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Transposable elements (TEs) are mobile genetic elements that constitute on
average 45% of mammalian genomes. Their presence and activity in genomes
represent a major source of genetic variability. While this is an important driver of
genome evolution, TEs can also have deleterious effects on their hosts. A growing
number of studies have focused on the role of TEs in the brain, both in
physiological and pathological contexts. In the brain, their activity is believed
to be important for neuronal plasticity. In neurological and age-related disorders,
aberrant activity of TEs may contribute to disease etiology, although this remains
unclear. After providing a comprehensive overview of transposable elements and
their interactions with the host, this review summarizes the current
understanding of TE activity within the brain, during the aging process, and in
the context of neurological and age-related conditions.
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Introduction

Transposable elements (TEs) are mobile genetic elements able to move across the genome,
independently of their host, either through a cut-and-paste mechanism or by a copy-and-paste
mechanism (Wells and Feschotte, 2020). These sequences represent approximately 41% and
48% of the mouse and human genomes respectively, which is particularly relevant when
compared to the much smaller percentage of coding sequences (1.5%) (Hermant and Torres-
Padilla, 2021; Hoyt et al., 2022). Long considered as purely “junk DNA,” TEs were originally
identified in maize by Barbara McClintock more than 60 years ago (McClintock, 1950;
McClintock, 1951). She referred to them as “controlling elements” and played a
fundamental role in highlighting their capacity to influence gene expression (McClintock,
1956). Since this pioneering work, TEs have been shown to play major roles in genome
evolution, structural variation, genome size expansion, spatial organization, genetic diversity and
gene regulation (Cordaux and Batzer, 2009; Chuong et al., 2017; Choudhary et al., 2023). On the
other hand, unchecked activity of TEs can have nefarious effects, namely inducing mutations,
disrupting genes, hindering the transcriptional regulation of genes and leading to the production
of extranuclear nucleic acids that can induce cellular toxicity. For that reason, the host maintains
a tight control over TE activity, mainly at the transcriptional and epigenetic levels, keeping them
silent to prevent deleterious changes. This control is frequently broken in disease, such as cancer
and neurological disorders, and during aging. Moreover, silencing mechanisms appear also
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partially released in certain developmental contexts or tissues, such as in
the brain, raising the possibility of an actual functional role conferred by
TE activity, in particular in neuronal lineages. However, the
contribution of TEs to both physiological and pathological contexts,
particularly in the brain, are poorly understood. Specifically, is the
aberrant activity of TEs merely a consequence of the disease, or could it
contribute to certain pathological phenotypes? In this review, we
provide a comprehensive overview about transposable elements and
their interactions with the host. Additionally, we summarize the current
knowledge regarding TE activity in physiological contexts, with a
specific emphasis on the brain and aging, as well as neurological
and age-related disorders.

Insights into transposable elements

Classification

TEs can be divided into two main classes, according to their
transposition mechanism. Class I TEs, or retrotransposons, mobilize
their DNA via an RNA intermediate, through a “copy-and-paste”
mechanism, in a process known as retrotransposition. Class II TEs,
or DNA transposons, mobilize through a “cut-and-paste” mechanism,
in a process referred to as transposition (Finnegan, 1989). DNA
transposons, which are no longer active in most mammalian species,
represent a minority of the human (3%) andmouse (1%) genome (Pace
and Feschotte, 2007; Hoyt et al., 2022). In turn, class I retrotransposons
constitute the vastmajority of TEs inmammals and are divided into two
main subclasses according to their mechanism of chromosomal
integration: long terminal repeat (LTR) retrotransposons, and non-
LTR retrotransposons (Figure 1) (Wells and Feschotte, 2020).

LTR retrotransposons, also called endogenous retroviruses
(ERVs), are remnants of exogenous retroviruses that were
incorporated in the host germline as a result of ancient viral
infections (Mao et al., 2021; Hoyt et al., 2022). A full length,
autonomous, ERV has an average length of 7.5 kb and consists of
two identical LTRs, which are non-coding regions containing cis-
regulatory sequences, such as promoters, enhancers, or
polyadenylation signals. The LTRs usually flank a set of three
ORFs that encode the viral proteins: gag, which encodes structural
proteins that form virus-like particles (VLPs); pro-pol, which
encodes the enzymes necessary for the viral life cycle (reverse
transcriptase, integrase, and protease); and env, which encodes the
envelope proteins (Figure 1) (Küry et al., 2018). Most ERV copies
have accumulated mutations that prevent their retrotransposition.
In addition, recombination events between the two LTRs of a
proviral insertion often lead to ERVs being reduced to a single
LTR, or solo LTR, leaving behind remnants of regulatory
sequences scattered throughout the genome (Thomas et al.,
2018). All ERV subfamilies are no longer active in the human
genome, except the evolutionary young HERV-K subfamily HML-
2 (human mouse mammary tumor virus like-2), which shows signs
of transcriptional activity and intact ORFs, still capable of
producing some of the proteins required for VLPs formation
(Garcia-Montojo et al., 2018). In contrast, several ERV
subfamilies are still active in mice, such as IAP (intracisternal
A-particle) and MusD elements. IAPs are highly abundant and
competent for both transcription and retrotransposition.

Importantly, ERV insertions contribute to 10%–12% of
spontaneous germline mutations in laboratory mice (Maksakova
et al., 2006; Stocking and Kozak, 2008).

Non-LTR retrotransposons are composed of two main subtypes:
the autonomous LINEs (Long Interspersed Nuclear Elements) and
non-autonomous SINEs (Short Interspersed Nuclear Elements).

LINEs constitute approximately 21% of the mammalian
genomes and are autonomous, meaning that they produce all the
machinery necessary for their own retrotransposition (Fueyo et al.,
2022; Hoyt et al., 2022). LINEs are on average 6-7 kb long and
composed of a 5′ untranslated region (UTR), comprising an RNA
polymerase (RNApol) II promoter with both sense and antisense
activity, two open reading frames (ORFs), and a 3′UTR with a
polyadenylation signal (Evans and Erwin, 2021). ORF1 encodes an
RNA-binding protein that has a nucleic acid chaperone activity
required for retrotransposition (Martin and Bushman, 2001; Martin,
2006), while ORF2 encodes a protein with both reverse transcriptase
and endonuclease activity (Figure 1) (Mathias et al., 1991; Feng et al.,
1996). During retrotransposition, the encoded proteins (ORF1p and
ORF2p) bind the RNA from which they originate, in cis, and the
resulting ribonucleoprotein (RNP) translocates into the nucleus,
where reverse transcription and retrotransposition takes place
(Terry and Devine, 2020). In mammalian genomes, LINEs are
dominated by a single family, LINE-1, which accounts for
approximately 17% and 21% of the human and mouse genome
respectively, constituting the largest proportion of TE-derived
sequences in mammals (Waterston et al., 2002; Terry and
Devine, 2020; Hoyt et al., 2022). The majority of LINE-1 copies
are no longer functional due to the accumulation of mutations or 5′
truncations. Current estimations predict that only 80–100 LINE-1
copies are intact and still retrotransposition-competent (RC-LINE-
1) in humans (Brouha et al., 2003; Evans and Erwin, 2021) and
around 3,000 in the mouse genome (DeBerardinis et al., 1998). In
addition, a larger number of elements with disrupted ORF sequences
still harbor an intact 5′UTR and are hence transcriptionally active
(Penzkofer et al., 2017). These elements belong to the evolutionary
youngest LINE-1 subfamilies, called L1MdA, L1MdTf and L1MdGf
in mice and some of the human-specific LINE-1 (L1Hs) from PA-1
subfamily called the transcribed-active elements subset (L1Ta-
subset) in humans (Richardson et al., 2015). It is worth noting
that in humans, LINE-1 are the only active autonomous elements
(Hoyt et al., 2022).

Unlike LINEs, SINEs are non-autonomous elements. They do
not encode any proteins and rely on the machinery produced by
LINE-1 elements for their retrotransposition. Although they show a
strong cis-preference, LINE-1-derived proteins, ORF1p and ORF2p,
are able to bind in trans SINE RNAs (Dewannieux et al., 2003; Raiz
et al., 2012). SINEs are derived from tRNAs or 7SL RNAs (Daniels
and Deininger, 1985). Given this ancient origin and due to extensive
accumulation of mutations during evolution, current SINE elements
are highly diverse. There are two main families of SINEs in the
human genome: Alu elements, constituting approximately 11% of
the genome and being the TE family with the highest copy number;
and the evolutionary young SINE-VNTR-Alu (SVA) elements,
comprising only 0.1%–0.2% of the genome (Evans and Erwin,
2021; Hoyt et al., 2022). Alu are approximately 300 bp long,
composed of highly similar left and right monomers, transcribed
by RNApol III and they terminate with a poly (A) tract (Richardson
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et al., 2015). SVAs result from the fusion of an Alu sequence, a
variable number of tandem repeats (VNTR) and a LTR fragment
(SINE-R) (Figure 1). The youngest elements of these families are still
active, comprising approximately 200,000 Alu elements from the Y,
Ya5, Ya8, and Yb8 subfamilies and around 40% of the youngest SVA
elements belonging to SVA-D, SVA-E, SVA-F, and SVA-F1
subfamilies (Comeaux et al., 2009; Hancks and Kazazian, 2010).
The main SINE families in mice are the B1 and B2 elements, each
representing 2%–3% of the genome (Waterston et al., 2002). If the
presence of active SINEs B1 and B2 have been shown by cell culture-
based experiments, the exact number of active elements in the
mouse genome is still unknown (Dewannieux and
Heidmann, 2005).

Host-transposable element interactions

Although TEs represent a large proportion of mammalian
genomes, only a small fraction remains currently active. Indeed,
in humans, less than 0.05% of these elements are able to mobilize
(Mills et al., 2007). This is because newly inserted TEs usually do

not provide an immediate fitness advantage to the host,
consequently they tend to become fixed mainly through genetic
drift, accumulating neutral mutations over evolutionary time. As a
result, older TE insertions in genomes have accumulated
mutations that render them non-functional, while more recently
inserted TEs retain the capacity for activity, both in terms of
transcription and, occasionally, transposition (Bourque et al.,
2018). For example, using LINE-1’s allele frequency and
sequence divergence as a proxy for age, a study investigated the
correlation between LINE-1 activity and age. They found that
putative young LINE-1 with low sequence divergence are active in
cultured cells and generally polymorphic in the human population.
In contrast, highly diverged LINE-1 sequences are most often fixed
and inactive (Brouha et al., 2003).

In order to persist throughout evolution, TEs must achieve a
delicate equilibrium between their expression and repression in the
genome of their hosts. This allows them to replicate and propagate
within the genome while avoiding deleterious effects on the host cell
functions, as this would not be favorable for their survival (Bourque
et al., 2018). The intricate relationship between TEs and the host is
thus very complex. A recent review proposed a model to explain

FIGURE 1
Structure of mammalian retrotransposons and genomic proportions in the human and mouse genome. (A) The pie charts indicate the genomic
proportion of each retrotransposon class in the human andmouse genome. Light gray represents non-repeat DNA. (B) Retrotransposons are divided into
two main subclasses according to their mechanism of retrotransposition: LTR and non-LTR retrotransposons. LTR elements, also called endogenous
retroviruses (ERVs), are autonomous and share a genomic structure similar in the human andmouse genome. Non-LTR retrotransposons are further
divided into two main subtypes: the autonomous LINEs (Long Interspersed Nuclear Elements) and non-autonomous SINEs (Short Interspersed Nuclear
Elements). The genomic structure of LINEs is similar in the human andmouse genome. Themain non-autonomous non-LTR elements are Alu and SVA in
the human genome, and B1 and B2 in the mouse genome. Arrows indicate the approximate position and orientation of the promoter for each element.
der, derived (Waterston et al., 2002; Richardson et al., 2015; Deniz et al., 2019; Hoyt et al., 2022).
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host-TE interactions, suggesting that an initial period of cooperation
could resolve in one of three ways: conflict or arms race, where the
host develops silencing mechanisms to control TEs, which TEs may
in turn counteract with anti-silencing mechanisms; cooperation and
evasion, where TEs develop self-regulatory mechanisms, which can
lead to the development of a mutualistic relationship between TEs
and the host; and finally, co-option or domestication, when the host
is able to repurpose some of the TE activity for its own benefit
(Cosby et al., 2019).

Molecular and cellular impacts of
transposable elements

The presence of TEs can alter the host genome or the
transcriptome in numerous ways, contributing to genome
evolution and diversification but also potentially affecting
genome stability (Figure 2). Active TEs that have the ability to
move across the genome represent a source of mutations, as
insertions of TEs into protein-coding genes or regulatory regions
can disrupt gene function (Cordaux and Batzer, 2009). In addition,
insertions can lead to deletions at the target site (Gilbert et al., 2002).
TEs may also contribute to exon shuffling through transduction, a
process in which flanking sequences are moved with the element and
consequently inserted into new locations (Moran et al., 1999;
Richardson et al., 2015).

TEs can also contribute to genome instability via their
encoded products (Hedges and Deininger, 2007). In
particular, the LINE-1 ORF2p encoded-protein can create
double-strand breaks (DSBs) at endonuclease target sites
(Gasior et al., 2006). In addition, the accumulation of
TE-derived products in the cytoplasm, including RNA,
extrachromosomal DNA copies and proteins can lead to the
activation of innate immune pathways and subsequently trigger
inflammation (Saleh et al., 2019).

Furthermore, TEs can induce changes in the host genome even
without being active. Recombination events can occur between
dispersed TE sequences due to their repetitive nature and high
copy number, generating large genomic rearrangements, including
deletions, duplications, and inversions (Sen et al., 2006; Han et al.,
2008; Lee et al., 2008; Cordaux and Batzer, 2009). In this context, a
recent study analyzed the genomes of three individuals and
identified 493 genomic rearrangements mediated by TEs,
highlighting how this contributes to genome diversity
(Balachandran et al., 2022).

In addition, TEs carry a number of regulatory motifs or
sequences, which can affect host gene expression, independently
of their activity. TEs, such as LINE-1, have internal polyadenylation
signals, which can lead to elongation defects, by promoting
premature termination of transcription (Perepelitsa-Belancio and
Deininger, 2003; Han et al., 2004). TEs, such as Alu and LINE-1,
possess splice site signals, which may lead to cryptic splicing, exon

FIGURE 2
Impact of TEs at the molecular and cellular levels. Actively transposing TEs (blue panel) can be a source of genome instability by inducing mutations,
deletions, transduction or DNA damage. The accumulation of products derived from TE may cause inflammation. Even without being active (orange
panel), TEs have the ability to alter the host genome through recombination events, alteration of transcription, of gene expression regulation and 3D
chromatin architecture. Sequences derived fromTEs can also be co-opted by the host. Blue boxes represent genes. TF, transcription factor. Adapted
from (Cordaux and Batzer, 2009; Sundaram and Wysocka, 2020; Fueyo et al., 2022).
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skipping or incorporation of their sequence into transcripts (Saleh
et al., 2019). Importantly, TEs also contain transcription factor
binding sites (TFBSs) and cis-regulatory elements (CREs)
including promoters and enhancers. The vast majority of them
no longer mediate the transcription of TEs, but can be repurposed to
regulate the expression of host genes (Sundaram and Wysocka,
2020; Fueyo et al., 2022). An example of this is the transcription of
host genes by the LINE-1 antisense promoter in human cells
(Nigumann et al., 2002). Additionally, it has been proposed that
TEs contribute to the pluripotency gene regulatory network by
harboring 25% of the binding sites for pluripotency factors,
including OCT4 and NANOG, in both the human and mouse
genomes (Kunarso et al., 2010; Sundaram and Wysocka, 2020;
Fueyo et al., 2022). Furthermore, different TE families have been
shown to contribute to the evolution of innate immunity in
mammals by acting as interferon (IFN)-inducible enhancers. In
humans, most of these co-opted regulatory elements are found
within ERVs (Chuong et al., 2016). However, non-LTR elements,
such as L1M2a, were also shown to act as IFN-inducible enhancers
(Buttler et al., 2023). In contrast, in mice, B2 elements are the
predominant source of these regulatory sequences (Horton
et al., 2023).

TEs can also impact host gene expression by affecting the 3D
chromatin architecture, either by acting as insulator elements or by
being enriched at the boundaries of topologically associating
domains (TADs). TADs are chromatin domains where
enhancer-promoter interactions are favored, and their
boundaries are enriched for binding sites of the zinc finger
protein CTCF, many of which derive from TE sequences. This
protein not only demarcates these boundaries but also mediates
chromatin loop formation (Diehl et al., 2020; Sundaram and
Wysocka, 2020; Fueyo et al., 2022).

Beyond regulatory sequences, TE-derived sequences can also
be co-opted or exapted for host gene function. One striking
example of this are long non-coding RNAs (lncRNAs). Indeed,
83% of the human and 66% of the mouse lncRNAs contain at least
one TE (Kelley and Rinn, 2012). The presence of the TE sequence
may play a role in regulating lncRNAs expression, processing and
localization. For example, they can provide polyadenylation
signals or contribute to post-transcriptional adenosine-to-
inosine editing. TEs can also serve as functional domains
within lncRNAs. Indeed, some studies have demonstrated that
mutation or deletion of TEs from the lncRNA sequence can
impact its function by altering its localization and expression
(Fort et al., 2021).

In addition to lncRNA genes, the exaptation of TE sequences led
to the emergence of key protein-coding genes, with both conserved
and species-specific functions (Bourque et al., 2018). For example,
the coding sequences from different TE families have been
domesticated on multiple occasions to integrate genes involved in
placental development in both humans and mice (Syncytin genes)
(Dupressoir et al., 2012) and in brain development (Arc gene)
(Pastuzyn et al., 2018).

Lastly, TEs can influence, indirectly, the expression of host genes
at the epigenetic level as both silencing mechanisms or loss of
silencing in certain contexts can spread beyond the TE itself and
affect nearby host gene expression (Choi and Lee, 2020; Fueyo
et al., 2022).

Silencing mechanisms

As the immediate uncontrolled activity of TEs can have negative
consequences on the genome (see previous section), the host has
developed various mechanisms operating at different levels to
prevent their expression and transposition (Klein and O’Neill,
2018). At the transcriptional level, silencing mechanisms
comprise the deposition of epigenetic modifications on
chromatin, primarily involving DNA methylation as well as
repressive histone modifications (Garcia-Perez et al., 2016; Deniz
et al., 2019; He et al., 2019). Although DNAmethylation of CpG-rich
promoters is prevalent on most TE families in somatic lineages,
these marks are widely erased and reprogrammed during pre-
implantation development. Therefore, in embryonic stem cells
(ESCs), TEs are primarily repressed through the action of several
histone lysine methyltransferases. Hence, in mouse ESCs,
trimethylation of lysine 9 on histone H3 (H3K9me3) is deposited
by SETDB1 and SUV39H1/2 at specific ERVs and LINE-1 elements,
depending on the family considered and their evolutionary age, and
is necessary for their silencing and heterochromatinization through
HP1 (heterochromatin protein 1) recruitment (Matsui et al., 2010;
Karimi et al., 2011; Bulut-Karslioglu et al., 2014). Moreover,
dimethylation of lysine 9 on histone H3 (H3K9me2), deposited
by the G9a enzyme, is necessary for the silencing of a distinct family
of ERVs (MERVL elements) (Maksakova et al., 2013). Repression by
trimethylation of H3K27 (H3K27me3) appears limited to a specific
ERV family in ESCs (Murine Leukemia Virus (MLV) elements)
(Leeb et al., 2010), but can be acquired by other TE families upon
genome-wide demethylation (Walter et al., 2016). In parallel, the
repressor KAP1 (KRAB-associated protein 1, also called TRIM28)
acts as a cofactor essential for silencing and for the recruitment of
SETDB1 and other histone-modifying enzymes to specific TE
families. KAP1 itself is recruited to TEs by Krüppel-associated
box domain-containing zinc finger proteins (KRAB-ZFPs), the
largest TF family in mouse and human, which confer the
sequence specificity for binding to specific TE families/
subfamilies (Schultz et al., 2002) or by the TF Yin Yang 1 (YY1)
at specific ERV elements (Lee et al., 2018). KAP1-mediated
repression appears particularly relevant for young families of TEs
in both mouse and human ESCs. For example, in human ESCs,
ancient LINE-1 families have accumulated mutations, rendering
them unable to be bound by KAP1/KRAB-ZFPs and to be
transcribed. Younger LINE-1 families are bound and repressed
by KAP1, while the youngest and more active human-specific
L1Hs elements are not yet bound by KAP1/KRAB-ZFPs, but
instead repressed by DNA methylation, which may be deposited
by small RNA-based mechanisms (Castro-Diaz et al., 2014). Upon
implantation and ESC differentiation, permanent silencing of most
TEs is ensured by DNA methylation, which is catalyzed by DNA
methyltransferases (DNMTs) and then maintained throughout
development by the maintenance methyltransferase DNMT1,
without the necessity for continual expression of sequence-
specific TE-recognizing repressors (Jansz, 2019). DNMTs are
recruited to LINE-1 and ERV sequences in ESCs either by the
human silencing hub (HUSH) complex, which interacts directly
with H3K9me3 or by KAP1/KRAB-ZFPs (Robbez-Masson et al.,
2018). Moreover, a binding site for the TF YY1 (Yin Yang 1) located
in the 5′UTR and conserved among LINE-1 elements was shown to
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mediate DNA methylation of young LINE-1 promoters in human
ESCs and differentiated cells, possibly through the recruitment of
DNMTs (Sanchez-Luque et al., 2019). Furthermore, repression of
TEs through KAP1/KRAB-ZFPs, which was initially thought to be
restricted to ESCs, is also active in neuronal progenitor cells (NPCs),
where KAP1 is necessary for the establishment of H3K9me3 at ERVs
and their repression (Fasching et al., 2015; Brattås et al., 2017).

In addition, repression of TEs can also occur at the post-
transcriptional level, via RNA silencing-based mechanisms (Heras
et al., 2014; Garcia-Perez et al., 2016; Goodier, 2016). A study in
human cells showed that the bidirectional transcription of LINE-1
promoters can be processed into small interfering RNAs (siRNAs),
which reduce the stability of the LINE-1 RNA (Yang and Kazazian,
2006). In addition, the microRNA miR-128 was shown to inhibit
LINE-1 retrotransposition in human induced pluripotent stem cells
(iPSCs) and cancer cells, by binding either directly to LINE-1 RNA
or to the 3′UTR of nuclear import factor transportin 1 (TNPO1)
mRNA, which encodes a protein necessary for the nuclear import of
LINE-1 RNP complexes (Hamdorf et al., 2015; Idica et al., 2017).
Furthermore, a distinct and conserved pathway active
predominantly in germ cells exists, wherein a set of small RNAs
called Piwi-interacting RNAs (piRNAs) can target complementary
TE transcripts for degradation in the cytoplasm and direct DNA
methylation to genomic TE sequences (Wang et al., 2023).

Finally, post-translational mediated repression commonly
targets the LINE-1 RNP complex for destabilization and
degradation (Saleh et al., 2019). It has been proposed that the
zinc-finger antiviral protein ZAP colocalizes with LINE-1 RNA
and ORF1p in cytoplasmic stress granules to promote RNP
degradation, and prevents LINE-1 and Alu retrotransposition
(Moldovan and Moran, 2015). Furthermore, uridine residues can
be transferred to LINE-1 mRNA in the cytoplasm by TUT7
(terminal uridyl transferase 7) and the MOV10 RNA helicase,
which may prevent ORF2p-mediated reverse transcription
initiation in the nucleus (Warkocki et al., 2018).

Transposable elements activity in the
healthy brain and during aging

Healthy brain

Whereas TEs are kept silenced in most somatic tissues, one
organ escaping this rule is the brain. Indeed, somatic
retrotranspositions have been shown to occur in the healthy
human and rodent brain, which could contribute to the
establishment of neuronal somatic mosaicism. The first study
demonstrating somatic retrotransposition in the neuronal lineage
reported mobilization of an engineered human LINE-1 in vitro, in
NPCs derived from rat hippocampus neural stem cells, and also in
vivo, in the brain of transgenic mice bearing a similar transgene
(Muotri et al., 2005). This was then further shown to occur in NPCs
derived from human ESCs or from human fetal brain stem cells
(Coufal et al., 2009). In addition, a qPCR assay demonstrated
increased endogenous LINE-1 copy number in various brain
regions, in particular the hippocampus, compared to the heart
and liver of the same donor (Coufal et al., 2009). These
observations were confirmed by DNA sequencing approaches,

however to different frequencies. Bulk DNA sequencing of
various human brain regions identified an extensive number of
somatic insertions of LINE-1, as well as Alu and SVA, with
widespread events mapping to protein coding genes expressed in
the brain (Baillie et al., 2011). Sequencing of single human neuronal
nuclei reported frequency of somatic LINE-1 insertions ranging
from <0.6 to 13.7 unique insertions per neuron (Evrony et al., 2012;
Upton et al., 2015). While the exact rate remains uncertain,
collectively, these studies provide evidence of somatic
retrotransposition, predominantly impacting LINE-1 elements in
the neural lineage, including NPCs and non-dividing neuronal cells
(Macia et al., 2017). These observations have important implications
for neuronal plasticity and diversity. However, the actual functional
significance of these events in brain function remains an open
question. Moreover, as recent sequencing studies have focused
mainly on somatic retrotransposition events and their frequency,
the exact number of individual TE insertions whose expression is
perturbed, and the resulting impact on gene regulation through cis-
regulatory mechanisms, remain unknown.

Aging

Physiological aging is another process linked with disrupted TE
activity. At the molecular level, aging is associated with extensive
epigenetic alterations, including changes in histone modifications
and DNA methylation patterns, as well as global heterochromatin
loss and redistribution (López-Otín et al., 2013). These epigenetic
alterations may, in turn, impact the expression and mobilization of
TEs in aged cells and tissues (Cardelli, 2018). Changes in chromatin
architecture were reported in senescent human fibroblasts, revealing
a general compaction of euchromatic gene-rich regions, contrasting
with an overall opening of constitutive heterochromatin in gene-
poor regions. This was associated with increased expression of
evolutionary young subfamilies of Alu, SVA and LINE-1
elements, along with indications of LINE-1 retrotransposition
(Cecco et al., 2013a). Similar observations were reported in aged
mouse somatic tissues, such as liver and muscle, for various
retrotransposon subfamilies (Cecco et al., 2013b). In addition, a
progressive increase in TE expression with age was observed in a
study that examined total RNA-seq dataset from cell lines derived
from healthy individuals from 1 to 94 years-old (LaRocca et al.,
2020). At the mechanistic level, besides global epigenetic alterations,
it was shown that the binding of sirtuin 6 (SIRT6), a strong repressor
of LINE-1 elements, is reduced upon aging. SIRT6 coordinates the
packaging of the LINE-1 5′UTR into repressive heterochromatin,
through mono-ADP ribosylation of the corepressor KAP1 (Meter
et al., 2014).

This raises the question of whether increased transcription and
transposition is merely a consequence of aging, or whether it could
also actively contribute to it (Maxwell, 2016). Increased
transposition could contribute to the elevated DNA damage and
related genomic instability associated with aging (Driver and
McKechnie, 1992; Laurent et al., 2010; Sedivy et al., 2013).
Increased TE expression has also been proposed to actively
contribute to aging by promoting sterile inflammation, an aging-
associated hallmark (López-Otín et al., 2013). Indeed, WT aged and
SIRT6 knockout mice, along with senescent human fibroblasts,
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present increased expression of LINE-1, as well as elevated
cytoplasmic LINE-1 cDNAs. Although the origin of LINE-1
cDNAs in the cytoplasm is still unclear, this can trigger a strong
type-I interferon (IFN-I) response, via activation of c-GAS (Cecco
et al., 2019; Simon et al., 2019). IFN-I response was mitigated after
knockdown of LINE-1 expression using siRNAs, as well as after
treatment with nucleoside reverse transcriptase inhibitors (NRTIs),
which inhibit the LINE-1 reverse transcriptase (Simon et al., 2019).
In addition, in aged mice, NRTI treatment appears to improve age-
associated inflammation observed in multiple tissues (Cecco et al.,
2019; Simon et al., 2019). Interestingly, healthspan- and lifespan-
increasing interventions, such as calorie restriction or
pharmacological interventions, were shown to reduce TE
expression and LINE-1 transposition in aged mice supporting a
potential causal effect of increased TE expression in aging (Cecco
et al., 2013b; Wahl et al., 2021). However, diminished TE expression
could also be simply a consequence of the reduced aging.

Recently, the HERV-K subfamily HML-2 was also implicated as
a potential contributor to cellular senescence through the activation
of innate immune pathways. Indeed, it was shown that not only the
expression of HML-2 elements is augmented in senescent human
mesenchymal stem cells (hMSCs), but also that these elements were
able to produce VLPs, which could be released extracellularly and
induce senescent phenotypes in young cells (Liu et al., 2023). In
addition, increased levels of ERVs were observed in different model
organisms, including IAPs and MusD in aged mice (Barbot, 2002;
Cecco et al., 2013b), ERV-K and ERV-W in aged cynomolgus
monkeys (Liu et al., 2023) and HERV-K, HERV-W and HERV-
H in human tissues and serum derived from old individuals
(Balestrieri et al., 2015; Nevalainen et al., 2018), as well as in
senescent hematopoietic stem cells (Capone et al., 2018).
Strikingly, the repression of ERV expression upon treatment with
Abacavir, an NRTI, led to an alleviation of cellular senescence and
tissue aging in mice (Liu et al., 2023).

Collectively, these findings show that increased expression of
TEs is a hallmark of aging. In addition, they pose TEs as key drivers
of cellular senescence, primarily through the activation of innate
immune pathways, either in a cell-autonomous way or in a
paracrine manner in the case of HERV elements. However,
questions about the consequences of TEs expression remain to
be investigated such as their possible impact on gene expression
through cis-regulatory mechanism or chromatin architecture
modifications. Eventually, TE expression might also be
implicated in the development of aging-associated disorders
reviewed in the next section.

Transposable elements activity in
neurological and age-related disorders

Active TEs capable of mobilizing in the genome represent a
source of genomic variability, which may be harmful to the host. In
fact, germline insertions of TEs have been widely linked with genetic
diseases (Hancks and Kazazian, 2016). Moreover, somatic de novo
insertions of TEs have also been reported in various cancers (Burns,
2017). In addition, TEs are able to impact the host even without
mobilizing since they bear important regulatory elements and
encode proteins with multiple biochemical activities (Wells and

Feschotte, 2020). For instance, upon loss of DNA methylation in
human NPCs, young LINE-1 elements were shown to function as
alternative promoters for various genes with neuronal-related
functions or linked to neurological disorders, suggesting that the
misregulation of LINE-1 expression during brain development
could contribute to the onset of neurological diseases later in life
(Jönsson et al., 2019). Accordingly, the misregulation of both the
expression and mobilization of TEs has been implicated in several
pathological contexts, including in neurological and age-related
disorders (Table 1) (Saleh et al., 2019; Ahmadi et al., 2020;
Burns, 2020; Terry and Devine, 2020; Evans and Erwin, 2021;
Gorbunova et al., 2021). However, in most cases, the
contribution of TEs to pathology remains unclear. Therefore, in
the following sections, some of the most important findings
implicating TEs in different neurological and age-related disease
contexts will be discussed.

Rett syndrome

Rett syndrome (RTT) is a neurodevelopmental disorder that
affects predominantly young females, with a frequency ranging
from 1/10,000 to 1/15,000 live female births (Marano et al., 2021).
Clinical features of RTT include regression of spoken language,
gait abnormalities and stereotypical hand movements (Neul et al.,
2010). RTT symptoms start to manifest in early childhood and
develop progressively over stages (Kyle et al., 2018).
Approximately 95% of typical RTT cases are caused by
mutations in the X-linked methyl-CpG binding protein 2
(MECP2) gene (Amir et al., 1999; Neul et al., 2010). MECP2
encodes an epigenetic regulatory protein, which binds
methylated cytosines in CG and CA contexts and interacts with
transcriptional co-repressor complexes. As such, one of the main
functions of MECP2 is to repress gene expression in a DNA
methylation-dependent manner. Moreover, MECP2 is also
believed to play a role in transcriptional activation, modulation
of alternative splicing and microRNA (miRNA) processing, and
chromatin remodeling (Lyst and Bird, 2015; Marano et al., 2021).
MECP2 is ubiquitously expressed, but was shown to be expressed
at ~10-fold higher levels in neurons compared to other cell types,
making it one of the most abundant proteins in neuronal nuclei
(Skene et al., 2010). Consistent with its high abundance,
MECP2 binds methylated DNA broadly throughout the genome
and its absence causes global alterations of the neuronal
epigenome, leading to transcriptional changes affecting many
genes and suggesting that MECP2 fine-tunes neuronal gene
expression (Marano et al., 2021).

Besides genes, MECP2 was also shown to bind and repress the
expression of methylated TE sequences, such as LINE-1 and IAP
retrotransposons in mouse brain (Muotri et al., 2010; Skene et al.,
2010). Moreover, increased LINE-1 retrotransposition was
observed in neuroepithelial cells of MECP2-null mice, in human
NPC derived from RTT iPSCs, and in postmortem brains of RTT
patients (Muotri et al., 2010). More recently, whole genome
sequencing of postmortem brain samples from RTT patients
and healthy controls confirmed a higher number of somatic
insertions of the human-specific LINE-1 subfamily, L1Hs, in
RTT brains (Jacob-Hirsch et al., 2018). In addition, a targeted
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bulk sequencing approach using PCR revealed that the lack of
MECP2 leads to changes in the genomic pattern of L1Hs somatic
insertions in cortical neurons of RTT patients. These insertions
were found to be enriched in introns and in the sense orientation,
which could potentially impact gene expression (Zhao et al., 2019).
All together, these studies demonstrated that MECP2 plays a role
in the silencing of TE sequences, mainly from the LINE-1 family.
However, the extent to which the expression of other TE families
is affected in RTT and whether this could play a role in
transcriptome changes and in the etiology or progression of
RTT remains unknown.

Aicardi-Goutières syndrome

Aicardi-Goutières syndrome (AGS) is a progressive
inflammatory encephalopathy characterized by spasticity,
psychomotor retardation, intracranial calcification, white matter
changes and cerebrospinal fluid lymphocytosis (Aicardi and
Goutières, 1984; Crow et al., 2020; 2013). This syndrome is
phenotypically and genotypically heterogeneous, as it can
manifest itself with different degrees of severity and results from
mutations in various genes involved in nucleic acid metabolism and
signaling, including TREX1, RNASEH2, SAMHD1, ADAR1, and

TABLE 1 List of neurological and age-related disorders associated with perturbed TE activity.

Disease Cause Implicated TE
families

Impact on TE activity and
potential TE-driven
mechanisms

References

Rett syndrome Mutation in MECP2 gene LINE-1 Increased LINE-1 and IAP expression Muotri et al. (2010), Skene et al. (2010),
Jacob-Hirsch et al. (2018), Zhao et al.
(2019)

ERV Increased LINE-1 retrotransposition

Aicardi-Goutières
syndrome

Mutations in TREX1, RNASEH2,
SAMHD1, ADAR1 and IFIH1
genes

LINE-1 Accumulation of DNA and RNA derived
from LINE-1 and Alu in the cytosol leading
to IFN-1-induced immune response

Crow et al. (2006a), Crow et al. (2006b),
Stetson et al. (2008), Zhao et al. (2013),
Rice et al. (2014), Hu et al. (2015), Li et al.
(2017), Thomas et al. (2017), Benitez-
Guijarro et al. (2018), Chung et al. (2018),
Herrmann et al. (2018)

SINE

Ataxia-telangiectasia Mutation in ATM gene LINE-1 Increased LINE-1 expression and
retrotransposition inducing expression of
interferon stimulated genes

Coufal et al. (2011), Jacob-Hirsch et al.
(2018), Takahashi et al. (2022)

Amyotrophic lateral
sclerosis

TDP-43 cytoplasmic
accumulation

ERV Increased LINE-1, SINE and ERV
expression

Li et al. (2015), Liu et al. (2019), Tam et al.
(2019)LINE-1

Increased LINE-1 retrotranspositionSINE

Expression of HERV-K or of its env gene
leading to neuronal toxicity and cell death

Frontotemporal
dementia

TDP-43 cytoplasmic
accumulation

LINE-1 Increased LINE-1, SINE and ERV
expression

Li et al. (2012), Liu et al. (2019)

SINE

Increased LINE-1 retrotransposition
ERV

Alzheimer’s disease Hyperphosphorylation of Tau
protein

LINE-1 Increased expression of LINE-1, SVA,
HERV

Guo et al. (2018), Sun et al. (2018),
Dembny et al. (2020), Ramirez et al.
(2022), Evering et al. (2023)

SVA

HERV-K(HML-2) RNA activating Toll-like
receptors (TLRs)

ERV

HERV-K transcripts leading to
neurodegeneration and microglia
accumulation

Hutchinson-Gilford
Progeria syndrome

Mutation in LMNA gene LINE-1 Increased expression of LINE-1 inhibiting
expression of SUV39H1 and inducing
heterochromatin loss

Vazquez et al. (2019), LaRocca et al.
(2020), Valle et al. (2022), Liu et al. (2023)ERV

Increased HERV-K expression and
accumulation of VLPs activating innate
immune pathways

Werner syndrome Mutation in WRN gene LINE-1 Increased expression of LINE-1 inhibiting
expression of SUV39H1 and inducing
heterochromatin loss

Valle et al. (2022), Liu et al. (2023)

ERV

Increased HERV-K expression and
accumulation of VLPs activating innate
immune pathways
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IFIH1/MDA5 (Crow et al., 2006a; 2006b; Stephenson, 2008; Rice
et al., 2012; 2009; Oda et al., 2014).

The TREX1 gene encodes the three-prime repair exonuclease 1,
an exonuclease involved in the degradation of cytosolic DNA. It was
shown that depletion of TREX1 in the mouse leads to the
accumulation of single-stranded DNA (ssDNA) derived from
TEs, highlighting retroelement-derived DNA as a substrate of
TREX1 (Crow et al., 2006a; Stetson et al., 2008). Moreover, an
increase in TE derived-extrachromosomal DNA, of which LINE-1
are a major source, was reported in TREX1-deficient NPCs obtained
after differentiation of human pluripotent stem cells. Further
differentiation showed increased apoptosis in neurons and
astrocytes exhibiting increased IFN-I secretion, thus contributing
to greater neurotoxicity compared to control cells. Knockdown of
LINE-1 RNA using shRNAs or inhibition of reverse transcription
using NRTIs reduced the levels of extranuclear ssDNA and IFN-1
secretion in TREX1-deficient cells (Thomas et al., 2017). It was
further shown that TREX1-mediated LINE-1 suppression could also
occur independently of its nuclease activity, through ORF1p
degradation (Li et al., 2017).

The RNASEH2A, RNASEH2B and RNASEH2C genes encode the
three proteins composing the human ribonuclease H2 enzyme
complex. Mutations in any of the three units is the most
frequent cause of AGS (Crow et al., 2006b). It has been suggested
that RNASEH2 degrades LINE-1 RNA after reverse transcription,
being thus required for efficient completion of the retrotransposition
cycle. Mutations in the RNASEH2 genes therefore result in decreased
LINE-1 retrotransposition and may lead to the accumulation of
cytoplasmic LINE-1 RNA (Benitez-Guijarro et al., 2018).

Mutations in the SAMHD1 gene also cause AGS (Rice et al.,
2009). This gene encodes the SAM domain and HD domain
containing protein 1 (SAMHD1), a nucleocytoplasmic shuttling
protein with dNTP triphosphohydrolase activity (Du et al., 2019).
SAMHD1 is known to inhibit LINE-1 retrotransposition activity in
dividing cells by a mechanism still not fully understood (Zhao et al.,
2013; Hu et al., 2015; Herrmann et al., 2018). On the one hand, it was
suggested that SAMHD1 reduces ORF2p expression (Zhao et al.,
2013). On the other hand, SAMHD1 is known to promote the
formation of stress granules in the cytoplasm, which may induce the
sequestration of LINE-1 RNP and prevent retrotransposition (Hu
et al., 2015). The inhibition of LINE-1 retrotransposition by
SAMHD1 could restrain TE-derived DNA accumulation in the
cytoplasm, preventing the aberrant synthesis of interferon and
inflammatory cytokines explaining, at least in part, this
characterized feature of AGS associated with
SAMHD1 mutations (Hu et al., 2015).

Finally, the ADAR1 gene encodes an adenosine deaminase
acting on double-stranded RNA (dsRNA) (Rice et al., 2012). This
protein was shown to bind transcripts derived from Alu elements
and to prevent activation of dsRNA sensors such as MDA5, a
cytoplasmic viral RNA receptor involved in IFN production and
response. ADAR1 KO in NPCs results in non-edited Alu sequences
that tend to form dsRNAs, which trigger IFN-1 production via the
activation of MDA5 (Chung et al., 2018). A recent study
demonstrated the activation of IFN-1 in the brain of mice
carrying ADAR1 mutation (Guo et al., 2021). In addition, gain-
of-function mutations in the IFIH1 gene, which encodes the
MDA5 receptor, were identified in AGS patients. These

mutations might lower the recognition threshold of MDA5,
enabling not only the recognition of exogenous dsRNA, but also
of dsRNA derived from TEs. Eventually, the constitutive activation
of the receptor triggers an innate immune response (Rice
et al., 2014).

All the mutations described above are associated with the
accumulation of cytoplasmic DNA or RNA species derived from
TEs. In addition, IFN-1-induced immune response triggering the
expression of interferon stimulated genes is observed in almost all
AGS patients, except the ones with RNASEH2B mutations (Crow
and Manel, 2015). However, the mechanistic link between TE
product accumulation and the inflammatory phenotype observed
in AGS is still poorly understood.

Ataxia-Telangiectasia

Ataxia-Telangiectasia (AT) is an autosomal recessive disorder
characterized by progressive cerebellar degeneration,
immunodeficiency, predisposition to develop cancer, radiation
sensitivity and premature aging (Rothblum-Oviatt et al., 2016). It is
caused by a loss-of-function mutation in the Ataxia-Telangiectasia
mutated (ATM) gene, which encodes a serine/threonine kinase that
activates the DNA repair machinery in response to DNA damage
(Savitsky et al., 1995; Shiloh, 2001), highlighting a possible link between
genomic instability and neurodegeneration (McKinnon, 2017).

An increase in the retrotransposition efficiency of an engineered
human LINE-1 was detected in NPCs derived from ATM-deficient
hESCs and in ATM KO transgenic mice. In addition, an increase in
human-specific LINE-1 (L1Hs) copy number was observed in
postmortem human brain tissue from AT patients compared to
healthy controls (Jacob-Hirsch et al., 2018). This led to the
hypothesis that the ATM protein recognizes intermediates
created during LINE-1 integration as sites of DNA damage, and
consequently increases the number and the length of the resulting
retrotransposition events (Coufal et al., 2011).

In a more recent study, an increased expression of evolutionary
younger LINE-1 subfamilies and a concomitant decreased
expression of TE epigenetic silencers, including MECP2 and
KAP1, was observed in cerebellar samples from AT patients.
Interestingly, targeted upregulation of the young mouse L1MdTf
subfamily using a CRISPR activation (CRISPRa) strategy in the
cerebellum of transgenic mice was sufficient to induce progressive
ataxia and expression of interferon stimulated genes. In addition,
treatment with NRTIs led to the attenuation of disease progression.
This study thus delineates a causal link between increased LINE-1
activity and neurodegeneration, using a mouse model (Takahashi
et al., 2022). However, whether LINE-1 enhanced activity triggers
neurodegeneration directly remains to be functionally
demonstrated, as the observed neurodegeneration could be a
consequence of increased DNA damage as previously shown
(Blaudin de Thé et al., 2018) or of CRISPRa off-target effects.

Neurodegenerative disorders

In addition to the aforementioned neurological disorders,
perturbed TE activity has been linked to various
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neurodegenerative disorders, some examples of which will be
developed in the following section. Amyotrophic lateral sclerosis
(ALS), a disease marked by loss of motor neuron function and
frontotemporal dementia (FTD), which is associated with loss of
frontal and temporal cortexes, are two neurodegenerative diseases
associated with disrupted TE activity (Ling et al., 2013). One of the
major hallmarks of these pathologies is the loss of nuclear TAR
DNA-binding protein 43 (TDP-43) and its subsequent cytoplasmic
accumulation (Neumann et al., 2006). This protein was shown to
bind to TE-derived transcripts from all the main classes including
LINEs, SINEs, and ERVs. The association between TDP-43 and TE-
derived transcripts was shown to be reduced in FTD patients and
mouse models exhibiting TDP-43 dysfunction show an increase of
TE-derived transcripts, which match the ones identified as TDP-43
targets (Li et al., 2012). In agreement with these findings, another
study analyzed the transcriptomes of 148 ALS postmortem cortexes
and identified a subset of ALS patients with TDP-43 dysfunction and
increased expression of TEs, especially young LINE-1 and SVA
elements (Tam et al., 2019). Moreover, the effect of nuclear TDP-43
loss and its cytoplasmic aggregation were investigated in
postmortem brain samples of FTD and ALS-FTD patients.
Chromatin decondensation around LINE-1 insertions was
reported, as well as increased LINE-1 DNA content, indicative of
increased retrotransposition. Accordingly, it was hypothesized that
TDP-43 may regulate the expression of TEs in the brain under
physiological conditions through unknown mechanisms, further
suggesting that TE derepression may be implicated in ALS and
FTD (Liu et al., 2019). TDP-43 was also shown to regulate the
expression of HERV-K elements. Indeed, postmortem brain tissue
from ALS patients display increased expression of HERV-K. In
addition, the expression of HERV-K in human neurons in vitro
resulted in retraction and beading of neurites, neuronal toxicity and
cell death. Moreover, the expression of the HERV-K env gene in the
neurons of transgenic animals led to the development of several
pathological features reminiscent of ALS, including motor
dysfunction (Li et al., 2015). All these observations point towards
a contribution of HERV-K to neurodegeneration.

Another neurodegenerative disease that has been associated
with the activation of TEs is Alzheimer’s disease (AD). One of
the neuropathological signatures of AD is the hyperphosphorylation
of Tau protein, which leads to the subsequent formation of
intracellular neurofibrillary tangles (NFTs) (Iqbal et al., 2005;
Klein et al., 2019). Expression of a pathogenic form of Tau was
shown to induce heterochromatin loss in motor neurons inmice and
in hippocampal neurons from AD patients. The heterochromatin
relaxation was shown to be triggered by oxidative stress-induced
DNA damage and to be associated with aberrant expression of genes
linked with pluripotency and developmental processes, which are
normally silent in the brain (Frost et al., 2014). Heterochromatin
loss, as well as a reduction of Piwi protein and piRNAs levels, could
lead to the increased expression of TEs, including specific
subfamilies of LINE-1, SVAs, and HERVs, observed in
postmortem brain samples of AD patients. Increased TEs
expression could contribute to neurodegeneration by innate
immune response activation and/or by promoting genome
instability (Guo et al., 2018; Sun et al., 2018).

A recent study investigating TE expression in the brain of three
different tauopathy mouse models reported an increase in

retrotransposon transcript levels, especially from the ERV class,
including IAP, IAP-E, MULV, MERVL, ERV-β4 subfamily
members, but also LINE-1 and B1/B2 elements. Moreover, an
increase in IAP encoded-gag protein levels and a higher copy
number of LINE-1, IAP, ETn and specific ERV-K elements was
detected, suggesting that these elements are actively
retrotransposing in the context of tauopathy (Ramirez et al.,
2022). Moreover, RNA from HERV-K (HML-2) was shown to
bind to and activate the murine TLR7 and human TLR8 (Toll-like
receptor) expressed in neurons and microglia, resulting in
neurodegeneration and microglia accumulation, an important
hallmark of AD (Dembny et al., 2020). Recently, a model was
proposed to explain the impact of ERV transcripts in
neurodegeneration. Innate immune sensors are activated by
cytoplasmic HERV-derived nucleic acids, which lead to the
secretion of IFN-1 and other inflammatory signals. In response
to these signals, microglia release cytokines that can be sensed by
astrocytes. These reactive astrocytes produce neurotoxins and are
unable to maintain synaptic connections, which could ultimately
lead to neuronal death and neurodegeneration (Evering
et al., 2023).

Premature aging progeria syndromes

Another group of age-related disorders where TEs have been
implicated are premature aging disorders, including Hutchinson-
Gilford Progeria syndrome (HGPS) and Werner syndrome (WS).
Both HGPS and WS recapitulate many of the phenotypes associated
with normal aging (Ghosh and Zhou, 2014). HGPS is a genetic
disorder classified as a laminopathy, caused by single-base
substitutions in the LMNA encoding lamin A/C, which results in
the activation of a cryptic splice site leading to the production of a
protein truncated of 50 amino acids, called progerin (Eriksson et al.,
2003; Sandre-Giovannoli et al., 2003; Worman and Bonne, 2007;
Noda et al., 2015). WS, on the other hand, is caused by mutations in
the WRN gene, which encodes a RecQ helicase known as the WRN
protein that has both exonuclease and helicase activities (Yu et al.,
1996; Kudlow et al., 2007). These two premature aging disorders are
associated with epigenetic changes, including loss of
heterochromatin. Indeed, the lamin A/C proteins, structural
components of the nuclear lamina, promote the anchoring of
heterochromatin to the nuclear periphery (Goldman et al., 2004;
Scaffidi andMisteli, 2005; Shumaker et al., 2006). TheWRN protein,
known to be involved in DNA repair, plays a role in
heterochromatin stability through interactions with
heterochromatin proteins, including the histone methyltransferase
SUV39H1 and HP1α (Zhang et al., 2015).

Since heterochromatin loss is associated with loss of silencing of
TEs, there has been a growing interest in exploring whether TEs
could contribute to premature aging disorders. In one study, it was
demonstrated that SIRT7-mediated deacetylation of H3K18 plays a
role in silencing LINE-1 by facilitating its association with lamin
A/C in mouse fibroblasts. Consequently, absence of SIRT7 or
depletion of lamin A/C results in transcriptional upregulation of
LINE-1 elements in mouse and human cells, consistent with
observations from RNA-seq data from fibroblasts of HGPS
patients (Vazquez et al., 2019; LaRocca et al., 2020).
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Recently, LINE-1 RNA was implicated as a causal agent of
heterochromatin erosion in premature aging syndromes.
Increased expression of L1Hs elements was observed in hMSCs
differentiated from iPSCs derived from HGPS andWS patients. The
accumulation of LINE-1 RNA in the nucleus led to an increased
interaction with SUV39H1, resulting in the inhibition of its
enzymatic activity, loss of heterochromatin and increased
expression of senescence-associated secretory phenotype (SASP)
genes. Interestingly, an improvement of the senescent phenotype
in dermal fibroblasts of progeria patients and HGPS mice was
reported following LINE-1 RNA depletion using antisense
oligonucleotides (ASOs), but not using NRTIs. In addition,
LINE-1 RNA depletion led to an upregulation of pathways
associated with nuclear organization, cell proliferation and
transcription regulation, together with downregulation of
pathways associated with aging, inflammatory response and DNA
damage. Together, these results point to an important role of LINE-1
RNAs in the progression of premature aging disorders through the
negative regulation of SUV39H1 enzymatic activity (Valle et al.,
2022). However, the mechanism by which LINE-1 RNA inhibits
SUV39H1 activity remains an open question.

A recent study showed that the HERV-K (HML-2)
retrotransposon family also contributes to the senescence
phenotype of premature aging syndromes. HERV-K expression
was found to be upregulated in HGPS and WS cellular models,
where the accumulation of viral proteins and VLPs could trigger
innate immune responses thereby contributing to senescence.
Importantly, as indicated in the aging section, HERV-K VLPs
could be released in a paracrine manner and trigger senescence
in non-senescent cells. Consistent with these results, tissues from
HGPS cynomolgus monkeys exhibited an increase in ERV-W-Env
protein levels. Moreover, this study showed that CRISPRa-mediated
activation of HERV-K induced premature senescence, and that
repression of HERV-K using shRNA, CRISPR interference or
NRTI treatment reduced cellular senescence phenotypes and
tissue aging in mice (Liu et al., 2023).

All together, these studies suggest a causal relationship between
increased TEs expression and aging-associated phenotypes, which
can be alleviated by repressing TEs. This opens up new possibilities
for premature aging treatment and offers a strategy to be applied to
other aging-associated disorders.

Concluding remarks

Once considered as purely “junk DNA,” TEs are now recognized
as major drivers of genome evolution and genetic diversity. As their
immediate impact may be deleterious, the host has developed
silencing mechanisms to restrict their expression and
retrotransposition, in particular in somatic lineages. It is now
accepted that the brain stands out as an exception, exhibiting
increased activity of TEs from specific families or subfamilies. It
is still unclear whether this is linked to the relaxation of epigenetic
mechanisms in neuronal lineages or the presence of specific factors
promoting TE expression, or most likely a combination of both.
Furthermore, while the biological importance of these observations
for neuronal plasticity and diversity is intriguing, it remains
unknown and challenging to investigate experimentally.

The aging process, as well as the neurological and age-related
disorders described in this review and showing perturbed TE
activity, share significant common hallmarks, such as increased
DNA damage from retrotransposition, the cytoplasmic
accumulation of nucleic acid species from TEs, and the
induction of IFN-1 immune response, which can trigger
inflammation. Although a causal link between TE expression
and neurodegeneration or aging-associated phenotypes is
observed in models of AT and progeroid syndromes, the
relative contribution of these different features to pathological
phenotypes and the sequence of events are unclear. In addition,
the potential cis-regulatory roles of TE promoters and their
influence on transcriptional networks in the various disease
contexts remain poorly explored. Regardless, products encoded
by TEs, including transcripts and proteins, merit further
investigation, in particular as potential candidates for the
development of biomarkers of biological age or neurological
disorders (LaRocca et al., 2020).

Genome editing technologies such as CRISPR-Cas9 will be
essential tools to further unravel the contribution of TEs in
physiological or disease contexts (Fueyo et al., 2022). For
example, these methods could be used to induce transcriptional
silencing of TEs families or subfamilies known to be aberrantly
expressed in disease. This would enable determining whether some
of the common transcriptome changes or pathological phenotypes
are reversed following TE silencing. This could also be used to
address whether interfering with TE expression could impact brain
development or function.

Furthermore, the development of tools for TE annotation, the
more systematic inclusion of TE sequences in next-generation
sequencing analysis and the improvement of dedicated
computational pipelines will undoubtedly help to understand
further the extent to which TE expression and their chromatin
state is perturbed in a specific context, as well as the impact on the
transcriptome (Lanciano and Cristofari, 2020). In particular, it
will be important to distinguish expression of TEs embedded in
introns of genes from autonomous expression of TE from their
own promoter. In addition, determining whether most elements
or only a small subset of insertions from a given family/subfamily
are impacted will be essential for the design of downstream
functional analysis. Finally, mapping reads coming from the
youngest and more active elements, usually overrepresented
among the classes showing increased expression in disease
(such as L1Hs or HERV-K in the human genome), is very
challenging. In that regard, recent pipelines, such as CELLO-
seq or SoloTE (Berrens et al., 2022; Rodríguez-Quiroz and
Valdebenito-Maturana, 2022), exploit long read and/or single-
cell RNA sequencing technologies to tackle many of the issues
associated with the mapping of young TEs and allow to analyze
more unambiguously TE copies at the individual and locus-
specific level.
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