause a spectrum of phenotypes
associated with compromised ion channels including altered
permeability to large anions, dysregulated intracellular Ca2+

signaling, impaired anion channel activity, and mistrafficking
of protein to the basalaterol membrane of RPE.

4.5 Immaturity of RPE in retinal ciliopathy

The primary cilium is a ubiquitous, microtubule-based organelle
for modulating diverse signaling pathways and sensing external
environment (Chen et al., 2021a). Mutations in genes associated
with primary cilia are a major caused of IRD (Zelinger and Swaroop,
2018). Although primary cilia present in various retinal cell types
(Lepanto et al., 2016; Ning et al., 2021), how defects of the primary
cilia impact the function of every cell type is largely unexplored.
CEP290 encodes for a centrosomal/ciliary protein located at the
transition zone and is responsible for initiating its formation by
tethering the microtubules to the ciliary membrane (Craige et al.,
2010; Wu et al., 2020). Mutations in CEP290 compromise the
formation of the transition zone and thus disrupt the biogenesis
photoreceptor outer segments (Rachel et al., 2012; Rachel et al.,
2015; Parfitt et al., 2016; Shimada et al., 2017). CEP290-LCA patients
suffer from visual impairment at birth or infancy, with rod
photoreceptors degenerating within the first decade of life
followed by cone cell death (Cideciyan and Jacobson, 2019). A

recent study indicates patient-derived RPE harbor defective apical
processes, compromised phagocytosis, and reduced adult-specific
gene expression (May-Simera et al., 2018). As the primary cilia is a
regulator of various signaling pathway, the immaturity of RPE is
caused by simultaneously suppressing canonical WNT and
activating PKCδ pathways due to compromised primary cilia.
Notably, such RPE defects precedes photoreceptor degeneration
in a ciliopathy animal model (May-Simera et al., 2018). Ablation of
primary cilia specifically in RPE also leads to photoreceptor
degeneration in another animal model (Kretschmer et al., 2023).
Therefore, although photoreceptor degeneration the major
phenotypes in IRD caused by defective primary cilia,
compromised RPE function could accelerate this process.

5 MG-photoreceptor interaction in IRD

Following injury or photoreceptor degeneration at the late stages
of IRD, MG in the retina of fish and many non-mammalian
vertebrates are able to dedifferentiate into neural progenitors
which have the capacity to differentiate into all retinal neurons
to replace the lost ones (Raymond et al., 2006; Bernardos et al., 2007;
Thummel et al., 2008). However, MG in mammals have only limited
capacity to regenerate the retina. Recent studies start to reveal
growth factors and transcriptional machineries involved in the
reprogramming of MG (Lahne et al., 2020; Todd et al., 2021;
Todd et al., 2022). On the other hand, mammalian MG have
adapted morphological, biochemical, physiological, and genetical
machineries to activate reactive gliosis in response to the loss of
retinal cells (Dyer and Cepko, 2000; Bringmann et al., 2009;
Goldman, 2014; Vecino et al., 2016). Upon photoreceptor cell
death, MG form scars to prevent further expansion of the
injuries. Although this process is beneficial for photoreceptor
survival, it may accelerate the degeneration process upon
prolonged activation (Bringmann et al., 2006).

Indeed, MG are among the first cell types to respond to
photoreceptor stress by secretion of antioxidants and
neurotrophic factors (Jones et al., 2016; Leinonen et al., 2023). A
recent study reveals MG can uptake damaged mitochondria from
cone photoreceptors in zebrafish (Hutto et al., 2023). Therefore,
compromised MG could contribute to photoreceptor degeneration
during IRD progression. Consistently, MG-associated genes were
found to be dysregulated at the early stages of IRD, which precedes
photoreceptor dysfunction (Deng et al., 2018; Chen et al., 2023a). In
this section, we will describe the role of MG in the retina and discuss
how disease-causing genes impact MG function and lead to
photoreceptor degeneration.

5.1 Structural support

MG are the predominant glial cells in the retina. The somata of
MG reside in the INL and the two stem processes radiate in opposite
directions, spanning the entire thickness of the retina (Figure 1). MG
keep close contact with all types of retinal neurons to provide
essential structural and functional support for their development
and survival (Figure 3). In vertebrate retina, the apical processes of
MG are attached to each other and to the inner segments of
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photoreceptors to form the outer limiting membrane (OLM) by
adherens junctions and desmosomes. The adherens junctions
interact with the actin cytoskeleton and intermediate filaments
through zonula occludens (ZO)-1 and desmosomes respectively
(Hartsock and Nelson, 2008). They also contain transmembrane
proteins such as cadherins to interact with various cytoplasmic
proteins (Chifflet et al., 2004). Adherens junctions perform multiple
cellular functions including initiation and stabilization of cell–cell
adhesion, regulation of the actin cytoskeleton, intracellular
signaling, and transcriptional regulation (Omri et al., 2010).
Mutations in OLM-associated genes interfere with photoreceptor
maturation, function, and vision, and are implicated in multiple IRD
including LCA, RP, and childhood cone-rod dystrophy as well as
syndromic disorders (e.g., Usher syndrome) (Table 2) (Figure 3)
(Khan et al., 2011; Bujakowska et al., 2012; Ratnam et al., 2013;
Quinn et al., 2019b).

5.1.1 CRB1-associated IRD
Mutations in the CRB1 gene are associated with variable

phenotypes in various IRD including LCA and RP (Bujakowska
et al., 2012). Some patients also develop macular dystrophy
(Bujakowska et al., 2012). The Crumbs (CRB) protein was first
identified in Drosophila as a key regulator of apical polarity (Tepass
et al., 1990). It is expressed in the retina and the brain. Among the
three genes of the family in humans, CRB1 and CRB2 are expressed

in the photoreceptor and MG (Pellissier et al., 2014; Quinn et al.,
2019a). CRB1 contains transmembrane and cytoplasmic domains. It
constitutes the adherens junctions and interacts with the actin
cytoskeleton through the cytoplasmic domain (Gosens et al.,
2008). Consistent with the function of adherens junctions,
CRB1 has an evolutionarily conserved function to regulate
cellular polarity. Animal models carrying Crb1 mutations display
disruption of the ONL, disorganization of the retinal layers, and loss
of photoreceptor cell polarization (Mehalow et al., 2003; van de
Pavert et al., 2004). The phenotypes of the animal models are
consistent with the clinical features of patients carrying CRB1
mutations, whose retinas are thickened and show an altered
lamination (Jacobson et al., 2003), suggesting an important
function of CRB1 in the formation of the ONL and the
regulation of retinal morphogenesis. Although CRB2 mutations
in patients do not display phenotypes associated with the retina,
CRB2 has been shown to be a modifier of CRB1 in diseases (Pellissier
et al., 2014; Quinn et al., 2019b). MG-specific knockout of CRB1 and
knockdown of CRB2 in mice and patient retinal organoids reveal
disorganization of retinal structure and visual defects (Buck et al.,
2021; Boon et al., 2023), suggesting that photoreceptor degeneration
in CRB1-associated IRD is at least partially contributed by MG.

5.2 Clearance of ions, water, and
cellular debris

The phototransduction cascade triggers hyperpolarization of
photoreceptors by modulation of ion channels in their cell
membranes. The visual signals are transmitted to second-order
interneurons such as bipolar cells in the INL through
neurotransmitters at the synaptic terminals. These processes are
modulated by ions such as K+ and Na+, which affect conductance
and permeability of the channels (Oakley, 1977; Mao et al., 2003).
However, excessive K+ accumulated at the extracellular space has
long been shown to lead to cell apoptosis (Bortner et al., 1997;
Hughes and Cidlowski, 1999). MG mediate the transportation of
excessive extracellular K+ to extraretinal fluid-filled space (blood
vessels, vitreous, and subretinal space) via passive currents through
Kir channels (Bringmann et al., 2006; Reichenbach and Bringmann,
2013; Reichenbach and Bringmann, 2020). Excessive water is also
removed by MG via the aquaporin-4 (AQP4) channel (Reichenbach
and Bringmann, 2013). Clearance of excessive water is critical to
protect retinal neurons since water accumulation has been proposed
as a pathogenic factor for retinal degeneration (Vecino et al., 2016).
MG also phagocytose outer segments shed from cone
photoreceptors as well as other cell debris to maintain retinal
homeostasis (Bejarano-Escobar et al., 2017).

5.2.1 AQP4-associated IRD
Aquaporin 4 encoded by AQP4 is a membrane transport protein

expressed in multiple epithelial and neurosupportive cells (Li et al.,
2014). In the retina, AQP4 is highly expressed in MG and astrocytes.
The expression and localization of AQP4 are dependent on
syntrophins, and the elimination of α1-and β1-syntrophins
induce an almost complete loss of AQP4 (Neely et al., 2001;
Katoozi et al., 2020). Studies have shown that reduced
AQP4 level causes altered MG cell volume (Netti et al., 2021).

FIGURE 3
Interaction of Müller glia (MG) and photoreceptor and genes
associated with inherited retinal degeneration. MG maintain osmotic
homeostasis of the retina by AQP4 that facilitate the transport of ions
and water. MG support PR by recycling glutamate and GABA
neurotransmitters with the aid of other retinal cells, a process
modulated by multiple genes including GLAST, and releasing
neurotrophic factors. MG also facilitate the visual process of cone
photoreceptors by expressing RGR and RLBP1.
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Depletion of AQP4 increases the susceptibility of MG toward
osmotic stress and renders a higher risk of retinal degeneration
upon light damage (Pannicke et al., 2010; Li et al., 2014). In Aqp4−/−

mice, retinal hyperfusion and upregulated GFAP are observed,
which consequently associated with the loss of retinal ganglion
cells in congenital glaucoma (Maisam Afzali et al., 2022).

5.3 Regulation of synaptic transmission

Another well-studied function of MG is the regulation of
synaptic transmission via recycling of neurotransmitter glutamate
and gamma-aminobutyric acid (GABA). Glutamate is the most
abundant excitatory neurotransmitter in the central nervous
system including the retina (Zhou and Danbolt, 2014). MG
uptake the released glutamate from excitatory retinal neurons by
glutamate-aspartate transporter [GLAST; also known as excitatory
amino acid transporter 1 (EAAT1) or solute carrier family 1,
member 3 (SLC1A3)] to prevent ion toxicity and to maintain a
fine visual resolution (Bringmann et al., 2006; Bringmann et al.,
2013; Vandenberg and Ryan, 2013). The glutamate in MG is
converted to glutamine by glutamine synthetase, an enzyme
exclusively expressed by glia cells in retina (Pfeiffer et al., 2020).
The glutamine is then recycled by retinal neurons for synthesis of
glutamate and GABA. GABA is the main inhibitory
neurotransmitter in retina (Yang, 2004). By recycling GABA via
corresponding receptors and transporters, MG act as important
modulators of visual processes through a fast termination of
GABAergic signaling via their highly efficient GABA uptake
(Biedermann et al., 2002).

5.3.1 Animal models and patient data associated
with GLAST

Although no IRD-causing mutations in glutamate-aspartate
transporters have been reported, animal models and glaucoma
patient samples reveal the role of GLAST in retinal degeneration.
As glutamate transporters play a critical role in the recycling of
glutamate, impaired function of glutamate transporters could cause
glutamate accumulation in the extracellular matrix and contribute to
excitotoxicity to retinal neuronal cells. Downregulation of GLAST
expression has been reported in human glaucomatous eyes (Naskar
et al., 2000) and mutations in GLAST are also found in glaucoma
patients (Yanagisawa et al., 2020). Consistently, overexpression of
Glast by AAV transduction protects retinal ganglion cells from
degeneration in experimental autoimmune encephalomyelitis rats
(Boccuni et al., 2023), highlighting a protective role of MG on
photoreceptors.

5.3.2 CEP290-LCA
Although MG harbor primary cilia, their function in MG

remains largely unexplored. A recent study reveals dysregulation
of gene associated with MG development and function in
CEP290-LCA patient-derived retinal organoids (Chen et al.,
2023a). Notably, the expression of GLU1, which encodes for
glutamine synthetase to convert glutamine from glutamate, is
downregulated in patient retinal organoids. However, how it
impacts synaptic transmission is not investigated in this study.
Whether the dysregulation of MG-associated genes is due to

defects of the primary cilia caused by CEP290 mutations or
caused by the response of MG to photoreceptor dysfunction
requires further investigation.

5.4 Secretion of neurotrophic and
growth factors

MG secrete a variety of trophic and growth factors to regulate
neuronal survival and neuritogenesis and to protect retinal neurons
against excitotoxicity (Vecino et al., 2016; Tworig and Feller, 2021).
Some well-studied examples include pigment epithelium-derived
factor (PEDF), vascular endothelial growth factor (VEGF), glial cell-
derived neurotrophic factor (GDNF), interleukin-6 (IL-6), ciliary
neurotrophic factor (CNTF), brain-derived neurotrophic factor
(BDNF), and nerve growth factor (NGF). Retinal ganglion cells
and photoreceptors together with MG itself have receptors for these
neurotrophins and growth factors.

5.4.1 VEGF in IRD
Although VEGF is mainly associated with age-related macular

degeneration (AMD), diabetic retinopathy (DR), and retinopathy of
prematurity (ROP) (Hu et al., 2021a), VEGF levels have been found
to be dysregulated in IRD (Salom et al., 2008). Intravitreal injection
of VEGF in rd1 mice show enhanced proliferation of retinal
progenitor cells that have the potential to differentiate into
retinal neurons (Nishiguchi et al., 2007). However, as there are
no retinal progenitor cells even in newborn, the therapeutic potential
of this approach remains to be determined.

5.5 Lipid metabolism

Photoreceptor outer segments are enriched in fatty acids and
cholesterol, which are essential for maintaining metabolic
homeostasis in the outer retina (see Section 4.3). These lipid
components are channeled to photoreceptors by MG via their fatty
acid-binding and transferring proteins. Docosahexaenoic acid (DHA), a
trophic factor implicated in photoreceptor development and function, is
taken up and processed by MG before supplying to photoreceptors
(Politi et al., 2001; Shindou et al., 2017). MG also possess low-density
lipoproteins (LDL) receptors that facilitate transport of circulating lipids
to retinal neurons. This process is particularly crucial to maintaining
photoreceptor outer segments and retinal ganglion cell axons as well as
synapse formation (Mauch et al., 2001).

5.5.1 APOE in IRD
Apolipoprotein E (APOE) is a plasma lipid transport protein

that is mainly expressed in RPE but also expressed in MG and
photoreceptors (Shanmugaratnam et al., 1997; Wickremasinghe
et al., 2011; Hu et al., 2021b). APOE has been linked to the
pathogenesis of AMD due to its function and potential role in
drusen formation (Hu et al., 2021b). A recent study revealed
dysregulation of APOE in CEP290-LCA patient-derived retinal
organoids (Chen et al., 2023a). As these organoids harbor
minimal RPE, the APOE is expressed by MG and/or
photoreceptors, yet it is unclear which cell type(s) contribute to
this phenotype. Other studies also indicate an association between
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APOE and glaucoma, but the association is controversial (Wang
et al., 2014; Liuska et al., 2023). The role of APOE in IRD
pathogenesis requires further elucidation.

5.6 Regulation of visual processes

Conversion of 11-cis retinal to the all-trans form in
phototransduction requires the continuous recycling of the
chromophore. Although RPE is the major site of this process in
the visual cycle, the recycling rate is slow and the number of rod
photoreceptors in human retina outweighs the cone ones, which
may pose challenges for cone photoreceptors to obtain sufficient
chromophore (Wang and Kefalov, 2011). Therefore, the presence
of cone-specific visual cycle has long been proposed (Wang and
Kefalov, 2011). MG express multiple retinoid-processing proteins
such as CRALBP and retinol dehydrogenase-10 (RDH10),
suggesting their implication in cone-specific visual cycle. Retinal
G protein-coupled receptor (RGR) is a non-visual opsin in
intracellular membranes of RPE and MG. It covalently binds to
all-trans retinaldehyde and converts it to the 11-cis form (Hao and
Fong, 1999). RGR lacks the motif to interact with G protein
coupled receptor (Fritze et al., 2003), consistent with their role
as a photoisomerase instead of a signaling molecule to activate the
phototransduction cascade. Recent studies show that RGR couples
with RDH10 to convert all-trans retinol to 11-cis retinol in a light-
dependent manner (Morshedian et al., 2019; Tworak et al., 2023).
Besides the role in cone-specific visual cycle, MG have also been
reported to serve as optic fibers and direct the light to
photoreceptors in guinea pigs (Agte et al., 2011), yet whether
this function preserves in human retina remains further
investigation.

5.6.1 RGR- and RLBP1-associated IRD
Mutations in RGR is a pathogenic factor for RP (Table 2). Under

continuous light treatment, cone photoreceptors of Rgr−/− mice lose
their sensitivity sooner compared to the wild type ones (Morshedian
et al., 2019). A recent study using an innovative cell type-specific
gene reactivation approach confirms RGR is critical for cone
photoreceptor function and such supporting function is
contributed by both RPE and a subset of MG (Tworak et al.,
2023). This finding raises an interesting yet challenging question
on the targeted cell types for therapies of RGR-RP. Further
investigation is also needed to identify the molecular signature of
the MG subset responsible for the cone-specific visual cycle.

Likewise, mutations in RLBP1 can cause various IRD
including Bothnia dystrophy, retinitis pigmentosa, retinitis
punctata albescens, fundus albipunctatus, and Newfoundland
rod–cone dystrophy (Hipp et al., 2015) (Table 2).
Compromised visual cycle and dysfunction of photoreceptors
especially the cones are the primary phenotypes in patients
(Kolesnikov et al., 2021). In Rlbp1−/− mice, reduced M-cone
dark adaptation, mislocalization of opsin, and loss of
photoreceptors are observed (Xue et al., 2015). These defects
are demonstrated to be contributed by MG, and restoration
CRALBP expression in MG improves M-cone sensitivity (Xue
et al., 2015), suggesting an impact of MG pathology in visual
defects of photoreceptors.

6 Recent advances in therapies

The advances in genetic approaches to identify targets, model
systems to test therapeutics, and retinal imaging and molecular
biology to evaluate therapeutic outcomes have established a
promising environment for developing treatments for IRD. The
first FDA approved gene therapy drug Luxturna further inspires the
burgeon of numerous therapeutic approaches to maintain or restore
vision. These proof-of-concept evidence not only demonstrates the
clinical values but also provides new insights on the molecular
mechanisms of disease pathogenesis. In this section, we will explore
current therapeutic modalities to maintain photoreceptor survival
and discuss how the role of RPE and MG in IRD pathogenesis could
potentially impact the outcomes of IRD treatments. For therapeutic
approaches to restore vision for late-stage IRD patients with little or
no photoreceptors viable in the retina, we direct our readers to other
excellent reviews discussing cell replacement therapy, retinal
prosthetics, and direct brain stimulation (Yue et al., 2016;
Bosking et al., 2017; Uyama et al., 2021; Chen et al., 2023b;
Chew and Iannaccone, 2023).

6.1 Gene therapy

Gene-based therapy involves the delivery of genetic materials as
an intervention to modify the expression of disease-associated
proteins in target cells/tissues. The main goal of gene therapy is
to restore the protein function compromised by the mutated genes
permanently to reduce the need for long-term medication
dependence (Mendell et al., 2021). Dating back to over
seven decades to the first observation of viral gene transfer, gene
therapy has been demonstrated to be a relatively safe and long-term
efficacious therapeutic approach for treatment of various genetic
disorders that once considered incurable (Wirth et al., 2013; Tamura
and Toda, 2020). Although adverse side effects were reported in two
human clinical trials in late 1990s (Wirth et al., 2013; Tamura and
Toda, 2020), with the development of new technologies and viral
vectors, gene-based therapies have been applied in over 200 human
clinical trials involving various tissues and cell types without any
incidents of deaths or cancers (Ginn et al., 2018).

As an enclosed, immune-privileged site protected by the blood-
retina barrier (Chen et al., 2019), the retina offers a unique
opportunity for gene therapy. Only low doses of gene therapy
vectors are needed to treat the retina due to its small size and a
lack of cellular proliferation in adulthood (Trapani and Auricchio,
2018), and thus the risk of systemic dissemination of the vectors and
immune responses is generally negligible (Amato et al., 2021). In
addition, surgical procedures or clinical practices have been well
established to deliver the gene therapy machineries into the retina,
and the therapeutic outcome can be easily monitored by ocular
imaging technologies including optical coherence tomography and
fundus imaging (Drag et al., 2023). Therefore, gene therapy has been
extensively evaluated in the retina in the past two decades.
Currently, 73 clinical trials for IRD are recruiting, 39 starting
soon, and 154 have been completed (https://clinicaltrials.gov/).
Disorders being targeted for genetic therapy include RP, LCA,
choroideremia, achromatopsia, Leber’s hereditary optic
neuropathy, usher syndrome, X-linked retinoschisis, and
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Stargardt disease (Nuzbrokh et al., 2021). Besides IRD, gene therapy
has also been applied for treatment of age-related macular
degeneration by inhibiting VEGF (Heier et al., 2017; Grishanin
et al., 2019) or the complement cascade (Cashman et al., 2011).

6.1.1 Current progress and clinical success
6.1.1.1 Strategies of gene-based therapy

Depending on the molecular mechanisms of disease
pathogenesis, different strategies are applied in IRD treatment.
When a disease-causing mutation disrupts the normal gene
function, such as in the case of autosomal recessive or X-linked
recessive IRD, gene augmentation (also called gene replacement)
could be a promising approach to restore the normal function of the
mutated gene. As one of the most commonly used gene therapy
strategies, the feasibility and success of gene augmentation therapy
in IRD treatments have been demonstrated by numerous clinical
and preclinical studies. Besides RPE65 expression by Luxturna for
treatment of LCA, delivery of ND4, REP1, ABCA4, RPGR, MERTK,
RS1, and CNGA are currently at various stages of clinical trials
targeting Leber hereditary optic neuropathy (Yang et al., 2016; Guy
et al., 2017; Zhang et al., 2019; Yuan et al., 2020), choroideremia
(Dimopoulos et al., 2018; Lam et al., 2019; Morgan et al., 2022),
Stargardt disease (Parker et al., 2022), X-linked RP (Cehajic-
Kapetanovic et al., 2020), autosomal recessive RP (Ghazi et al.,
2016), X-linked retinoschisis (Mishra et al., 2021), and
achromatopsia (Fischer et al., 2020), respectively. Despite signs of
inflammation and adverse outcomes in some cases, majority of the
clinical studies demonstrate safety and/or efficacy of this approach
in functional improvement of vision in patients. Besides delivery of
normal genes, for IRD caused by splicing defects, antisense
oligonucleotides (AON) have been shown to be a long-lasting
and effective approach to restore normal splicing and
consequently protein function, such as in the case of LCA caused
by CEP290mutations (Cideciyan et al., 2019; Russell et al., 2022). A
preclinical study of the AON approach also showed promising
results for correcting the splicing defects in Usher syndrome
caused by USH2A mutations (Slijkerman et al., 2016). CRISPR/
Cas9-mediated genome editing has recently been successfully
applied for treatment of CEP290-LCA in degenerative models,
demonstrating safety and efficacy in the retina (Ruan et al.,
2017). The newly developed self-limiting CRISPR/Cas9 system
minimizes the duration of Cas9 expression to futher reduce the
immune response (Ruan et al., 2017).

In contrast to loss-of-function mutations in recessive IRD, gain-
of-function mutations in autosomal dominant diseases lead to the
formation of aberrant proteins that disrupt normal cellular or tissue
functions. In this case, the therapeutic goal is to prevent the
expression of the altered genes. Downregulation of gene
expression by ribozyme, small interfering RNA, and AON has
been developed. Although these techniques have been well
optimized and extensively applied in in vitro models, their
application for therapeutics in vivo is still challenging due to the
specificity, off-target effect, and degradation of RNA molecules.
Currently, these transcriptional silencing strategies have been
successfully applied in animal models of RP caused by RHO
mutations (Lewin et al., 1998; Chadderton et al., 2009; Hernan
et al., 2011; O’Reilly et al., 2008; Murray et al., 2015). A CRISPR/
Cas9-mediated transcript degradation approach has also been

successfully applied in vitro and preclinical models of RHO-RP
(Bakondi et al., 2016; Li et al., 2018; Tsai et al., 2018). Besides
autosomal dominant diseases, the genome-editing approaches,
either by CRISPR/Cas9-system or by transcription activator-like
effector nuclease (TALEN), can also be applied to correct the
mutations underlying recessive disorders. One successful example
is the correction of Crb1 mutation in rd8 degenerative model by
TALEN-Mediated homology-directed repair. Even the heterozygous
mice restore the morphology of the ONL and show a normal retinal
phenotype (Low et al., 2014), suggesting the efficiency of the
correction could meet the therapeutic needs.

6.1.1.2 Delivery approach
Recombinant adeno-associated virus (AAV) vectors are

currently widely used in ocular gene therapy due to therapeutic
benefits including non-integrating nature, low immune response,
and long duration of transgene expression (Wu et al., 2006; Amato
et al., 2021). Recombinant AAV (rAAV) vectors offer a high number
of tissue-specific serotypes including AAV 1, 2, 4, 5, 6, 7, 8, and 9 for
retinal cells, and thus improve the specificity of viral transduction.
The safety and efficacy of AAV-mediated gene therapy have been
demonstrated by most of the completed and ongoing clinical studies
including Luxturna. One notable limitation of AAV is the small
packaging limit, and thus the genetic materials carried by AAV
cannot exceed 4.7 kb (Wu et al., 2010), and therefore it is not
applicable for diseases caused by mutations of large genes.
Lentiviruses, a retrovirus with a larger packing capacity of up to
8kb, become a more compelling alternative to AAV vectors in this
case. Lentiviruses pose risk of mutagenesis due to their nature to
integrate into the host genome, yet such risk could be justified for
treatment of the post-mitotic retina (Drag et al., 2023). The initial
trial of ABCA4 delivered by lentiviral vectors for treatment of
Stargardt disease has showed promising safety data and the
evaluation of efficacy is currently ongoing (Parker et al., 2022).

Despite the positive data from lentiviral vectors, they still pose
risks for insertional mutagenesis, germline transmission, and
adverse immune response (Drag et al., 2023). Non-viral delivery
of genetic materials is being developed as an alternative for IRD
caused by mutations of large genes. Although non-viral delivery by
physical (e.g., direct injection of genetic materials) or chemical (e.g.,
nanoparticles) approaches are not as popular as the viral ones due to
the low efficiency, immune response, and duration of the effect,
recent advances have started to overcome these issues (Sharma and
Paschalis, 2022). Various bioengineering materials such as synthetic
polymers, lipid cations, liposome-based nanoparticles, and
polysaccharides show good transfection efficiency. The use of
polyethylene glycol (PEG) combined with cell type-specific
promoter or ligand could largely improve the specificity and
efficacy of therapies and reduce immunogenicity. The feasibility
of such approach has been demonstrated by the relatively efficient
and durable therapeutic outcomes in cell cultures and an ABCA4-
associated animal model in a recent study (Sun et al., 2020).

6.1.1.3 Administration route
Gene therapies are typically delivered to target retinal cells by

subretinal or intravitreal injection in clinical studies. Subretinal injection
is a commonly used approach to deliver gene therapymachineries to the
subretinal area for treatment of RPE and/or photoreceptors (Planul and
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Dalkara, 2017). In addition, the subretinal area is a closed immune-
privileged compartment and thus further reduce the immune response
(Xian and Huang, 2015; Chen et al., 2019). However, subretinal
injection could potentially trigger several complications including
retinal tears, cataract progression, retinal detachment, or retinal/
choroidal hemorrhages (Tripepi et al., 2023). Such a delicate
procedure also requires skilled and experienced surgeons for
successful administration (Huang et al., 2022).

Intravitreal injection offers several advantages over subretinal
injection. It is less invasive and less technically challenging, thus can
be performed in a clinic setting and offer the opportunity of gene
therapy to larger populations (Amato et al., 2021). However,
although efficiently transducing inner retinal cells, intravitreal
injection is less effective on outer retinal cells due to dilution of
vectors in vitreous cavity and the thick inner limiting membrane in
primates (Planul and Dalkara, 2017). A higher therapeutic dose of
vectors is thus needed to achieve a desirable outcome, which could
pose a significant risk of immunogenicity (Drag et al., 2023).

Suprachoroidal delivery in the space between the sclera and the
choroid has also been shown to be a safe approach in preclinical and
clinical studies yet it poses risk to spread viral vectors into the
systemic circulation and could lead to adverse physical and immune
response (Kansara et al., 2020; Naftali Ben Haim and Moisseiev,
2021; Tan et al., 2021).

6.1.2 Strength and limitation
The success of gene therapy has been well demonstrated by the

approval of FDA as the first therapy to treat IRD. Numerous of
completed and ongoing clinical trials targeting IRD caused by various
disease-causing genes show promising safety and efficacy data so far.
Approvals of more gene-based therapies are expected in the near future.
The advances in engineered viral vectors and cell type-specific promoters
further improve the specificity and safety of this approach.

However, gene therapy still faces several problems waiting to be
addressed. One of the biggest challenges of traditional gene therapy is
their dependence on the targeted disease-causing genes. With over
280 disease-causing genes of IRD (RetNet, https://sph.uth.edu/retnet/)
currently identified, it could be time-consuming, expensive, and labor-
intensive to design gene therapy for individual gene. In addition, the
gene(s) responsible for disease phenotypes are not always identified in
patients. Next-generation whole exome sequencing in combination
with genetic linkage or homozygosity mapping approaches should
facilitate the identification of the causal genes and the design of
effective gene therapy (Siemiatkowska et al., 2014). Different
mutations in the same gene could lead to various clinical
phenotypes, and mutations in different genes may show comparable
clinical manifestations. Such complexity poses challenges to gene
therapy targeting a single disease-causing gene. Besides, as a rare
disease, developing treatments for each IRD may not be favorable
for pharmaceutical companies. Therefore, gene-agnostic gene therapy
independent of the mutated genes are being developed. This approach
targets the converging pathway(s) in multiple IRD and thus has the
potential to significantly reduce the cost of development and
commercialization of IRD treatments. OCU400, a nuclear hormone
receptor-based gene therapy, is currently under clinical trials for
treatment of RP caused by NR2E3 or RHO mutations
(NCT05203939). AAV-mediated expression of Txnip, which
modulates the nutrient supply, has been shown to prolong the

survival of cone photoreceptors and improve visual acuity in
multiple RP models (Xue et al., 2021), providing promising proof-
of-concept evidence for the feasibility of this approach.

Another limitation of AAV-mediated gene therapy is the
incapacity to delivery large genes. Although lentiviral vectors and
non-viral approaches are being developed to carry large genes into
the retina, they may lead to adverse immune response and safety
issues and thus require further improvement. Concurrently, AAV-
mediated dual vector approach, in which the disease-causing gene is
split into two parts and packaged into separate AAV vectors, are
being developed. Although the reconstitution efficiency was
relatively low initially (McClements and MacLaren, 2017), a
recent study improves the technology and demonstrates
promising results in animal models and human pluripotent stem
cell-derived retinal organoids (Riedmayr et al., 2023), suggesting the
feasibility of this approach.

Besides, several clinical studies demonstrated confounding
therapeutic outcomes, which may due to the treatment window
and patient variability (Ghazi et al., 2016; Fischer et al., 2020; Mishra
et al., 2021; Hahn et al., 2022). Tomaximize the therapeutic potential
of gene therapy, a better understanding of disease pathogenesis and
careful selection and characterization of patients during the
recruitment period could be essential.

6.1.3 RPE and MG as therapeutic targets
The clinical phenotypes of IRD caused by RPE-associated genes

reveal a role of RPE in photoreceptor degeneration. Gene
augmentation therapies by AAV vector carrying these genes
driven by RPE-associated or CMV promoters have shown
positive therapeutic outcome in preclinical and clinical studies
(Choi et al., 2015; Ghazi et al., 2016; MacLachlan et al., 2018;
Dyka et al., 2019; Sun et al., 2020). In the treatment of CEP290-
LCA, although AON drug QR110 has shown favorable therapeutic
outcome (Jacobson et al., 2017; Cideciyan et al., 2019), the AON is
driven by CMV promoter that is able to drive gene expression in
RPE and delivered by AAV2, which can readily transduce both
photoreceptors and RPE. Therefore, whether the therapeutic
outcome of QR110 is due to correction of CEP290 splicing
defects in photoreceptor only or both photoreceptor and RPE
requires further investigation. Mutations in genes associated with
primary cilia are a major caused of IRD (Zelinger and Swaroop,
2018). Further investigation on RPE structure and function in IRD
caused by mutations of ciliary genes is needed to determine whether
RPE should be included as a therapeutic target in gene therapy.

Mutations in MG-associated genes including RLBP1 and
CRB1 could lead to photoreceptor degeneration in IRD.
Although gene augmentation therapies of RLBP1 reveal visual
improvement in preclinical models (Choi et al., 2015;
MacLachlan et al., 2018), CMV promoter is applied to drive
the expression of RLBP1 and thus it is difficult to dissect whether
the therapeutic outcome is resulted from the improvement of
RPE, MG, or both. Studies on CRB1- and CRB2- associated RP
and LCA illustrate the role of MG in disease pathogenesis. Novel
MG-specific RP mouse and human pluripotent stem cell-derived
retinal organoid models, which harbor completely loss of
CRB1 and reduced levels of CRB2 specifically in MG, reveal
disorganization of retinal structure and visual defects (Buck et al.,
2021; Boon et al., 2023). Delivery of CMV-CRB2 is more potent
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than CMV-CRB1 in protection of vision in animal models (Buck
et al., 2021). Gene augmentation therapy with CRB2 also
improves the outer retinal phenotypes in CRB1 knockout
retinal organoids (Boon et al., 2023). These results suggest
that compromised CRB1 and CRB2 functions in MG are the
major cause of photoreceptor degeneration. In addition, a recent
study indicates dysregulation of MG-associated genes involved in
development and function in retinal organoids derived from
CEP290-LCA patients (Chen et al., 2023a). Although the
primary cilia are a ubiquitous organelle, their roles are not
heavily investigated except in photoreceptors. Therefore, it is
unclear whether the dysregulated MG genes are caused by defects
of the primary cilia or responses to compromised photoreceptors.

Understanding the cellular mechanisms of IRD pathogenesis is
crucial for the success of a safe, long-lasting, and efficacious gene
therapy. Current gene therapies have careful selection of AAV
serotypes and cell type-specific promoters to limit the non-specific
expression of the delivered genes. However, if mutations of the
disease-associated genes compromise the function of RPE and/or
MG, which contribute to pathogenesis, RPE and/or MG should be
included as the targeted cell types. Transduction of RPE and MG in
treatments will impact not only the selection of AAV serotype and
promoter but also the route of administration as intravitreal injection
is more efficient than subretinal injection for transducing inner retinal
cells. Such as in the case of RGR-RP, the RGR-dependent cone visual
cycle is mediated by both RPE and a subtype of MG (Tworak et al.,
2023). It could be challenging to deliver viral vectors to both cell types
efficiently. In addition, the dose of AAV should also be taken into
account as RPE and MG are different cell types from photoreceptors
and thus they may have distinct tolerance of AAV transduction and
ectopic expression of genetic materials.

6.2 Pharmaceutical therapy

Although drug screening using cell lines have successfully
identified therapeutics for various diseases, its application for
IRD treatment remains slow due to the limited cell number in
the retina and the technical challenge to maintain retinal primary
cultures. Recent advances in synthetic chemistry, AI-based
screening, structural biology, and the advances in pluripotent
stem cell differentiation and high-throughput screening
technologies should spur the design of novel bioactive molecules
and drug repurposing for IRD treatment.

6.2.1 Current progress
Antioxidants such as vitamin A, vitamin B3, DHA, and lutein

have been shown to delay or inhibit the apoptosis of photoreceptors
and preserve patient vision (Guadagni et al., 2015). Likewise,
applications of neurotrophic agents including CNTF, BDNF, and
anti-apoptotic drugs (e.g., tauroursodeoxycholic acid, rasagiline,
norgestrel, and myriocin) have shown positive therapeutic
outcomes in cell cultures and animal models of RP (Dias et al., 2018).

Besides inhibiting photoreceptor apoptosis to preserve
vision, another approach is to target the compromised
function and/or restore the dysregulated pathways associated
with the mutated genes. A repurposed drug metformin has been
shown to facilitate the clearance of lipid deposits caused by

ABCA4 mutations in human pluripotent stem cell-derived and
in vivo RPE (Amin et al., 2022; Farnoodian et al., 2022). A
selective estrogen receptor modulator raloxifene is also shown
to inhibit photoreceptor apoptosis and mitigate toxicity of
retinaldehyde in ABCA4-associated models (Getter et al.,
2019). As Metformin is an FDA-approved treatment for type
2 diabetes, National Eye Institute is launching a Phase I/II trial to
evaluate the therapeutic effect of Metformin on Stargardt disease
patients. Lumacaftor, another FDA-approved drug for the
treatment of cystic fibrosis, has been shown to rescue the
ABCA4 trafficking mutants by restoration of Hsp27 in HEK
cells (Liu et al., 2019). Yet the therapeutic value of Lumacaftor
for preserving vision requires more tests on degenerative models
and/or human pluripotent stem cell-derived RPE. A flavonoid
drug eupatilin is able to partially restore photoreceptor outer
segments and visual function in degenerative models caused by
CEP290 mutations (Kim et al., 2018). Disruption of protein
homeostasis is another common cause of photoreceptor
degeneration in IRD. Modulations of this process, either by
regulation of the autophagy pathway and the ubiquitin-
proteasome system, or by the use of small molecule chaperon,
is able to reduce photoreceptor apoptosis and preserve light
detection ability in multiple degenerative models (Mockel
et al., 2012; Chen et al., 2018; Yao et al., 2018; Qiu et al.,
2019; Intartaglia et al., 2022; Chen et al., 2023a).

6.2.2 Strength and limitation
Pharmaceutical drugs can be produced at reasonable costs and

their manufacturing is scalable (Tambuyzer et al., 2020), which are
desirable particularly for rare diseases like IRD. As pharmaceutical
drugs act by targeting dysregulated cellular function and/or
signaling pathways, which could be shared by multiple IRD
caused by different mutations, they hold the promise to be
translated into cost-effective gene-agonistic therapies. Various
drugs currently identified for treatment of IRD act as
neurotrophic factors or apoptotic inhibitors, and thus they could
be applied together with gene therapy drugs to achieve better
therapeutic outcomes. The establishment of high-throughput
screening platform using retina of degenerative models
(Campbell et al., 2018; Chen et al., 2018), cell lines (Kim et al.,
2018), or pluripotent stem cell-derived retinal organoids (Chen
et al., 2023a) should accelerate drug discovery for treatment of IRD.

However, pharmaceutical drugs, particularly the small
molecules, are highly penetrant and thus could lead to off-target
effects. Therefore, it is crucial yet challenging to identify the right
molecule with an excellent pharmacological effect and
pharmacokinetics and few off-target impact, which sometimes
requires extensive optimization of the lead compound
(Tambuyzer et al., 2020). A deeper understanding of the key
signaling pathways involved in the therapeutic processes should
facilitate the refinement of the lead compound. Furthermore, over
90% of drug candidates fail in Phase I clinical trials due to the
differences in pathophysiology and pharmacokinetics between
humans and animal models (Horvath et al., 2016). Human
pluripotent stem cell-derived retinal organoids structurally and
functionally recapitulate in vivo retina in various important
aspect (Cowan et al., 2020; Saha et al., 2022) and thus offers a
promising platform to test drugs in a human context. Recent studies
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have begun to employ the organoid platform to evaluate the dose
and therapeutic outcome of drugs (Chen et al., 2023a; Corral-
Serrano et al., 2023).

6.2.3 Targeting RPE and MG by pharmaceutical
approaches

Due to the penetrant property of pharmaceutical drugs, all
retinal cell types including RPE and MG are targeted in the
treatment. A recent study revealed partial restoration of
dysregulated genes in patient-derived retinal organoids upon
treatment of IRD drug reserpine (Chen et al., 2023a). However, it
is unclear whether such improvement in MG is a therapeutic
outcome of the drug treatment or the secondary effect of
photoreceptor restoration. Furthermore, the therapeutic and toxic
doses may differ among retinal cell types. Evaluation of all retinal
cell types in the drug treatment should facilitate the selection of
optimal doses to achieve desirable therapeutic outcomes without
interfering the homeostasis of the retina. Besides, all targeted cell
types should be included in the initial screening to avoid toxic side
effects due to undesirable interaction of the drug with cell type-
specific molecules. One typical example is the interaction of
chloroquine and hydroxychloroquine with melanin, which
abrogates the lysosomal activity of RPE and leads to subsequent
macular degeneration (Stokkermans et al., 2023).

7 Conclusion and outlook

IRD is a common cause of childhood visual impairment and
blindness, yet the disease mechanisms have not been
comprehensively investigated and limited treatment options are
currently available. A vast majority of IRD are caused by
dysfunction and/or degeneration of photoreceptors. In healthy
retina, photoreceptor homeostasis is maintained by MG and
RPE, which have been shown to remove cellular debris, damaged
mitochondria, and excessive ions and release trophic and growth
factors. Photoreceptors on the other hand provide metabolites to
MG and RPE as energy source. Therefore, photoreceptors tightly
interact withMG and RPE and they share a symbiotic relationship to
maintain homeostasis of the outer retina. Consequently, genetic
mutations that compromise the one could disrupt the others. In
favor of this postulation, recent studies reveal MG and RPE
pathologies in IRD caused by mutations in photoreceptor-specific
or ubiquitously expressed genes, suggesting photoreceptor
degeneration could be contributed by cellular dysfunction
resulted from genetic mutations and MG/RPE pathologies. MG
and RPE should therefore be taken into account in designing
treatments for IRD.

With over 280 IRD-causing genes, it is time-consuming and
labor-intensive to develop gene therapy targeting individual disease-
causing gene. Gene therapeutic approaches targeting shared
dysregulated functions (e.g., immune response, glucose
metabolism, oxidative stress) among IRD caused by different

mutations are being developed (Venkatesh et al., 2015; Xiong
et al., 2015; Wang et al., 2019; Xue et al., 2021). MG/RPE
pathologies in IRD could be at least partially contributed by their
response to photoreceptor dysfunction such as phagocytosis of
cell debris and damaged mitochondria. Therefore, designing
therapeutics targeting relevant compromised MG/RPE function
should hold the promise to be developed into mutation/gene-
independent treatments targeting multiple IRD.
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