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Adult stem cells play a critical role in maintaining tissue homeostasis and
promoting longevity. The intricate organization and presence of common
markers among adult epithelial stem cells in the intestine, lung, and skin serve
as hallmarks of these cells. The specific location pattern of these cells within their
respective organs highlights the significance of the niche in which they reside.
The extracellular matrix (ECM) not only provides physical support but also acts as
a reservoir for various biochemical and biophysical signals. We will consider
differences in proliferation, repair, and regenerative capacities of the three
epithelia and review how environmental cues emerging from the niche
regulate cell fate. These cues are transduced via mechanosignaling, regulating
gene expression, and bring us to the concept of the fate scaffold. Understanding
both the analogies and discrepancies in the mechanisms that govern stem cell
fate in various organs can offer valuable insights for rejuvenation therapy and
tissue engineering.
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Introduction

The behaviour of nearly all stem cells, regardless of pluripotent or tissue-specific,
embryonic or adult, is driven and regulated by an intricated regulatory pathway of intrinsic
transcriptional programs and extrinsic signals (Watt and Driskell, 2010). These extrinsic
signals predominantly originate from the local microenvironment or niche. It is becoming
increasingly clear that the extracellular matrix (ECM) is a crucial component for stem cells,
and biophysical properties regulate fate decisions over time. For example, it has been shown
in liver regeneration that the replacement of depleted hepatic cells can occur partly through
the proliferation of some mature adult hepatocytes and other hepatic cell types (Li et al.,
2019). In this review, we are interested in organs which display renewal by specific
subpopulations of stem cells. We will describe the different epithelial stem populations,
focusing on the main epithelia that display a differential proliferation rate, namely the Gut,
Lung, and Skin. Subsequently, we will highlight the specialized ECM components that
compose the niche in each model and finally expose the mechanotransduction signaling
effects on stem cell fate in each organ. We will shed light on the common mechanisms used
by niche biophysical attributes to regulate cell fate in all adult epithelia and emphasize this
growing field in the perspective of rejuvenating research.
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Adult epithelial stem cells

Intestinal stem cells

Adult epithelial stem cells in the intestine play a critical function
in sustaining the regenerative ability of this dynamic organ. The
intestine is known as one of the most renewing organ in the body,
replacing its surface every five to 7 days (Meran et al., 2017). This
continuous cell renewal is essential for the epithelium to withstand
the constant challenges it faces during the absorption of nutriments,
and evacuation of waste material.

The intestinal epithelium is composed of two independent
compartments: the proliferative crypts of Lieberkühn and the
long finger-like structures called villi. Those structures are no
longer able to divide (Figure 1A). Intestinal stem cells (ISCs)
belong to the intestinal crypts, and they constantly divide to
maintain the high level of renewal of the intestinal epithelium.
ISCs give rise to either another stem cell for self-renewal or a
progenitor cell that rapidly divides before undergoing terminal
differentiation (Baulies et al., 2020).

Early studies suggested the existence of two independent ISC
populations: the crypt base columnar (CBC) cells and the +4 cells.
Recent discoveries in transcriptomics and lineage-tracing tools have led
to the identification of numerous putative stem cell-specific genes
marking the CBC cells or +4 cells, leading to direct tracing of their
attached progenies. A landmark study in 2007 identified leucine-rich
repeat-containing G protein-coupled receptor 5 (Lgr5) as a genuine ISC
marker specific to CBC cells (Barker et al., 2007). Subsequent studies
proposed alternative ISC markers predominantly enriched at the
+4 cells, including polycomb complex protein Bmi1 (Sangiorgi and
Capecchi, 2008), homeodomain-only protein (Hopx) (Takeda et al.,
2011), andmouse telomerase reverse transcriptase (Tert) (Montgomery
et al., 2011).

In homeostasis, Lgr5+ cells strategy is better for long-term
lineage-tracing than using +4 markers (Barker et al., 2007).
Moreover, the expression of leucine-rich repeats and
immunoglobulin-like domains 1 (Lrig1) has been identified in
both CBC cells and +4 ISCs (Powell et al., 2012; Wong et al.,
2012). Powell et al. suggested Lrig1 as a marker of a distinct class of
label-retaining and slow-cycling cells in the lower crypts.

Lung stem cells

The adult lung is a complex organ consisting of a branched
airway network that includes the trachea, bronchi, bronchioles, and
alveoli (Figure 1B). In mice the alveolar compartment, where the
airways open at the bronchioalveolar duct junctions (BADJs), stays
largely quiescent in the uninjured lung and most cells in this niche
have a moderate turnover. However, the lung displays outstanding
repair capacity under injury, with renewal turnover occurring over
several years. Recent single-cell studies have revealed significant
functional heterogeneity in the respiratory system, emphasizing its
highly adaptive properties (Basil et al., 2020).

To regenerate proper functions, the lung requires distinct
progenitor cell populations, and various small populations of
progenitor cells have been identified in the regeneration of the
distal airway epithelium after injury in mice (Perl et al., 2005;
Bertoncello and McQualter, 2010; Chen et al., 2012; Barkauskas
et al., 2013). A population meeting those criteria is the variant of
club/secretory cells (V-club cells), identified by their location near
neuroendocrine bodies and low expression of cytochrome Cyp2f2.
Upk3a is another marker of the V-club cell population that can
differentiate into club cells and ciliated cells during homeostasis or
after naphthalene airway injury (Giangreco et al., 2008; T
et al., 2011).

Few studies describe additional potential for the V-club/
secretory cells that can differentiate into AT2 cells during
bleomycin-induced injury, revealing their ability to be mobilized
and to migrate more distally in the lung (Zheng et al., 2017). In
addition to AT2 cells, supplemental progenitor cells participate in
alveolar repair after injury in murine model. AT2 cells in adult can
display both self-renewing stem cell-like properties and regenerating
capacity after injury (Barkauskas et al., 2013). Axin2, a
transcriptional target of Wnt signaling, is expressed in a sub part
of the AT2 population displays a predominant role during repair of
the lung alveolus after acute injury (Nabhan et al., 2018; Zacharias
et al., 2018).

Another discrete population progenitor cells have been
characterized at the branching point between distal murine
airways and alveoli, named bronchoalveolar stem cells (BASCs).
BASCs are defined by the expression of the secretory cell marker

FIGURE 1
Schematic representation of adult stem cell location in the three epithelia Gut (A), Lung (B) and Skin (C). Created with Biorender. com, accession
21 December 2023.
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Scgb1a, the AT2 marker Sftpc (Kim et al., 2005), and the stem cell
antigen-1 (Sca1) (Raiser and Kim, 2009). BASCs are able to self-
renew and display multipotent differentiation features into Club,
AT1, and AT2 cells as documented by genetic tracing studies (Liu
et al., 2019; Salwig et al., 2019).

Skin stem cells

The skin serves as the initial and extensive barrier organ in the
mammalian body. It has a resilient and compliant organization that
gives way to adaption to external conditions by quickly fixing
mechanical, chemical, and biological injuries (Watt, 2014). The
skin is composed of different layers, from the deepest to the
most external (Figure 1C): Hypodermis: This is a subcutaneous
layer of fat that supplies nutrients to the upper layers, cushions, and
insulates the body. It is located beneath the dermis. Dermis: The
dermis acts as a scaffold for the epidermis. It is a fibrous layer
primarily composed of extracellular matrix (ECM) but also contains
several cell types, including fibroblasts and immune cells.
Epidermis: The epidermis is the outermost layer and forms the
protective structure of the skin. It is composed of a stratified
epithelium, called the interfollicular epidermis, covered by a layer
of cornified dead cells that protect the entire epithelium, along with
associated appendages such as hair follicles and sebaceous glands.
The maintenance of the epidermis throughout life involves the
proliferation of stem cells and the differentiation of their
progeny. Various epithelial stem cell (SC) populations contribute
to skin homeostasis, and among them, the most characterized is the
Hair Follicle Stem Cells (HFSCs) which is located in the permanent
portion of the hair follicle, ranging from the bulge to the junctional
zone (Schepeler et al., 2014).

In undamaged skin, different cells colonize distinct and limited
areas in the hair follicle. However, after tissue injury, these cells
exhibit the remarkable ability to give rise to all epidermal cells,
including the interfollicular epidermis, which is situated between the
hair follicles and comprises the largest pool of keratinocytes in the
skin. Hair follicle stem cells (HFSCs) are characterized by the
expression of several markers such as integrin α6, CD34, keratins
(K) K15, K19, LIM homeobox 2 (Lhx2), SOX9, leucine-rich repeat-
containing G protein-coupled receptor 5 (Lgr5), leucine-rich repeats
and immunoglobulin-like domains 1 (Lrig1), and Col17A1 (Morris
et al., 2004; Tumbar et al., 2004; Rhee et al., 2006; Jaks et al., 2008;
Nowak et al., 2008; Jensen et al., 2009; Matsumura et al., 2016).

Additionally, leucine-rich repeats and immunoglobulin-like
domains 1 (Lrig1) positive cells, are located in the junctional
zone in the upper isthmus and contribute to all three skin
epithelial lineages in grafting experiments. During growth, bulge
cells give rise to progeny that migrate along the outer root sheath
(ORS), enveloping the hair follicle, and express some markers at the
base of the hair follicle to generate a specialized, highly proliferative
cell population that supports the growth of regenerating follicles
(Blanpain and Fuchs, 2009). This intricate system of stem cells and
their progeny ensures the continuous renewal and repair of the skin
in response to physiological and pathological challenges.

The intricate organization and diversity of markers associated
with adult epithelial stem cells in the intestine, lung, and skin, and
the detailed characterization of these stem cell populations

highlights their specialized roles in maintaining tissue
homeostasis and responding to injuries. The shared markers
between organs suggest common mechanisms in the regulation
of cell fate, and this is an exciting area of research in stem
cell biology.

ECM components

The definite location of these stem cells in their respective
organs, such as the intestinal crypts, distal airways, and hair
follicles, emphasizes the significance of the microenvironment or
niche in which they reside. The extrinsic signals provided by the
local microenvironment play a critical role in regulating the
responses and fate decisions of stem cells.

The ECM provides physical support and, more importantly,
serves as a reservoir for various biochemical and biophysical cues
that can influence stem cell behavior, and is known to play a role in
regulating stem cell fate decisions, including proliferation,
differentiation, and self-renewal. The dynamic interplay between
stem cells and their ECM microenvironment contributes to tissue
homeostasis and regeneration. When examining ECM components
in different organs, the similarity in composition becomes apparent
(Trentesaux et al., 2020), encompassing various types of collagens,
laminins, fibronectin, and several proteoglycans. Numerous studies
have investigated the matrisome of these epithelial tissues, revealing
striking similarities (See Table 1).

The intestinal stem cell niche is characterized by a complex
network of fibrous structural proteins, including proteoglycans
and glycoproteins, that form a scaffold that contributes to the
three-dimensional architecture crucial for cellular homeostasis
(Meran et al., 2017). The apical part of ISCs is exposed to the
intestinal lumen, while their basal part is in direct contact with a
matrix component network, constituting the basement
membrane, and further connected to the ECM and
mesenchymal cells comprising the lamina propria. Collagen
types I, III (fibrillar collagen), IV (network-forming), and VI
are evenly distributed in the healthy intestinal ECM (Followill
and Travis, 1995; Simon-Assmann et al., 1995; Hilska et al., 1998;
Handorf et al., 2015). Notably, there is growing evidence that
collagen type VI, closely interacting with basement membrane
collagen type IV, serves as a key regulator of the mechanical
microenvironment of intestinal crypt cells through fibronectin
and RGD (Arg-Gly-Asp)-dependent interactions with crypt cells
(Groulx et al., 2011; Benoit et al., 2012). Type VI collagen is
secreted by the intestinal crypt cells into the basal lamina of the
intestinal basement membrane (Groulx et al., 2011).
Additionally, intestinal fibronectin, secreted by fibroblasts and
expressed by epithelial cells, is distributed throughout the lamina
propria (Quaroni et al., 1978; Simon-Assmann et al., 1986).
Laminins, a crucial factor for establishing epithelial cell
polarity (Simon-Assmann et al., 1994; Teller and Beaulieu,
2001), play a significant role in enhancing ISC survival and
proliferation. Finally, glycosaminoglycans (GAGs) represent an
important niche for ISC homeostasis.

The lung’s very unique ECM provides structural support for
cells and regulates homeostasis and injury-repair responses
(Burgstaller et al., 2017). The pulmonary ECM changes
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significantly during lung development, forming a progressive
scaffold for the intricate structure of the lung from the trachea to
the alveoli. Distinct ECM components are involved in airway
branching and alveolar septation (Zhou et al., 2018). Airway
branching requires laminins, fibronectin, tenascin, and syndecan,
while alveolar septation involves elastin and tropoelastin,
particularly during the saccular stage when airspace expands. To
comprehensively address this topic, one must consider the entire
matrisome of the adult lung. It has been well described in several
inspiring murine studies (Naba et al., 2012; Schiller et al., 2015;
Mayorca-Guiliani et al., 2017; Zhou et al., 2018). In summary, it
comprises 143 matrisome proteins categorized into two main
categories: The core matrisome proteins (glycoproteins, collagens,
and proteoglycans) and the matrisome-associated proteins
(inclusive of remodeling enzymes and ECM-affiliated proteins).

In more detail, fibrillar collagens, Collagen I and III, are found
around airways and blood vessels. Network-forming Collagen IV is
located at the basement membrane region of airways and alveoli and
around blood vessels (Zhou et al., 2018). The large proteoglycan,
Versican, is observed superficially in the airway epithelium,
interstitial areas, and immune cells within the alveoli (Hewitt
et al., 2023). During early embryonic lung development, all five
laminin α chains are present, but normal adult lung tissue primarily
contains laminin α3, α4, and α5 chains (Miner et al., 1997). Laminins
α1, α2, and α3 are localized in the airway epithelial basement
membrane during early lung development (Zhou et al., 2018).

Over the past 30 years, there has been extensive characterization
of the expression of ECM proteins and their receptors in the skin
(Watt, 2002; Wilhelmsen et al., 2006; Sugawara et al., 2008;
Breitkreutz et al., 2009; Ko and Marinkovich, 2010; Dussoyer
et al., 2022; Li et al., 2022). Recently, the first description of the
skin matrisome in healthy adult mice identified 236 proteins,
including 95 core matrisome proteins and 141 associated
matrisome proteins. Among the 1,112 components described in
the mouse matrisome, 236 were found in the skin of healthy adult
mice, constituting 21% of all matrisome content (http://
matrisomeproject.mit.edu/) (Naba et al., 2012). Roig-Rosello and
others describe that the 95 core matrisome proteins include
30 collagen chains, 53 glycoproteins, and 12 proteoglycans.
Among those core components several collagens such as collagen
I, III, V, VI, XII, and XIV are found in the dermis, and the collagen
IV, VII, XVII, and XVIII in the dermoepidermal junction.
Interestingly, collagen XV and XVI are common to both dermis
and dermoepidermal junction matrisomes (Ricard-Blum, 2011;
Theocharidis and Connelly, 2019; Roig-Rosello and
Rousselle, 2020).

Several laminins, proteoglycans, and ECM regulators are also
present. Specialized studies have highlighted specific ECM niche
components for stem cells, such as Col17A1, Tenascin C,
Nephronectin, and Embiggin (Fujiwara et al., 2011; Hendaoui et al.,
2014; Chen et al., 2015; Matsumura et al., 2016; Sipilä et al., 2022).
However, to integrate these components into a signaling scheme, this
inventory of ECM components should be considered in conjunction
with the pattern of integrin receptor expression. Elevated levels of
integrin expression have long been recognized as a marker of epidermal
stem cells (Jones and Watt, 1993; Jones et al., 1995). The crucial role of
the nephronectin/α8 integrin ligand-receptor pair has highlighted in
Fujiwara H, et al. (Fujiwara et al., 2011). The hair follicle niche,
associated with the arrector pili muscle, displays a distinctive
enrichment in nephronectin, a Wnt target gene. Nephronectin, a
ligand of α8 integrin expressed by bulge stem cells, provides
anchorage to arrector pili muscle progenitors, creating a functional
niche for hair follicle stem cells (Fujiwara et al., 2011). The activity of
stem cells from the hair follicle is highly regulated by ECM components
signaling through theWnt pathway. Both type VI collagen and tenascin
C contribute to hair follicle stem cell function through Wnt signaling
regulation (Hendaoui et al., 2014), illustrating the link between ECM
molecules and signaling pathways through the immobilization of
ligands on ECM. Recently, the expression of the transmembrane
protein Embigin by sebaceous gland (SG) cells revealed a new
ECM-specific pattern that functionalizes a niche. Embigin modulates
ECM organization by binding fibronectin and facilitating basolateral
targeting of monocarboxylate transport. These results underscore the
molecular mechanism coupling adhesion and metabolism regulated by
Embigin (Sipilä et al., 2022).

Mechanosignaling in the three epithelia

The downstream signaling of the ECM, namely
mechanosignaling, has been a subject of investigation and initial
evidence obtained through cultured cells suggests that epidermal
stem cells are regulated by integrin-ECM binding. In a pioneering
study in 1988, Watt, Jordan, and O’Neill (Watt, 1988) utilized
adhesive micropatterns to fix and organize cell geometry, a
biophysical technique still widely used nowadays. Epidermal stem
cells on small micropatterns exhibited a rounded shape, reduced
DNA synthesis, and increased expression of keratinocyte
differentiation genes (Watt, 1988). Conversely, cells on larger
micropatterns maintained a low level of differentiation. This
established a direct link between the adhesion surface of
epidermal stem cells, their shape, and terminal differentiation. It

TABLE 1 Summary of stem cells main markers and ECM components of this compartment.

Stem
cells

Markers Glycoprotein Proteoglycans

Gut Lgr5, Bmi1, mTert,
Hopx,Lrig1

Collagen (I III IV VI) Laminin Fibronectin Tenascin-c Mucin
Epimorphin

Syndecan Versican Decorin Aggrecan lumican
Biglycan Heparate sulfate

Skin Lgr5, CD34, K15, Lrig1,Lhx2,
Sox9, Col17a1

Collagen (I III IV V VII) Elastin Laminin Fibronectin Tenascin-c
Entactine Osteonectin Galectin Nephronectin

Syndecan Versican Decorin Glypican Aggregan

Lung p63, Krt5, CCSP, SPC, Sca-1 Collagen (I III IV V) Elastin Laminin Fibronectin Tenascin-c Nidogen Syndecan Versican Decorin Aggregan Heparate
sulfate
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opened new perspectives, suggesting that cells could sense density,
leading to the concept of regulation of self-renewal and
differentiation by cell size (Watt, 1988).

ECM components form a complex network at the cell surface,
recognized by specialized membrane receptors, called integrins.
Integrins bind extracellular fibrils and interact with actin
microfilaments in the intracellular compartment, providing a
direct link between extracellular and intracellular spaces
(Schwartz, 2010). Each element of the scaffold, from the
cytoskeleton to the integrin-mediated adhesions to the
extracellular matrix, transmits forces that can originate from both
intracellular contractile forces generated by myosin and forces from
outside the cell. These forces activate a wide range of signaling
pathways among them YAP/TAZ (see below). Indeed, focal
adhesion structures transmit the mechanical forces from large
integrin complexes at the plasma membrane to the intracellular
cytoskeleton. (Rausch and Hansen, 2020). The increased stiffness is
transmitted through integrin ß1 and activates FAK, which in turn
activates Src, which subsequently leads to the activation of YAP
(Kim and Gumbiner, 2015; Mason et al., 2019).

Yes-associated protein 1 (YAP1) and WW-domain-containing
transcription regulator 1 (WWTR1; a.k.a. TAZ) are transcriptional
coactivators. Both proteins must interact with DNA-binding factors
to modulate transcription. Specifically, TEAD family members are
major transcriptional enhancer factors for YAP/TAZ (Dupont et al.,
2011). YAP/TAZ activity is characterized by the tightly regulated
balance of nuclear to cytoplasmic ratio of unphosphorylated and
phosphorylated YAP/TAZ leading to lineage fate determination
(Piccolo et al., 2014). YAP/TAZ signaling has been described as
crucial regulators of cell fate commitment from embryonic stem
cells (ESC) to adult stem cells. YAP silencing leads to loss of murine
ESC pluripotency (Tamm et al., 2011). In adult tissues, nuclear YAP
and TAZ are commonly located in enriched area for somatic stem
cells or progenitors, such as the bottom of intestinal crypts and the
basal layer of the epidermis (Schlegelmilch et al., 2011; Barry et al.,
2013; Panciera et al., 2017). In skin, YAP/TAZ induce proliferation
of epidermal stem cells, when high levels of YAP/TAZ activity
promote proliferation and inhibition of differentiation of
intestine stem cells (ISC) (Schlegelmilch et al., 2011; Le Bouteiller
and Jensen, 2015).

In ICS (Houtekamer et al., 2022), β1-integrins have been identified
as important regulators of proliferation and homeostasis by mediating
Hedgehog signaling in a genetic study in mice (Jones et al., 2006).
Additionally, β1-integrins via an integrin-linked kinase (ILK)
-fibronectin-dependent mechanism regulate ISCs fate (Gagné et al.,
2010). An elegant study demonstrated that during intestinal repair, the
epithelium is transiently reprogrammed into a primitive state. This fate
adjustment is driven by ECM remodeling, that leads to an increased
FAK/Src signaling, and ultimately YAP/TAZ activation (Yui
et al., 2018).

In the lung, AT1 cells are required for gas exchange through the
endothelial capillary network, while AT2 cells produce and
reprocess pulmonary surfactant and serve as optional progenitors
that differentiate into AT1 cells (Barkauskas et al., 2013; Zacharias
et al., 2018). The AT1 cell fate is actively regulated by YAP/TAZ, and
their loss leads to a rapid reprogramming of AT1 into AT2 cells. The
presence of nuclear YAP in AT1 and not AT2 cells suggests a specific
responsiveness to Hippo signaling in the AT1 lineage. However,

overexpression of a constitutively active YAP protein in AT2 cells
can lead to increased expression of some AT1 cell markers. Even
though, these cells do not display all traits of this lineage, it does
include a consistently enlarged squamous shape. Penkala et al.
elegantly describe mechanotransduction as a key actor in
AT1 rather than AT2 cells to maintain alveolar function in the
lung (Penkala et al., 2021).

Physical stress, such as stretching, promotes proliferation (Jones
et al., 2006), metabolism of prosurfactant, cellular damage or death
(Arold et al., 2009), and migration (Desai et al., 2008) of AT2 cells.
Alveolar epithelial cells mitotic activity, growth factor production
are regulated by mechanical forces. Physical strain also regulates the
expression of platelet-derived growth factor receptor beta
(PDGFRB) during lung development. AT2 cells cultured with
conditioned media from lung fibroblasts were subjected to
mechanical stretch cycle that leads to increased DNA synthesis
compared to non-mechanically stimulated ones (Noskovičová et al.,
2015). AT2 main function is to produce and secrete pulmonary
surfactant. Cyclic stretch increases secretion of surfactant by
increasing rapidly intracellular calcium levels, thus reinforcing
AT2 specific function (Asmani et al., 2019).

Recently, a new study established that mechanical properties
define AT1 cells in vivo and that the AT1 and AT2 cell fate
transitions are tuned through mechanism involving actin
dynamics and integrin signaling (Shiraishi et al., 2023). AT1 cell
identity is dependent on physical respiratory movement. Using
lamin B1 ChIPSeq, the authors analysed genome organization
under breathing constraints in AT1 and AT2 cells. They
specifically studied Lamina-associated domains (LADs). LADs are
genomic elements of transcriptionally repressed chromatin located
at the nuclear periphery. LADs influence 3D genome architecture by
their association with the nuclear lamina and subsequent
interactions with the multiprotein LInker of Nucleoskeleton and
Cytoskeleton (LINC) complex (Briand and Collas, 2020).
Bioinformatics Ingenuity Pathways Analysis (IPA) revealed that
AT2 LAD genes were enriched for genes linked to actin cytoskeleton
regulation and focal adhesion, thus repressed by spatial
repositioning to the nuclear periphery. Based on this data, a
working model was described where the nuclear-lamina
interactions play a central role in discriminating AT1 and
AT2 cell fate. Overall, the authors clearly demonstrated that
alveolar cell fate is dependent on active breathing movements
(Shiraishi et al., 2023).

Several studies on the skin have described the fundamental role of
mechanosignaling in regulating epidermal fate. Indeed, in the basal
layer of the epidermis, direct interaction with the basement membrane
leads to Integrin/src signaling activation that constitutes the crucial step
in the nuclear translocation of YAP/TAZ (Elbediwy et al., 2016).
Moreover, Sebaceous Glands expand within a compliant
microenvironment during morphogenesis, and changes in physical
properties from the structural surroundings will influence global
tissue homeostasis (Andersen et al., 2019). Quantification and
modeling of tissue physical deformation in the epidermis lead to the
description of this balance regulation through the integration of locally
applied mechanical forces coming from both cell proliferation and
desquamation. This study reveals how singular behaviors are integrated
into a biochemical signaling hub linking proliferation, cell fate and
location to build a stratified epithelium (Miroshnikova et al., 2018).
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Another study demonstrates that the integrin coreceptor and amino
acid transporter SLC3A2 regulate skin homeostasis by controlling the
sphingolipid metabolic pathway, which, in turn, modulates the
perception of integrin stiffness. SLC3A2 increases sphingolipid
availability, thus supporting proper membrane recruitment and
shuttling of upstream RhoA regulators and GEFH1. This intricated
regulation between integrin mechanosensing and cellular metabolism
will give a critical framework that participates to cutaneous mechanical
homeostasis (Boulter et al., 2018).

Among numerous signaling processes that regulate SC fate,
epigenetics has emerged as a crucial feature. Epigenetic
modifications are heritable changes that affect gene expression but
they do not involve changes in the DNA sequence (Goldberg et al.,
2007). They include but are not restricted to DNA methylation and
histone modifications. The landscape defined by those modifications
plays key role in the regulation of stem cell fate (Teschendorff and
Feinberg, 2021). For example, the polycomb PRC2 complex containing
Ezh2 maintains ISC population by promoting proliferation and
repressing lineage differentiation choices (Chiacchiera et al., 2016;
Koppens et al., 2016). Another example in the epidermis, the
polycomb complex including Ezh2 tunes the cell fate choice of
HFSCs (Ezhkova et al., 2009). In the bulge of the hair follicle,
Ezh2 mRNA is downregulated during hair follicle regression,
whereas Ezh1 remains expressed. Intriguingly, a small subset of
genes acquires H3K27me3 marks at the same stage, as shown by
Chip-Seq analysis. Ezh1 and Ezh2 seem to play differential role that
cannot be completely redundant (Lee et al., 2016).

Polycomb complexes maintain the stem cell proliferative
potential and globally repress unwanted differentiation programs
while selectively establishing a specific terminal differentiation
program in a finely tune manner.

Interestingly, mechanotransduction has recently been shown to
influence epigenetic traits by acting directly on nuclear shape or by
directly integrating mechanosensitive signals. (Kalukula et al., 2022).
Several inspiring studies have described the role that ECM stiffness
plays in modulating epigenetics, either through DNAmethylation or
histone modifications in the control of stem cell differentiation
(Song et al., 2020).

In skin, epidermal stem cells express a mechanosensory complex
of emerin (Emd), non-muscle myosin IIA (NMIIA) and actin that
controls gene silencing and chromatin compaction. When subjected
to force, Emd is enriched at a specific site on the outer nuclear
membrane, leading to a lack of heterochromatin anchoring. This
defective anchoring triggers a switch in histone methylation from
H3K9me2,3 to H3K27me3. It also increases actin polymerization,
leading to a lack of nuclear actin which in turn results in an
accumulation of H3K27 me3 marks at specific sites of
heterochromatin. This establishes a link between the biophysical
properties of the niche and the changes in the nucleus, thus
controlling lineage commitment. (Le et al., 2016).

What about aging?

Considering all these studies, it becomes evident that YAP/TAZ-
mediated mechanosignaling is a key regulator of cell fate in adult
epithelia, independent of their intrinsic proliferation status. It should
not be forgotten that mechanosignaling in the epithelium is not limited

to integrin-dependent signals, but also occurs via adherens junction and
desmosomes, which gives an even more sophisticated picture (Rübsam
et al., 2018). This leads to the question ofwhether the source of longevity
could be concealed in the scaffold provided by the specific ECM
composition surrounding resident stem cells. One remarkable
hallmark of aging is the modification of ECM composition, leading
to changes in the biophysical attributes of the niche. It has been
extensively described that aging affects the assembly and stiffness of
the environment. The intestine and intestinal stem cells (ISCs) exhibit
decreased renewal abilities with aging (Martin et al., 1998; Nalapareddy
et al., 2017; 2022; Pentinmikko and Katajisto, 2020). Recent studies in
the field report these decrease capacities and link them to both cell-
autonomous processes (Martin et al., 1998) and non-cell-autonomous
defects, such as the depletion of niche-derived Wnt signals
(Nalapareddy et al., 2022).

Changes in the ECM impact both the lower airway and alveolar
spaces, affecting progenitor cell function. Quantitative and
qualitative changes through age have been documented for some
lung progenitor populations. They display different behavior: Basal
and club cells decrease in number with age, whereas AT2 cells
number remain unchanged but harbor decreased functionality such
as self-renewal and differentiation capacity (Wansleeben et al., 2014;
Ortega-Martínez et al., 2016; Han et al., 2023). Moreover, using
alveolar organoids, it has been shown that isolated AT2 cells from
old mice display a reduced capacity to form alveolar organoids when
compared to young adult mice (Rowbotham et al., 2023). The
combination of both cell-autonomous and non-cell-autonomous
mechanisms powers these age-related phenotypes. In polyploidy,
cells have a mechanism to become larger as DNA content scales with
cell size, which is a purely cell-autonomous mechanism of
progenitor cell dysfunction (Ganem and Pellman, 2007; Selmecki
et al., 2015). In the skin, aging induces a reduced capacity of
epidermal stem cells to maintain hair follicle homeostasis and
wound repair. The proteolysis of Col 17 A1, a main
hemidesmosomal component and stem cell marker, occurs
during aging as a consequence of DNA damage accumulation
over time, leading to hair follicle miniaturization and depletion
of hair follicle stem cells (HFSCs) (Matsumura et al., 2016).
Additionally, altered ECM gene expression has been described
during defects in hair de novo formation following a wound.
Interestingly, aged epidermal stem cells capacity can be restored
if associated to neonatal dermis in functional grafting assays (Ge
et al., 2020; Raja et al., 2022). Furthermore, aged HFSCs display an
extensive reduction in chromatin accessibility. This occurs
specifically at crucial self-renewal and differentiation genes that
are regulated by bivalent promoters. These promoters present
both active and repressive marks (Koester et al., 2021).
Mechanistically, the aged HFSC niche exhibited extensive
changes in ECM components and biophysical properties, leading
to mechanical defects and concomitant transcriptional repression to
shut down promoters (Koester et al., 2021).

If these three epithelia share common features and homeostasis
mechanisms, aging, as a normal physiological challenge, is indeed
included in the common characteristics of the three epithelia. We
apologize to the numerous authors who have largely contributed to this
growing field and whom we omitted to cite. Thanks to all the efforts of
the scientific community, we now have a clearer idea of the implication
of ECM cues during cell fate decisions throughout life. By comparing
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these three epithelia side by side, we see that the apparent discrepancies
in terms of proliferation, repair, and regenerative capacity could be
reconciled by considering the environmental cues received by the cell
from the niche as the heart of the concept of the scaffold of destiny.
Indeed, the ECM scaffold is required to build a tissue dynamic enough
to maintain and react to external challenges, ensuring the maintenance
of a very fit equilibrium. Understanding the commonalities and
discrepancies in the processes that regulate stem cell fate across
different organs can provide valuable insights for regenerative
medicine and tissue engineering. Harnessing the cues provided by
the ECM and deciphering the signaling pathways involved in these
processes could result into novel therapeutic strategies for tissue repair
and regeneration. The interdisciplinary approach, combining cell
biology, molecular biology, and biomechanics, is critical for
unravelling the complexities of stem cell regulation in various tissues.
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