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Reptilian species, particularly snakes and lizards, are emerging models of animal
coloration. Here, I focus on the role of the TFEC transcription factor in snake and
lizard coloration based on a study on wild-type and piebald ball pythons.
Genomic mapping previously identified a TFEC mutation linked to the piebald
ball python phenotype. The association of TFEC with skin coloration was further
supported by gene-editing experiments in the brown anole lizard. However,
novel histological analyses presented here reveal discrepancies between the ball
python and the anole TFEC mutants phenotype, cautioning against broad
generalizations. Indeed, both wild-type and piebald ball pythons completely
lack iridophores, whereas the TFEC anole lizard mutants lose their iridophores
compared to the wild-type anole. Based on these findings, I discuss the potential
role of the MiT/TFE family in skin pigmentation across vertebrate lineages and
advocate the need for developmental analyses and additional gene-editing
experiments to explore the reptilian coloration diversity.
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1 Introduction

Although the zebrafish remains the main reference in the animal coloration field
(Patterson and Parichy, 2019), reptilian species are gaining ground as new models
(Milinkovitch and Tzika, 2007) thanks to the great diversity of color and color patterns
they exhibit. Multiple studies have investigated the distribution of chromatophores in their
skin at late stages of development or in adults to understand this colorful variety (Kuriyama
et al., 2020), but little is known about the developmental processes involved in the
differentiation, migration and self-organised patterning of these cells. The
characterization of spontaneously-occurring mutations that affect the coloration of
snakes and lizards (Andrade et al., 2019; Ullate-Agote et al., 2020; Ullate-Agote and
Tzika, 2021; Garcia-Elfring et al., 2023) and the establishment of gene-editing protocols
using CRISPR-Cas9 in the same lineages (Rasys et al., 2019; Tzika et al., 2023) will greatly
advance our understanding of these processes, but it remains to be seen how transferrable
this information is within reptiles, and Squamates (snakes and lizards) in particular.

Garcia-Elfing et al. (Garcia-Elfring et al., 2023) recently investigated the piebald ball
python morph (Python regius), a recessive mutant phenotype characterized by the presence
of white patches on its otherwise black and brown dorsal skin pattern. Their genome
mapping analyses, and candidate-gene approach provide evidence for a mutation in the
gene TFEC as the genetic determinant of the piebald phenotype in ball pythons. The authors
also generated, through CRISPR-Cas9 gene-editing, a targeted knock-out mutation of TFEC
in the brown anole lizard (Anolis sergei), resulting in the loss of iridophores and reduced
body coloration, particularly in the snout, forelimbs, and hindlimbs. But as Garcia-Elfing
et al. (Garcia-Elfring et al., 2023) conclude, it remains “unresolved whether piebald ball
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pythons have iridophores in either pigmented or white skin”, and
they strongly recommend histological analyses to resolve this
matter. Here, I present such histological data demonstrating that
both wild-type and piebald ball pythons lack iridophores. Thus, the
brown anole phenotype does not recapitulate the observations in
ball pythons. Nevertheless, these results significantly advance our
understanding of reptilian coloration. The work of Garcia-Elfing
et al. and the results presented here suggest that the same molecule
can affect reptilian and vertebrate coloration in different ways.

2 Materials and methods

2.1 Animal experimentation

Ball pythons and corn snakes were housed and bred at the LANE
animal facility running under veterinary cantonal permit no. 1008.
The individuals were sampled following Swiss law regulations and
under the experimentation permit GE24/33145.

2.2 Histology and imaging

Three wild-type (histology, TEM, eye) and one piebald
(histology, TEM, eye) pythons and two wild-type (histology, eye)
and one Palmetto (histology) corn snakes were sampled. Skin
(roughly 1 cm × 2 cm) and eye samples were fixed in 4%
paraformaldehyde and dehydrated in ethanol before embedding
in paraffin blocks. Seven-micrometer microtome sections were
deparaffinized and directly imaged with the VHX-7000
(Keyence). For transmission electron microscopy, skin pieces of
1 mm2 were fixed, sectioned, and imaged as previously described
(Ullate-Agote et al., 2020). Sample processing and imaging were
performed at the Electron Microscopy Facility, University of
Lausanne (Switzerland).

2.3 TFEC amplification

For all animals (Table 1), genomic DNA was extracted from
whole blood using the DNeasy Blood & Tissue Kit (Qiagen, 51104)
and genotyping by Sanger sequencing, targeting the TFEC SNP

identified in the original publication (Garcia-Elfring et al., 2023),
was performed with the following primers: TFECg_103193F (CAG
TGCAACTCAAAGGGAACA) and TFECg_103880R (GCAGAC
CCATGAAATCAATGGA).

3 Results

Garcia-Elfing et al. (Garcia-Elfring et al., 2023) provide
convincing evidence, from their genomic mapping analyses,
that the mutation responsible for the piebald phenotype in
ball pythons resides in an 8-Mb interval on the Chromosome
7 of the Burmese python genome. Among the variants detected
within the protein-coding sequence of 32 genes in the interval,
only one is expected to affect the structure of the corresponding
protein. Indeed, this variant introduces a STOP codon in exon
5 of TFEC, and the transcription factor produced is truncated. A
single copy of TFEC is present in reptilian genomes. Based on
Sanger sequencing of exon 5 from 7 animals (3 wild-type,
2 homozygous piebald and 2 heterozygous piebald), I was able
to confirm the co-segregation of the C-to-T transition in TFEC
with the piebald allele (Table 1) in individuals that were not
included in the original study.

I proceeded to characterize histologically the chromatophore
composition of the ball python skin both in the wild-type and in
piebald mutants. When coaxial light illuminates deparaffinised
sections of the black skin of a wild-type ball python, the
characteristic reflective shine of iridophores is absent (Figure 1A).
The same result is obtained when illuminating sections of white skin
patches (Figure 1B) from a piebald python. Similarly, no iridophores
were detected in the iris of the wild-type ball python (Figure 1C),
where iridophores have previously been reported in other reptiles,
such as the Texas rat snake (Ullate-Agote and Tzika, 2021). This
finding must be contrasted to the result obtained when performing
the same experiment with skin and eye samples of the corn snake
(Pantherophis guttatus): the bright reflection of light by iridophores
is visible both in the wild-type skin (Figure 1C) and in the skin of the
recessive Palmetto phenotype (Figure 1D), as well the eyes of the
wild-type corn (Figure 1F). The Palmetto corn snake morph is
characterized by fully white dorsal and ventral skin with scarce
patches of coloration; the causative mutation for this phenotype
remains unknown. Note that the full-depth skin pieces for paraffin

TABLE 1 Individuals genotyped for the presence of the SNP suggested to cause the piebald ball python phenotype. The SNP is highlighted in bold in the
‘sequence’ column. The ‘genotype’ is deduced by the appearance and the pedigree of the animals. ‘Stripe’ is another ball python morph unrelated to the
piebald morph.

Individual ID Phenotype Genotype Sequence

PREG003 wild-type +/+ CACAGATACACGAGCAATGGC

PREG006 wild-type piebald/+ CACAGATACAYGAGCAATGGC

PREG008 piebald piebald/piebald CACAGATACATGAGCAATGGC

PREG025 stripe +/+ CACAGATACACGAGCAATGGC

PREG037.24 wild-type piebald/+ CACAGATACAYGAGCAATGGC

PREG043 wild-type +/+ CACAGATACACGAGCAATGGC

PREG052 piebald piebald/piebald CACAGATACATGAGCAATGGC
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sections were large, so any iridophores present could not have
been missed.

Transmission electron microscopy (TEM) imaging of the skin of
a wild-type adult ball python shows that i) epidermal and dermal
melanophores are present in the dorsal black skin (Figure 2A), ii)
epidermal melanophores and xanthophores can be found in the
dorsal brown skin (Figure 2B), and iii) the lateral light brown skin
(Figure 2C) has a similar composition but the epidermal
melanophores seem more scarce. The dermal and epidermal
melanophores present similar subcellular morphology
(Figure 2D). The presence of concentric lamellae in the
xanthosomes (Figure 2E) suggests that they contain pteridines,
and they could thus be pterinosomes, but chemical analyses are
necessary to confirm this. Here, I use the terms xanthophores and
xanthosomes as more generic, rather than to specify the content
(pteridines vs carotenoids) of these chromatophores. All pieces of
skin contain large amounts of collagen fibers in various orientations
(Figure 2F). The subcellular structure of the ball python
melanophores and xanthophores strongly resembles that of other
snakes, such as the corn snake [Figure 4 in Ullate-Agote et al. (2020)]
and the Texas rat snake [Figure 2 in Ullate-Agote and Tzika (2021)].

The dorsal brown skin of a piebald individual (Figure 1G)
contains epidermal melanophores and xanthophores. In the
white lateral patches (Figure 1H) and the white ventral skin
(Figure 1I), only dense collagen fibers can be seen. Thus, the

white color we perceive in ball pythons, both on the ventral skin
of wild-type animals and on the white dorso-lateral patches of
piebald mutants, is likely caused by light scattering from the
dense network of collagen fibers, rather than by disorganized
lattices of guanine nano-crystals in iridophores. Conversely,
TEM imaging of the skin on TFEC brown anole mutants
(Garcia-Elfring et al., 2023) showed that they maintain both
melanophores and xanthophores, but lose iridophores,
explaining why the entire skin of these animals is translucent.
Note that, although their coloration is reduced, it is unclear if the
pattern itself (i.e., the spatial distribution of colored motifs) is
affected in these gene-edited lizards. In conclusion, the data
presented here show that the phenotype of TFEC mutants of
the brown anole does not recapitulate the effect of the TFEC
mutation in piebald ball pythons, advocating that extrapolations
of results between different species can be illuminating but must
be made with caution.

4 Discussion

TFEC is part of the microphthalmia/transcription factor E
(MiT/TFE) family of transcription factors, which additionally
includes MITF (Melanocyte Inducing Transcription Factor),
TFEB (Transcription Factor EB), and TFE3 (Transcription

FIGURE 1
Photography of animals (left) andmicroscopy image of a deparaffinized dorsal skin section (right) of (A) awild-type adult ball python (black skin), (B) a
piebald ball python (white patch), (D) a wild-type corn snake (dorsal side), and (E) a Palmetto corn snake (white patch). Photography of an eye (left) and
microscopy image of a deparaffinized eye section from a wild-type ball python (C) and a wild-type corn snake (F). The black bar and arrows indicate the
melanophores in (A). Cyan bars highlight the layer of iridophores in D, E, and F. Scale bars: 100 μm.
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Factor Binding to IGHM Enhancer 3). So far, TFEB and
TFE3 have not been associated with the development of
animal skin coloration. In mice, a Tfec knockout presents

abnormal hair pigmentation (Groza et al., 2023), whereas mice
with a partially truncated Tfec, as in the piebald pythons, are
normally pigmented (Steingrimsson et al., 2002). Mitf mutations

FIGURE 2
TEM imaging of the dorsal black (A), dorsal brown (B) and lateral light brown (C) skin of an adult wild-type ball python. Magnification of the dermal
and epidermal melanophores from A (D), a xanthophore from B (E), and the collagen fibers from C (F). TEM imaging of the dorsal brown (G), lateral white
(H), and ventral white (I) skin of a piebald adult ball python. The dashed lines mark the dermis/epidermis boundary. eM: epidermal melanophore, dM:
dermal melanophore, X: xanthophore, cf: collagen fibers. Scale bars: 5 μm (A,B,C,G,H, I), 1 μm (D, F), 0.5 μm (E).

FIGURE 3
Schematic representation of the possible association of MITF and TFEC in the differentiation of the three chromatophore types from neural crest
precursor cells in zebrafish, snakes and lizards. The fate determination processes are disregarded in this simplified scheme.
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in mice result in decreased or absent pigmentation and,
occasionally, in white spotting (Steingrimsson et al., 2004). In
zebrafish, mitfa mutants are characterized by the loss of
melanophores and an increased number of iridophores (Lister
et al., 1999), and tfecmutations mainly impact the differentiation
of iridophores (Petratou et al., 2021). Reduced MITF expression
in the Texas Rat snake results in the loss of melanophores and
xanthophores (Ullate-Agote and Tzika, 2021). If we focus on the
phenotype of gene knockout animals (induced or spontaneously-
occurring), rather than on the proposed models describing the
fate determination processes of chromatophores [progressive,
direct, and cyclical (Kelsh et al., 2021)], we can speculate that the
role of MITF and TFEC varies in different vertebrate lineages.
Possible associations based on the scarce existing data on reptiles
are presented in the simplified scheme of Figure 3. Depending on
the chromatophore types present in a species, these transcription
factors are likely to take up different functions in the
chromatophore fate determination.

To elucidate the actual role of these transcription factors in
reptilian coloration, it is thus necessary to investigate further their
evolutionary history across lineages, for example, by comparing
their protein structure and expression levels during development. In
this study, I only sampled adult individuals, so I cannot exclude the
possibility that iridophores are present in ball pythons during
embryogenesis and disappear as the animals grow. Indeed, there
are reptiles, like the ocellated and other lizards (Fofonjka and
Milinkovitch, 2021; Jahanbakhsh and Milinkovitch, 2022), whose
skin coloration and pattern changes continuously. This is not the
case though for ball pythons; they maintain the same skin coloration
and pattern throughout their lives. Nevertheless, it is necessary to
investigate the differentiation of their chromatophores during
development. Transcriptomic analyses can help us identify gene
markers of reptilian chromatophores, such that we track them
during embryogenesis. Undoubtedly, gene-editing experiments in
multiple species, as performed in the brown anole (Garcia-Elfring
et al., 2023), would also illuminate how differentiation, maturation,
migration, and survival of different chromatophores—as well as
their interactions—have evolved to produce the remarkable diversity
of colors and patterns in Squamate reptiles.
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