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Mitochondria are key metabolic hubs involved in cellular energy production and
biosynthesis. ATP is generated primarily by glucose and fatty acid oxidation
through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS) in the mitochondria. During OXPHOS there is also production of
reactive oxygen species (ROS), which are involved in the regulation of cellular
function. Mitochondria are also central in the regulating cell survival and death,
particularly in the intrinsic apoptosis pathway. Severe asthma is a heterogeneous
disease driven by various immune mechanisms. Severe eosinophilic asthma
entails a type 2 inflammatory response and peripheral and lung eosinophilia,
associated with severe airflow obstruction, frequent exacerbations and poor
response to treatment. Mitochondrial dysfunction and altered metabolism
have been observed in airway epithelial and smooth muscle cells from
patients with asthma. However, the role of mitochondria in the development
of eosinophilia and eosinophil-mediated inflammation in severe asthma is
unknown. In this review, we discuss the currently limited literature on the role
ofmitochondria in eosinophil function and how it is regulated by asthma-relevant
cytokines, including interleukin (IL)-5 and granulocyte-macrophage colony-
stimulating factor (GM-CSF), as well as by corticosteroid drugs. Moreover, we
summarise the evidence on the role of mitochondria in the regulation of
eosinophils apoptosis and eosinophil extracellular trap formation. Finally, we
discuss the possible role of altered mitochondrial function in eosinophil
dysfunction in severe asthma and suggest possible research avenues in order
to better understand their role in disease pathogenesis, and identify novel
therapeutic targets.
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1 Introduction

1.1 Mitochondrial function and dynamics

Mitochondria are membrane-enclosed organelles that contain their own DNA,
mitochondrial DNA (mtDNA), and generate most of the cell’s energy in the form of
ATP, using glucose, fatty acids and amino acids as energy substrates. Glycolysis, occurring
in the cytoplasm, metabolises glucose into pyruvate that is converted into acetyl-coenzyme
A (CoA). Glycolytic intermediates are also re-directed into fatty acid and amino acid
biosynthesis, and into the pentose phosphate pathway that generates nicotinamide adenine
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dinucleotide phosphate (NADPH) required for antioxidant
protection (Michaeloudes et al., 2020). Acetyl-CoA, also
generated by fatty acid oxidation, feeds into the tricarboxylic acid
cycle (TCA) in the mitochondrial matrix, which produces the
reducing intermediates reduced nicotinamide adenine
dinucleotide (NADH) and reduced flavin adenine dinucleotide
(FADH2) (Michaeloudes et al., 2020). Reducing intermediates
transfer electrons to molecular oxygen through redox reactions,
catalysed by a series of electron-carrying complexes (complex I-IV),
termed the electron transport chain, in a process called oxidative
phosphorylation (OXPHOS), which occurs in the inner
mitochondrial membrane. OXPHOS creates a membrane
potential (ΔΨm) that powers the production of ATP and
generates reactive oxygen species (ROS) (Michaeloudes et al.,
2017). Cellular ROS can also be generated through the activity of
other enzymes, such as NADPH oxidases (NOX) during oxidative
respiratory burst in immune cells (Michaeloudes et al., 2021). ROS
participate in cell signalling and inter-organelle communication,
however, excess amounts of ROS, can cause DNA damage and
activate redox-sensitive inflammatory pathways, resulting in cell
death and inflammation (Prakash et al., 2017). Cristae are folds
within the inner mitochondrial membrane that increase the surface
area of the inner membrane, allowing for greater and faster ATP
production. Their volume and remodelling can directly relate to the
respiratory processes of the cell (Bonjour et al., 2022). Mitochondria
also mediate the intrinsic pathway of apoptosis. Pro-apoptotic
mediators interact with the mitochondria, causing the opening of
the mitochondrial permeability transition pore (MPTP), loss of
mitochondrial membrane potential and release of cytochrome c
and other pro-apoptotic proteins into the cytosol, leading to caspase
activation and cell dismantling (Druilhe et al., 2003). This differs
from extrinsic apoptosis which works through receptor-mediated
pathways, for example, Fas ligand binding to Fas receptor. This
triggers the activation of Fas-associated death domain (FADD),
death-inducing signaling complex (DISC) and caspase-8. The
perforin/granzyme pathway of apoptosis involves the release of
cytoplasmic granules (granzyme A and granzyme B) through the
transmembrane pore perforin. This activates caspase 10 or leads to
the formation of the nucleosome assembly protein SET complex and
DNA degradation. All three pathways of apoptosis lead to the
execution pathway; the final stage of apoptosis initiated by
activation of caspase-3, followed by morphological changes such
as nuclear fragmentation and phosphatidylserine externalization as
a signal for phagocytosis of apoptotic cells. Necrosis can occur in
response to stress stimuli and causes disruption of cellular
membrane and release of cytoplasmic contents (Elmore, 2007).

Cells can adapt to stress and dysfunction through changes in their
metabolism, and coordinated regulation of mitochondrial number and
morphology (Eisner et al., 2018). Mitochondrial biogenesis involves
division of pre-existing mitochondria and is regulated by the
peroxisome proliferator-activated receptor gamma co-activators
(PGC)-1α and β (Ventura-Clapier et al., 2008). Mitochondria can be
found segregated or in networks as a result of fission or fusion,
respectively, mediated by dynamin-related GTPases (Youle and van
der Bliek, 2012). Mitochondrial fusion is mediated by mitofusins 1 and
2 (Mfn1, Mfn2), optic atrophy protein (Opa1), and fission by dynamin-
related protein (Drp 1).Mild stress can inducemitochondrial biogenesis
and fusion, which allows complementation between mitochondria

protecting them from damage. Prolonged or severe stress promotes
segregation of damagedmitochondria through fission, allowing them to
be removed through autophagy (mitophagy) (Michaeloudes et al.,
2017). Activation of glycolysis is important in immune cell
activation and survival under conditions of inflammation and stress,
as it generates intermediates required for the biosynthesis of the
antioxidant glutathione, nucleotides and lipids required for the
production of inflammatory mediators (Michaeloudes et al., 2020).
mtDNA encode the 12S and 16S ribosomal RNA genes and 22 transfer
RNA genes that are needed for the synthesis of mitochondrial proteins
and also encode 13 polypeptides that are essential for components of the
ETC. Genetic changes and polymorphisms in mtDNA including
mitochondrial haplotype U and mitochondrial MELAS A3243G,
have been associated with asthma (Reddy, 2011).

1.2 Severe asthma

Asthma pathology involves chronic inflammation associated
with airway structural changes, termed airway remodelling and
increased mucus production. Airway remodelling involves
increased airway smooth muscle mass and deposition of
extracellular matrix, which lead to airway lumen narrowing and
airflow limitation. Another clinical feature of asthma is airway
hyper-responsiveness, which can lead to exaggerated airway
narrowing in response to environmental irritants (Barnes, 2017).

The asthmatic immune response is heterogeneous and depends on
multiple factors, such as atopic status and environmental exposures. A
large proportion of patients, predominantly atopic, show type
2 inflammation involving a T helper type 2 (Th2) immune
response, eosinophilia and basophil and mast cell activation. This
response is driven by chronic activation and injury of the airway
epithelium by allergens, leading to loss of integrity and release of
damage-associated molecular patterns and cytokines (Raby et al.,
2023). The alarmins IL-25, IL-33 and thymic stromal lymphopoietin
(TSLP) activate dendritic cells, and induce the release of the
Th2 cytokines IL-4, IL-13 and IL-5, and other mediators, by type
2 innate lymphoid cells (ILC2) leading to eosinophil recruitment and
activation (Whetstone et al., 2022). Activated dendritic cells drive T cell
differentiation into Th2 cells, which promote eosinophil infiltration and
activation, and induce B cells to produce IgE. IgE triggers mast cell
degranulation and release of histamine and other mediators promoting
airway smooth muscle contraction (Barnes, 2017). The damaged
epithelium and infiltrating immune cells produce growth factors and
inflammatory mediators that drive airway remodelling, and goblet cell
hyperplasia and increasedmucus production (Raby et al., 2023). On the
other hand, neutrophilic asthma, associated with lung infections, air
pollution and obesity, is driven by a Th1/Th17 immune response (De
Volder et al., 2020).

For most asthma patients, symptoms can be effectively
controlled by inhaled treatment with corticosteroids in
combination with long-acting beta agonists, whilst long-acting
muscarinic antagonists and leukotriene inhibitors maybe added
for the treatment of poorly-controlled patients (Chung et al.,
2022). However, a small proportion of patients, suffering from
severe asthma, cannot control their symptoms using these
medications. These patients have frequent exacerbations, are on a
high-dose of inhaled corticosteroids and frequently use oral
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corticosteroids despite ongoing symptoms (Chung, 2013).
Prolonged use of high doses of inhaled and oral corticosteroids
leads to significant side effects, including increased risk of infections,
dyslipidaemia, hypertension and osteoporosis (Ora et al., 2020).
New more effective therapies for severe asthma are therefore crucial.
Severe asthma is a heterogeneous disease, entailing diverse clinical
phenotypes associated with specific inflammatory and other
molecular phenotypes. Current research efforts aim at using a
systems biology approach to identify molecular mechanisms
driving the different clinical phenotypes in order to define
disease endotypes and design therapies targeted to individual
patients. The Unbiased Biomarkers in Prediction of Respiratory
Disease Outcomes (U-BIOPRED) consortium identified three
molecular phenotypes in severe asthma: T2-high eosinophilic,
and T2-low neutrophilic and paucigranulocytic asthma. The same
study demonstrated that sputum cells from patients with
paucigranulocytic asthma show enrichment for OXPHOS genes
(Kuo et al., 2017). These findings highlight the importance of
understanding the metabolic phenotype of immune cells for
defining severe asthma endotypes.

1.3 Severe eosinophilic asthma

Patients with severe eosinophilic asthma show a type
2 inflammatory response, severe airflow obstruction and frequent
exacerbations, and are dependent on oral corticosteroids. Severe
eosinophilic asthma is defined by an increased number of
eosinophils in the blood (≥300 cells/μL) and/or in the airways
(sputum eosinophil count ≥3%) (Chung et al., 2022).

Eosinophils are the immune system’s defence against parasitic
and helminth infections however, they also act as antigen presenting
cells and play a role in antiviral immunity in the lungs (Akuthota
et al., 2010; Samarasinghe et al., 2017). Nonetheless, lung
eosinophilia promotes pathogenesis of severe asthma and allergic
diseases. Under physiological conditions, eosinophils differentiate
from pluripotent progenitors in the bone marrow and are released in
small numbers into the peripheral blood for a short period (8–18 h)
before they migrate into the tissues, primarily in the gastrointestinal
tract (Rosenberg et al., 2013a). The lifespan of eosinophils in tissues
is thought to be 2–5 days. This is similar to the lifespan of
neutrophils, which is estimated to be 8–20 h in the circulation
and 1–4 days in tissues (Luo and Loison, 2008).
Eosinophilopoiesis is dramatically increased as a result of
Th2 cell responses associated with allergic diseases including
asthma (Rothenberg and Hogan, 2006; Rosenberg et al., 2013a;
Travers and Rothenberg, 2015). This increase in eosinophil
production is driven by a dedicated set of cytokines, namely, IL-
3, IL-5, and granulocyte-macrophage colony-stimulating factor
(GM-CSF) (Rothenberg and Hogan, 2006; Rosenberg et al.,
2013a). IL-5 and IL-3 are produced by Th2 cells, as well as mast
cells and eosinophils themselves. GM-CSF is primarily produced by
T cells, macrophages and epithelial cells (Broughton et al., 2012).
Amongst these, the Th2-associated cytokine IL-5 is the most specific
cytokine for the eosinophil lineage and is responsible for the
expansion of eosinophils from their bone marrow progenitors,
their release into the blood and their survival following migration
into the tissues (Lopez et al., 1988; Rothenberg and Hogan, 2006;

Rosenberg et al., 2013a). Eotaxins (CCL11 and CCL24) are
considered to be important chemokines involved in the
recruitment of eosinophils into the airways while IL-4 and IL-3
are reported to be overexpressed in the airways of severe asthmatics
(Wenzel et al., 2007;Wenzel et al., 2013). Recruitment of eosinophils
from the circulation requires blood eosinophils to become activated,
leading to their attachment to activated endothelium and their
extravasation into the airway wall through the bronchial tissue
and epithelium into the airway lumen (Barthel et al., 2008;
Johansson and Mosher, 2013). Blood eosinophils from subjects
with allergy or asthma have a greater degree of adhesion and
trans-endothelial migration, and greater responsiveness to
chemo-attractants compared to those from normal volunteers
(Håkansson et al., 1997). At the site of injury, eosinophils can
release their cytotoxic granule proteins, a process called
degranulation, as well as cytokines, chemokines and lipid
mediators, such as CCL11, CCL5, CCL3, leukotrienes, and
platelet activating factor (PAF). This causes exacerbation of
inflammation and tissue damage, which is particularly deleterious
when Th2 responses are directed against allergens (Rothenberg and
Hogan, 2006; HOGAN et al., 2008; Rosenberg et al., 2013b). Inhaled
and oral corticosteroids reduce blood and sputum eosinophil
numbers in patients with asthma (Lazarus et al., 2007; Dente
et al., 2010; Lommatzsch et al., 2019; Prazma et al., 2019).

Anti-IL-5 biologic therapy has been developed to treat these
patients, as IL-5 is the primary cytokine involved in eosinophil
survival. Mepolizumab binds to and neutralises IL-5, leading to a
reduction in both blood and airway eosinophil numbers due to the
inhibition of IL-5 mediated cell survival (Chung et al., 2022).
Benralizumab targets the IL-5 receptor alpha (IL-5Rα) on
eosinophils, causing a depletion in eosinophil numbers via
antibody-dependent cell-mediated cytotoxicity (ADCC) (Chung,
2013). Severe eosinophilic asthmatics on anti-IL-5 biologic
therapy have shown an improvement in asthma symptoms, with
a reduction in the number of exacerbations (Chung et al., 2022;
Chung, 2013). Nonetheless, some patients do not adequately
respond to biologic therapies, therefore, it is important to
identify new therapeutic targets for reducing eosinophilia in
severe asthma patients.

1.4 Mitochondrial dysfunction and asthma

Altered mitochondrial function and cellular metabolism have
been identified in asthma, where they may contribute to disease
pathology. Studies using animal models of allergen-induced lung
inflammation have shown that mitochondrial dysfunction,
involving altered mitochondrial ROS production, morphology
and mitophagy, may drive asthma pathology (Zhang et al., 2020;
Bruno et al., 2021). However, there is limited evidence on
mitochondrial function in immune or structural cells from
patients with asthma. Peripheral blood mononuclear cells from
severe asthmatics show increased OXPHOS and cellular ROS in
comparison to healthy volunteers (Ederlé et al., 2019). Airway
smooth muscle cells from patients with asthma show augmented
mitochondrial fission associated with increased Drp1 and decreased
Mfn2 expression (Aravamudan et al., 2014). Furthermore, airway
smooth muscle cell hyperplasia in severe asthma is driven by
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augmented OXPHOS, resulting from mitochondrial biogenesis and
a switch towards using fatty acids as a metabolic substrate (Trian
et al., 2007a; Esteves et al., 2021). Increased OXPHOS, driven by
increased arginine metabolism, has also been identified in airway
epithelial cells, where it has a protective effect (Xu et al., 2016a). The
increased mitochondrial metabolism observed in asthmatic airways
may be a result of an adaptive response to cellular damage caused by
oxidative stress and inflammation. Indeed, studies in allergic asthma
mice models show oxidative damage of mitochondria in the
bronchial epithelium (Mabalirajan et al., 2008).

Mitochondria play a central role in the regulation of eosinophil
apoptosis, as IL-5 and GM-CSF promote eosinophil survival by
inhibiting the mitochondrial (intrinsic) pathway of apoptosis (Kikly
et al., 2000). IL-5 and GM-CSF also increase mitochondrial and
glycolytic respiration of eosinophils in atopic and non-atopic
subjects (Bao et al., 2014). However, the role of glycolysis and
mitochondrial metabolism in eosinophil survival and activation
in severe asthma is currently unclear.

In this review, we aim to summarise the limited literature
currently available on eosinophil mitochondria, particularly their
structure and dynamics, role in apoptosis and cellular metabolism
and how this facilitates their cellular function. We will then discuss
the possible implications this may have in severe eosinophilic
asthma, as the role of eosinophil mitochondrial function has not
yet been explored in this disease.

2 Regulation of mitochondrial structure
and function in eosinophils

Human eosinophils contain a small number of mitochondria,
approximately 24–36 per cells, compared to other cell types such as
lung fibroblasts and macrophages, reported to contain approx.
300 and 700 mitochondria per cell, respectively (Robin and Wong,
1988; Peachman et al., 2001). On the other hand, eosinophils have
more mitochondria and a higher mitochondrial respiration rate
compared to neutrophils, reported to have only five to six
mitochondria per cell (Peachman et al., 2001). They also show
a more sustained upregulation of OXPHOS in response to phorbol
myristate stimulation, suggesting a greater ability to adapt their
metabolic activity to extracellular stimuli. The glycolytic activity of
eosinophils, on the other hand, is similar to that of neutrophils,
despite neutrophils having more glycogen stores (Porter
et al., 2018).

Mitochondrial dynamics and respiration in eosinophils are
regulated during their differentiation and in response to their
microenvironment. A study in bone marrow-derived eosinophils
demonstrated that during eosinophil maturation there is a marked
reduction in mitochondrial number and size, which could be due to
removal of mitochondria by mitophagy. Furthermore, mature
eosinophils exhibited fewer inter-mitochondrial, mitochondria-
secretory granules and mitochondrial-ER contacts (Bonjour
et al., 2022).

Studies in allergen-induced mouse models of asthma have
identified different subtypes of eosinophils, namely, resident
eosinophils and recruited inflammatory eosinophils (Mesnil et al.,
2016; Wiese et al., 2023). A recent study characterised the metabolic
profile of these eosinophil subsets and found that inflammatory

eosinophils relied more on glycolytic respiration, whereas resident
eosinophils were more dependent on OXPHOS and had higher
number of mitochondria (Andreev et al., 2021). Increased glycolysis
in inflammatory eosinophils may support the demands of activated
eosinophils for the biosynthesis of inflammatory lipid and protein
mediators, and for maintaining redox balance. On the other hand,
predominance of OXPHOS for energy production may provide the
energy required for the sustained survival of resident eosinophils.

A study by Jones et al demonstrated that IL-5 and GM-CSF
induce glycolysis, OXPHOS and TCA cycle activity in blood
eosinophils from both atopic and non-atopic subjects. IL-5-
induced OXPHOS and glycolysis in eosinophils is signal
transducer and activator of transcription 5 (STAT5) and
phosphoinositide 3-kinase (PI3K)/Akt-dependent, with
STAT5 and PI3K driving both OXPHOS and glycolysis, whilst
Akt contributing only to glycolytic activation. NOX-derived ROS
also promotes increased OXPHOS, and TCA cycle activity that
provides intermediates for amino acid synthesis. These findings
suggest a mechanism of coupling eosinophil activation and
degranulation with ATP production and macromolecule
biosynthesis (Jones et al., 2020). Apart from its bioenergetic role,
ATP has been also shown to promote neutrophil degranulation and
phagocytosis through activation of purinergic signalling, a
mechanism that may also be important in eosinophils Figure 1
(Bao et al., 2014). The effect of lung inflammation on eosinophil
mitochondrial dynamics has also been shown using an allergen-
induced mouse model of asthma. Bone marrow-derived eosinophils
from these mice showed an increase in the number and volume of
mitochondrial cristae, as well as an altered cristae structure
Mitochondrial cristae show remodelling into a mix of lamellar
structures (parallel linear shapes) and tubular structures (small
circular shapes), whereas lamellar only structures of cristae were
found in eosinophils from controls. Increased mixed cristae were
also seen in mature eosinophils in comparison to immature
eosinophils (Bonjour et al., 2022). These changes in mitochondria
structure may facilitate the increased OXPHOS activity observed in
eosinophils in response to inflammatory stimulation.

Lymphoid tissue eosinophils from an allergic asthma mouse
model showed a reduction in mitochondrial respiration and
glycolysis in response to influenza A virus, compared to
uninfected cells (LeMessurier et al., 2020). This report is in line
with findings by Bonjour et al. (2022) showing that eosinophils
infected with H1N1 influenza virus had reduced mitochondrial area,
cristae number and volume and mitochondria-to-mitochondria
interactions compared to uninfected cells. In contrast, lung
epithelial cells from chickens infected with H6N2 influenza virus
show upregulation of OXPHOS-related genes and increased
mitochondrial respiration. Furthermore, increased mitochondrial
respiration in chicken lung epithelial cells was shown to facilitate
influenza virus replication (Meyer et al., 2017). The attenuated
mitochondrial respiration in eosinophils following viral infection
may, therefore, be a mechanism for preventing viral replication and
allowing them to exert their anti-viral function.

The OXPHOS and glycolytic activity of blood eosinophils was
shown not to be different in atopic, compared to non-atopic,
subjects (Jones et al., 2020). However, it is currently unknown
whether eosinophils from patients with asthma, and particularly
severe asthma, show altered mitochondrial function.
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3 Role of mitochondria in
eosinophil apoptosis

Under normal conditions circulating eosinophils have a short
life-span undergoing spontaneous apoptosis within a few days,
which can be accelerated or inhibited by inflammatory mediators
and pharmacological agents (Walsh, 2013). Homeostatic eosinophil
apoptosis occurs via the extrinsic pathway that involves activation of
receptors, such as the Fas/CD95 death receptor or via the
mitochondrion-dependent (intrinsic) pathway. However, intrinsic

apoptosis can be induced by cellular stress, such as oxidative stress,
calcium overload or DNA damage and is facilitated by the Bcl-2
proteins. This involves inactivation of anti-apoptotic Bcl-2 proteins,
including Bcl-2, Bcl-xL and Mcl-1L and the translocation and
oligomerization of pro-apoptotic proteins, such as Bax and Bid,
within the mitochondrial membrane. These proteins form pores in
the mitochondrial membrane leading to mitochondrial membrane
permeabilization, loss ofΔΨmand release of cytochrome c and other
pro-apoptotic proteins into the cytosol (Ilmarinen et al., 2014).
Opening of the MPTP in response to calcium overload or ROS also

FIGURE 1
Role of mitochondria in eosinophil function. (A) Eosinophils contain a small number of mitochondria, whose activity is regulated by extracellular
factors, such as pro-inflammatory cytokines, reactive oxygen species (ROS) and corticosteroid drugs. (B)Mitochondria are key sites of energy production
and biosynthesis. Acetyl-coenzyme A (Acetyl-CoA) generated by glycolysis and fatty acid oxidation (FAO) enters the tricarboxylic acid (TCA) cycle, which
generates the reducing intermediates reduced nicotinamide adenine dinucleotide (NADH) and reduced flavin adenine dinucleotide (FADH2).
Electrons (e−) from the reducing intermediates are transferred to molecular oxygen through a series of electron-carrying protein complexes (complex
I-IV), termed the electron transport chain. The movement of electrons generates energy, which facilitates the movement of protons into the
intermembrane space leading to the development of a membrane potential (ΔΨm) across the inner membrane. ΔΨmdrives the re-entry of protons back
into themitochondrial matrix through the ATP synthase complex driving the phosphorylation of ADP to ATP. Electron leakage duringOXPHOS can lead to
generation of mitochondrial ROS. Glycolytic and TCA cycle intermediates, and acetyl-CoA, are used as precursors for fatty acid and amino acid synthesis.
Increased glycolytic, TCA cycle and OXPHOS activity in response to inflammatory cytokine stimulation may therefore support eosinophil survival and
activation by providing biosynthetic intermediates and energy. (C)Mitochondria are central in the intrinsic apoptosis pathway, which is induced by cellular
stress. Intrinsic apoptosis entails the mitochondrial translocation and oligomerization of Bcl-2 pro-apoptotic proteins, such as Bax, which form pores in
the mitochondrial membrane leading to the release of pro-apoptotic factors, including cytochrome c, inducing the formation of the protein complex
apoptosome. The apoptosome triggers the activation of the initiator caspase 9 and subsequently of the effector caspases 3, 6 and 7 promoting apoptosis.
Corticosteroids trigger mitochondrial-dependent eosinophil apoptosis, which is inhibited by cytokines, such as interleukin (IL)-5 and granulocyte
macrophage colony-stimulating factor (GM-CSF). (D)Mitochondria may contribute to the formation of eosinophil extracellular traps, which facilitate the
capture and killing of bacteria. Extracellular traps are composed of DNA and granule proteins and are released by either live eosinophils or during cell
death. Extracellular traps produced by live eosinophils have been shown to contain mitochondrial DNA (mtDNA); however other studies show that the
DNA is solely of nuclear origin. Figure created using Biorender.com.
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triggers mitochondrial membrane permeabilization (Gardai et al.,
2003; Ilmarinen-Salo et al., 2012). Cytochrome c drives the
formation of the apoptosome, a protein complex that activates
the initiator caspase 9, which in turn induces effector caspases 3,
6 and 7 leading to apoptosis Figure 1 (Ilmarinen et al., 2014).
Activation and mitochondrial translocation of Bid has also been
observed in Fas ligand-induced eosinophil apoptosis, enhancing the
suggestion that mitochondria also play a role in extrinsic apoptosis
(Segal et al., 2007). Apoptosis ensures that the cell membrane
remains intact, preventing the release of immunogenic and
cytotoxic mediators that may induce inflammation. Apoptotic
bodies are subsequently cleared by phagocytosis (Alessandri
et al., 2011; Walsh, 2013). Natural Killer (NK) cells can also
induce apoptosis and clearance of eosinophils through cell-
mediated cytotoxicity. This process is partially inhibited in the
presence of the electron transport chain inhibitors rotenone and
antimycin, suggesting that mitochondrial respiration and mtROS
play a role in this process (Awad et al., 2014).

There is evidence of impaired apoptosis in blood eosinophils
from patients with asthma, which may contribute to lung
eosinophilia. This may, at least partly, be due to the effect of
pro-survival cytokines, including IL-3, IL-5 and GM-CSF, which
inhibit apoptosis and prolong eosinophil survival (Kankaanranta
et al., 2000). In contrast, neutrophil survival is only induced by GM-
CSF, but not by IL-3 and IL-5 (Didichenko et al., 2008).

4 Inhibition of mitochondrial-induced
eosinophil apoptosis by pro-
survival cytokines

The IL-5, GM-CSF and IL-3 receptors belong to the type I
cytokine receptor family and entail a cytokine-specific α-chain, and
a β-chain that mediates signal transduction and is common for all
three cytokines (Geijsen et al., 2001). Upon ligand binding, the
receptor β-chain dimerizes and leads to activation of the protein
tyrosine kinases Janus activated kinase 2 (Jak2) and Lyn, which in
turn induce the transcription factors signal transducer and activator
of transcription (STATs), and the Ras–mitogen-activated protein
kinase (MAPK) pathway. These pathways mediate the pro-survival
effects of these cytokines on eosinophils (Park and Bochner, 2010).

IL-5-mediated activation of the Jak-STAT cascade leads to
inhibition of the intrinsic pathway of apoptosis in eosinophils by
preventing the translocation of the Bax protein to the mitochondria.
This effect may be mediated by upregulation of the anti-apoptotic
protein Bcl-xL (Dibbert et al., 1998; Dewson et al., 2001).
Furthermore, IL-5 and GM-CSF-dependent activation of the
MAKP Erk1/2 leads to phosphorylation of Bax on threonine
residues, facilitating its binding to the peptidyl-prolyl isomerase
Pin1. Pin1 inhibits apoptosis by constraining Bax in an inactive form
and prevents the exposure of its N-terminal activation domain,
leading to inhibition of its activation and mitochondrial
translocation (Shen et al., 2009).

Regulation of cell death may also depend upon the activation
state of eosinophils. Sialic acid-binding immunoglobulin-like lectin
(Siglec)-8 is a glycan cell surface receptor expressed on human mast
cells, basophils and eosinophils (Kikly et al., 2000). Cross-linking
Siglec-8 with monoclonal antibodies has been shown to induce

eosinophil apoptosis, and to decrease eosinophilic inflammation and
airway remodelling in allergen-exposed mice (Nutku et al., 2003;
Song et al., 2009). Intriguingly, IL-5- or GM-CSF-primed
eosinophils have been shown to be more sensitive to Siglec-8-
induced apoptosis (Nutku et al., 2003). A subsequent study
reported that cross-linking with an anti-Siglec-8 antibody
induced predominantly apoptosis in IL-5-naïve, and necrosis in
IL-5-primed, eosinophils. This may be caused by Siglec-8 antibody-
induced ROS augmenting and prolonging the activation of Erk1/
2 by IL-5 (Kano et al., 2013). These findings suggest that activated
eosinophils may be undergoing necrosis, a more immunogenic cell
death, compared to resting eosinophils that undergo apoptosis.

5 Corticosteroid-induced
eosinophil apoptosis

Corticosteroids, such as dexamethasone, induce the
mitochondrial pathway of apoptosis in eosinophils, which
contributes to the resolution of airway inflammation (Ora et al.,
2020). The effects of corticosteroids on cell function are exerted via
the glucocorticoid receptor (GR). Following corticosteroid binding,
GR dimerizes and translocates to the nucleus where it binds to
glucocorticoid-responsive elements on promoters of genes, such as
the anti-inflammatory mitogen-activated protein kinase
phosphatase-1 (MKP-1), leading to their transactivation. GR can
also bind to negative GREs on gene promoters inhibiting gene
expression, a process termed direct trans-repression.
Alternatively, interaction of GR with pro-inflammatory
transcription factors, such as NF-κB and activating protein (AP)-
1, leads to indirect trans-repression, which mediates most of the
anti-inflammatory effects of corticosteroids (Milara et al., 2023).
Dexamethasone was shown to promote apoptosis of eosinophils
from atopic subjects in a concentration-dependent manner, by
triggering an early ROS-dependent activation of the MAPK c-Jun
NH2-terminal kinase (Jnk) leading to increased mitochondrial
translocation of Bax. Bid cleavage and subsequent mitochondrial
translocation was also shown to mediate dexamethasone-induced
apoptosis in peripheral eosinophils from healthy subjects and in
eosinophils in bronchoalveolar lavage from allergen-exposed mice
(Segal et al., 2007; Maret et al., 2009). Dexamethasone also reduces
the expression of the anti-apoptotic X-linked inhibitor of apoptosis
protein (XIAP) the mitochondrial antioxidant manganese
superoxide dismutase (MnSOD), augmenting mitochondrial ROS
generation and loss of ΔΨm, and leads to prolonged Jnk activation
(Gardai et al., 2003). Enhanced degradation of the anti-apoptotic
protein Mcl-1L has also been shown to contribute to
dexamethasone-induced eosinophil apoptosis. In contrast,
corticosteroids delay neutrophil apoptosis by stabilising the
expression of Mcl-1L protein (Sivertson et al., 2007). GM-CSF
was shown to inhibit dexamethasone-induced apoptosis of
eosinophils from atopic subjects, by attenuating Bax activation
and mitochondrial translocation, and by preventing XIAP
inhibition and prolonged Jnk activation (Gardai et al., 2003).
Dexamethasone and IL-5 synergistically upregulate the expression
of the transcription factor Nuclear Factor IL-3 (NFIL3), leading to
attenuated apoptosis of peripheral eosinophils from healthy subjects
(Pazdrak et al., 2016). It is suggested that severe asthmatics that are
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resistant to corticosteroid-induced eosinophil apoptosis, most likely
have an increased production of IL-5 and GM-CSF in the
circulation, which promotes the survival of eosinophils and
inhibits the suppressive action of corticosteroids (Gardai
et al., 2003).

6 Eosinophil extracellular traps

Eosinophils release eosinophil extracellular traps (EETs) which
are composed of DNA and granule proteins such as eosinophil
cationic protein (ECP) and major basic protein (MBP). EETs can be
released by either live eosinophils or eosinophils undergoing cell
death, possibly depending on the stimuli available in the
extracellular environment (Yousefi et al., 2008; Morshed et al.,
2012; Ueki et al., 2013). Cell death-associated EET formation
involves chromatin disassembly and cell membrane lysis, leading
to the release of DNA, histones and granule proteins (Ueki et al.,
2013). In EETs released by live cells, DNA has been shown to be of
mitochondrial origin based on the absence of histone proteins and
the expression of mitochondrial DNA genes Figure 1 (Yousefi et al.,
2008; Silveira et al., 2019). However, this is disputed due to the small
number of mitochondria in eosinophils and the high energy
required for release of mtDNA (Mukherjee et al., 2018).

EETs can form networks to capture and kill bacteria, as part of
their antibacterial mechanism, but can also cause tissue damage and
amplify inflammation under pathogenic conditions (Yousefi et al.,
2008; Yousefi et al., 2012). Airway biopsies from patients with mild
asthma have shown evidence of increased EET formation, which was
not further enhanced by exposure of subjects to allergen (Dworski
et al., 2011). A greater proportion of EET-positive eosinophils was
observed in the peripheral blood of severe asthma patients,
compared to non-severe asthma patients and healthy subjects
(Choi et al., 2020). Moreover, peripheral eosinophils from severe
asthma patients showed greater EET formation in response to IL-5
or lipopolysaccharide (LPS) stimulation (Choi et al., 2018).
Intranasal exposure of mice with EETs showed increased airway
inflammation, epithelial thickening and increased the expression of
the epithelial-derived cytokines IL-33 and thymic stromal
lymphopoietin (TSLP), which activate type 2 innate lymphoid
(ILC2) cells to produce Th2 cytokines (Choi et al., 2020). EETs
were also shown to act in an autocrine fashion to induce eosinophil
degranulation, and to promote loss of airway epithelial barrier
function (Choi et al., 2018).

Release of EETs from live cells requires cell adhesion and
priming by inflammatory mediators, including IL-5, IFN-γ,
eotaxin and thymic stromal lymphopoietin (TSLP) (Yousefi et al.,
2008; Morshed et al., 2012). EET formation occurs at a slower rate
than degranulation, with maximal levels of mtDNA being reached at
30–60 min, whereas release of eosinophil peroxidase occurs within
1 minute in IL-5 and GM-CSF-primed mouse and human
eosinophils stimulated with complement factor 5a (C5a) (Germic
et al., 2021). NADPH oxidase (Nox)-mediated ROS is required for
the formation of EETs containing mtDNA, as the Nox inhibitor
diphenyleneiodonium (DPI) has been shown to inhibit their release
from C5a- or TSLP-stimulated blood eosinophils of healthy subjects
(Yousefi et al., 2008; Morshed et al., 2012). In line with these
findings, ROS-deficient eosinophils from chronic granulomatous

patients were unable to form EETs, after priming with IL-5 or IFN-γ
and stimulating with LPS (Yousefi et al., 2008). ROS-dependent
EETs formation was also observed in airway eosinophils from a
mouse model of allergen-induced airway inflammation (Silveira
et al., 2019).

The role of mitochondria in EET formation is incompletely
understood. mtDNA has pro-inflammatory effects by activating
Toll-like receptor 9 (TLR 9), the NOD-like receptor family, pyrin
domain containing 3 (NLRP3) inflammasome, and the stimulator of
interferon genes (STING) pathway (Wu et al., 2019; Liu et al., 2021;
Dimasuay et al., 2023). In neutrophils from patients with systemic
lupus erythromatosus mitochondrial ROS oxidise mtDNA, leading
to the formation of extracellular traps containing oxidised mtDNA.
Oxidised mtDNA promotes a stronger inflammatory response, than
non-oxidised mtDNA, amplifying the immune response (Lood et al.,
2016). The relative contribution of Nox- and mitochondrial-derived
ROS in extracellular trap formation is unclear; however,
mitochondria may be a source of ROS in situations where Nox
activity is reduced. Understanding the mechanisms underlying EET
formation and the role of mitochondria in this could be important
for identification of new therapeutic targets.

7 Research outlook

Altered mitochondrial function has been reported in asthma.
Specifically, airway smooth muscle cells and epithelial cells from
patients with asthma show increased mitochondrial biogenesis and
respiration, which may drive abnormal cellular phenotype (Trian
et al., 2007b; Xu et al., 2016b; Esteves et al., 2021). Mitochondria play
a key role in eosinophil function, particularly in their survival and
EET formation Figure 1 (Yousefi et al., 2012; Ilmarinen et al., 2014).
Therefore, dysregulated mitochondrial function may also contribute
to eosinophilia and airway dysfunction in severe asthma. However,
there are currently no published studies on mitochondrial function
in eosinophils from patients with severe asthma.

Our ongoing studies show that eosinophils isolated from severe
eosinophilic asthma patients show an inherently different metabolic
phenotype, involving increased mitochondrial respiration and
glycolytic activity (Koranteng et al., 2023). Increased metabolic
respiration may be a result of changes in mitochondrial number
or morphology, usage of metabolic substrates or altered metabolic
pathway activity. Changes in mitochondrial and metabolic gene
expression, possibly due to epigenetic changes, may underlie the
metabolic reprogramming observed in severe asthma eosinophils.
IL-5 and GM-CSF can also promote a similar phenotype of
increased mitochondrial respiration and glycolysis in healthy
eosinophils (Jones et al., 2020). Furthermore, oxidative stress
promotes metabolic re-programming of immune cells, whilst
corticosteroids are also known to regulate mitochondrial gene
expression and function (Garcia et al., 2003; Previte et al., 2017).
Therefore, it is possible that prolonged exposure to high levels of
inflammatory mediators, ROS and/or to drugs (particularly
corticosteroids) in vivo may shape the metabolic activity of severe
asthma eosinophils.

Increased survival, as well as a greater capacity for adhesion and
trans-endothelial migration of blood eosinophils, contribute to
airway eosinophilia in severe asthma. Eosinophils promote airway
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pathology by inducing epithelial injury and amplifying
inflammation through the release of cytokines and chemokines
(Rothenberg and Hogan, 2006; HOGAN et al., 2008; Rosenberg
et al., 2013b). Mitochondrial function plays a key role in eosinophil
survival. Mitochondria are the main source of ATP required for
energy-demanding processes such as migration and mediator
secretion, whilst ROS are also important in inflammatory
mediator production through activation of redox-sensitive
signalling pathways (Michaeloudes et al., 2021). Glycolysis
generates intermediates for antioxidant protection and
macromolecule synthesis required for survival, and lipids needed
for production of inflammatory mediators (Michaeloudes et al.,
2020). Gene expression can also be affected by metabolic
reprogramming through changes in metabolites that act as
substrates for epigenetic modifications (Michaeloudes et al.,
2020). Transmigration, in severe asthma, exposes the eosinophil
to a more hypoxic and nutrient-poor environment. Therefore,
eosinophils may undergo metabolic reprogramming in order to
adapt and survive in lung parenchyma. To this end studies need to
determine whether lung eosinophils show a different metabolic
phenotype compared to blood eosinophils. This may lead to a
better understanding of the adaptation mechanisms eosinophils
use to survive in lung tissue and highlight potential targets for
reducing the number of lung eosinophils.

Molecular phenotyping of severe asthma patients has been
invaluable in developing novel targeted therapies and is the key to
personalised medicine. A greater understanding of the role and
mechanisms by which eosinophils can drive this very common
endotype of asthma, focusing on aspects of metabolic function will
provide a step-change in our understanding of how an altered
metabolic phenotype in eosinophils contributes to their persistence
in disease by altering the temporal activation of apoptosis and will
determine the preference for the source of fuel (glucose, fatty acids or
nucleotides) used to generate ATP under basal and stressor
conditions. This research will be facilitated by the rapid
development of metabolomics technology, and the availability of a
wide range of tools for studying different aspects of mitochondrial
function, including biogenesis, morphology, ΔΨm, and ROS

production. A crucial tool for mitochondrial studies in eosinophils
is the Seahorse XF Analyzer, which allows the real-time analysis of
OXPHOS activity, glycolysis and metabolic substrate preference.

Identification of the metabolic pathways driving abnormal
eosinophil function, can be exploited to develop novel drug
therapies targeting glycolytic and mitochondrial dysfunction and
airway inflammation in severe asthma.
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