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The connection and causality between cancer and neurodevelopmental
disorders have been puzzling. How can the same cellular pathways, proteins,
andmutations lead to pathologies with vastly different clinical presentations? And
why do individuals with neurodevelopmental disorders, such as autism and
schizophrenia, face higher chances of cancer emerging throughout their
lifetime? Our broad review emphasizes the multi-scale aspect of this type of
reasoning. As these examples demonstrate, rather than focusing on a specific
organ system or disease, we aim at the new understanding that can be gained.
Within this framework, our review calls attention to computational strategies
which can be powerful in discovering connections, causalities, predicting clinical
outcomes, and are vital for drug discovery. Thus, rather than centering on the
clinical features, we draw on the rapidly increasing data on the molecular level,
including mutations, isoforms, three-dimensional structures, and expression
levels of the respective disease-associated genes. Their integrated analysis,
together with chromatin states, can delineate how, despite being connected,
neurodevelopmental disorders and cancer differ, and how the same mutations
can lead to different clinical symptoms. Here, we seek to uncover the emerging
connection between cancer, including pediatric tumors, and
neurodevelopmental disorders, and the tantalizing questions that this
connection raises.
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1 Introduction: background and premise

The association between neurodevelopmental disorders (NDDs) and certain types of
cancers has been implicated in several epidemiological studies. Compared to age- and sex-
matched individuals in the general population, patients with schizophrenia have a roughly 50%
higher risk of dying from cancer (Nordentoft et al., 2021), with seven quantitative studies of
1,162,971 participants yielding mortality risk from breast, colon, lung, and prostate cancer (Ni
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et al., 2019). Individuals with bipolar disorder and their unaffected
siblings under 50 years of age had a higher chance of developing breast
cancer than those in the control group. The correlation between bipolar
disorder and the younger population’s susceptibility to bipolar disorder
and higher cancer risk could indicate a genetic overlap in the
pathophysiology of neurodevelopment (McGinty et al., 2012; Peng
et al., 2021; Chen et al., 2022). When comorbid intellectual disability
and/or birth defects are present, those with autism spectrum disorders
are more likely than those without autism spectrum disorders to have
cancer in their early years. After controlling for characteristics such as
sex, birth year, parental age, etc., the link persisted and was not expected
to be caused by other confounding variables (Liu et al., 2022). The
relationships between bipolar disorder, autism, and schizophrenia and
malignancies of the breast, colon, thyroid, and lung are summarized in
Figure 1A; if a particular NDD has been linked to a greater cancer
incidence in a tissue, we link them together with a line.

Epidemiological cohort studies opened the quest for the
molecular mechanisms underlying NDDs and cancer -
pathologies with distinct clinical presentations. Subsequent
findings have suggested a cellular and organismal relationship
between these pathologies. The Ras network impacts both diseases
by aberrant regulation of the cell cycle (Nussinov et al., 2022b;
Nussinov et al., 2023c). Two major mitogen-stimulated signaling
pathways feed into the cell cycle (MacCorkle and Tan, 2005; Foijer
and Te Riele, 2006; Sever and Brugge, 2015; Yang et al., 2017; Min
et al., 2020). The first is MAPK, which controls cell division and is
the major pathway in cell proliferation (Guo et al., 2020). The
second is PI3K/AKT/PDK1/mTOR, the primary pathway in cell
growth, thus differentiation (Saltzman, 2004; Li and Kirschner,
2014; Ruijtenberg and van den Heuvel, 2016). Proliferation and
differentiation are vital to both cancer and NDDs. The fact that the
same proteins in these pathways, and even the same mutated
residues are involved (Marmion et al., 2023), raises compelling
questions, including (i) why the phenotypic presentations are
vastly different, and (ii) how we can develop a strategy to
identify and predict NDD-related mutations and distinguish
them from those related to cancer even though the same
residue is mutated. If we are able to develop such a strategy, it
may help in early NDD diagnosis. Epidemiologic surveys for
multiple NDDs unearthed a clinically intriguing and abysmal
connection: individuals afflicted with NDDs may face higher
probabilities of developing cancer later in life (Nordentoft
et al., 2021; Liu et al., 2022). We believe that addressing the
link between these two pathologies will contribute to deciphering
the underlying molecular mechanisms, treatment and
preventive care.

Our premise is that the differences between cancer and NDDs
are largely the outcome of the perturbation of signaling levels, which
depend on (i) gene expression, which in turn, depends on cell type
and state, and timing window (e.g., embryonic developmental stages
or throughout life); (ii) homeostatic mechanisms that can block or
enhance the signal; (iii) the strength of the activating mutation; (iv)
the types and locations of additional mutations, and (v) the
expression levels of specific isoforms of genes and regulators of
proteins in the pathway. Expression levels indicate the role of
chromatin structure. The sparseness of data makes single cell
transcriptomics challenging, and structural networks may not be
able to distinguish between isoforms whose sequences (and

structures) are highly similar yet have different functions
(Nussinov et al., 2022b; Nussinov et al., 2023c).

As to why the epidemiological connection, we reason that one
possible clue is the established cancer statistics: A single mutation is
insufficient to elicit cancer, although exactly how many mutations
are required for cancer to emerge has been a debated question
(Tomlinson et al., 2002; Tomasetti et al., 2015; Martincorena et al.,
2017; Liu et al., 2023). Going back to the question we posed above,
why then individuals with neurodevelopmental disorders, such as
autism and schizophrenia, may face higher chances of cancer
emerging throughout their lifetime? NDDs frequently involve
germline mutations inherited from a parent who may not show
the related phenotype. Activating mutations emerging during life
can couple with the pre-existing germline mutations, strengthening
the proliferative signaling and the likelihood of cancer. Such a
scenario resembles latent driver mutations in cancer (Nussinov
and Tsai, 2015; Nussinov et al., 2019a; Nussinov et al., 2023b).
Latent drivers have low frequencies; thus, their translational
potential may have escaped detection. However, when paired
with another mutation in the same allele, they can drive cancer.
Our comprehensive pan-cancer statistical analysis observed a
significant occurrence of the double mutation pairs (Yavuz et al.,
2023b). This scenario may manifest an otherwise unobserved NDD
pathology in the parent. The computational challenge is to identify
the impact of such mutations within phenotype (Nourbakhsh
et al., 2024).

Here, we aim to enlist computations to discover how same
pathway and same-gene mutations, and overexpression can
preferentially lead to cancer and NDDs phenotypes, with the
overarching goal of applying the learned knowledge to identify
likely culpable genes/mutations (Figure 1B). Our hypothesis-
driven proposal is consistent with early experimental indications
(Marshall, 1995; Murphy et al., 2002; Murphy et al., 2004; Ben-Ari
et al., 2010). Our premise is that under physiological conditions,
mitogen-induced signaling that propagates down the pathway into
the cell cycle is strong, but the bursts are of short duration
(Figure 1C). In cancer, constitutive activating mutations and
overexpression induce strong signaling that does not abate over
time. A long duration of potent, too strong signaling can elicit
oncogene induced senescence. In NDDs signal strength is moderate
and long. Strong signaling bursts is expected to promote cell
proliferation, weaker signaling to foster differentiation, and
moderate/weak signal strength in aging may be associated with
neurodegenerative diseases. Comparisons of NDDs and
cancer—including the observed mutation types, transcriptomic
data, protein-protein interaction (PPI) networks, and protein
conformational dynamics (Jang et al., 2023b) —can suggest the
(relative) signaling strength. We expect signaling strength in benign
pediatric tumors (Li and Langhans, 2021), like cutaneous
neurofibromas, to resemble that in NDDs. Individuals with
NF1 mutations might be at risk of developing certain tumors
earlier in life (Landry et al., 2021), with unidentified latent
embryonic mutations rendering them genetically predisposed.

The significance of resolving the connection between cancer and
NDDs (Nussinov et al., 2022b; c), coupled with advances in the
computational sciences, machine capabilities, and the accumulation
of experimental data across size scales suggests diverse approaches to
decipher the connection and causality between these two complex
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processes. The challenge is in selecting the questions, the right tools
(artificial intelligence (AI) based such as machine learning (ML),
deep learning (DL), or other, advanced, or classical methods) to
target them, and the protocols (Zeng et al., 2022). Among these,
molecular dynamics simulations, which are essentially a single

molecule approach, can also be considered as a predictive tool of
cell phenotype (Nussinov et al., 2023b; a). Tool selection is also
dependent on how much data (and of what quality) are available.
Below, we provide an overview of the computational modeling and
pipelines aiming to elucidate the connections and causalities.

FIGURE 1
NDDs and cancer tissue connections with the premise. (A) The lines connect the neurodevelopmental disorders (NDDs) (autism, bipolar disorder,
and schizophrenia) and cancer tissues that have been indicated to be associatedwith them in the literature. The colors are specific toNDDs for clarity. The
thickness of the lines does not reflect any information. There is a small increase in the risk of thyroid and breast cancer in people with autism. Individuals
diagnosed with schizophrenia have a roughly 50% higher chance of dying from cancer when compared to age- and sex-matched individuals in the
general population, where there is a little increase in the risk of breast, oesophageal, and pancreatic cancer. There is a greater chance of developing colon,
breast, lung and thyroid cancers among these individuals. In a similar vein, epidemiological research revealed a possible link between bipolar disorder and
a higher risk of breast and lung cancers. (B) Schematic representation of signaling strength through a pathway for NDDs and cancer. NDDs and cancer
recruits the same cellular pathways, proteins, and even the same mutations. Pink and blue circles represent cancer and NDD mutations, respectively.
Circle size is depicting the strength of the activating mutation. Sizes of pink and blue arrows shows the signaling levels propagating to the downstream in
cancer and NDDs, respectively. (C) Cancer mutations are strong, i.e., enabling strong and long signaling that propagates down the proliferation
promoting pathways (solid, pink curve). In cancer, signaling is likely stronger than in wild type. In NDDs signal strength is weak/moderate and long
fostering differentiation (solid, blue curve). Signal strengthmay also be affected by the rate of transcription initiation (Nussinov et al., 2023c) as observed in
the repressed rate of nascent RNA transcription of highly methylated long genes in the brain through interaction of MeCP2 with the NCoR co-repressor
complex which results in the devastating neurodevelopmental disorder Rett syndrome (Boxer et al., 2020).
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Figure 2 overviews the toolboxes and resources we envision for
potential applications and data processing.

2 Computational modeling of the
systems: network models

Cancer and NDDs catalyze and are impacted by dysfunctions in
biological processes and pathways, including chromatin remodelers,
PI3K/mTOR, and MAPK pathways (Zheng et al., 2018; Nussinov
et al., 2023c). Therefore, the identification of functional
items—modules or pathways—is a critical component in the
comparison of the two diseases. Upon comprehensive
characterization of the implicated pathways, it would also be
possible to propose pertinent combination therapies for effective
treatment (Nussinov et al., 2024). In such a task, network models are
useful tools as they methodically address complex disorders by
looking at dysregulated modules rather than the effects of
individual mutations or genes in the conventional reductionist
paradigm (Williams and Auwerx, 2015). Molecular networks
exhibit high modularity, which can be defined as a high

probability linkage among subsets of nodes. Specific modules
frequently consist of different genes or proteins engaged in the
same biological processes (Choobdar et al., 2019; Cui et al., 2019).
Network models can also explain hypothetical causal mechanisms
where multiple perturbations, such as mutations, are linked to
pathways and processes (Nogales et al., 2022; Amgalan et al.,
2023). In the mechanistic explanation of disease networks,
cellular signal transduction is effectively depicted with causal
knowledge such as kinase-transcription factor (TF) and TF-target
interactions (Liu et al., 2019; Dugourd et al., 2021). Modular
comparisons of network models can illuminate functional details
of the commonalities and disparities between NDD and cancer.

3 Computational pipelines for
elucidating the connections and
causalities

Computational pipelines start with an input dataset, which may
include genomic alterations, transcriptomics, proteomics,
metabolomics, and any prior knowledge combinations (Milan

FIGURE 2
Data processing and potential applications for neurodevelopmental disorders and cancer. Current neurodevelopmental disorders (NDDs) data
suggest that certain NDDs, including bipolar disorders (BDs), autism spectrum disorders (ASDs), and schizophrenia are more prone to develop certain
cancer types, such as brain, breast, and kidney cancer. The sequential data process is demonstrated from left to right, respectively, for both cancer and
NDDs. As input datasets, genomic alterations, transcriptomics, proteomics, metabolomics, and prior knowledge databases are mainly used in
biological analysis. The input datasets are transformed into vectors by extracting significant feature sets through dimensionality reduction, similarity
scores, data decomposition, and network-based methods. Computational methods can analyze extracted features by combining supervised,
unsupervised, deep, and reinforcement learning methods. Eventually, all data processing allows various biological interpretations of high throughput
inputs. Patients with NDDs and cancer are clustered and stratified based on molecular profiles so that different severities among patient groups can be
categorized for precisemedicine. Associatedmutations, genomic variants, or critical genes can be predicted as biomarkers. Computational methods can
determine how mutations affect the phenotypes of patients. Different subtypes of NDDs and cancer can be compared, considering their commonalities
and discrepancies in significant feature sets. Detailed molecular alterations in signaling pathways can illuminate dysregulated pathways and
their outcomes.
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Picard et al., 2021; Demirel et al., 2022) (Figure 2). Numerical
features can be obtained from raw feature data using feature
extraction (or selection) techniques. They can be used to
eliminate redundant data so that the chosen learning algorithm
only includes the most pertinent information in order to reach a
biological interpretation. This would allow for inferences, such as
the removal of diseased samples from healthy ones and the
extraction of biomarkers for diagnostic purposes.

As the success of a computational pipeline heavily depends on
the data, the selection of the appropriate dataset(s) relevant to the
biological question and the necessary analyses is a crucial first
step. Cancer-related datasets are available in many documented
and controlled databases, such as TCGA (Cerami et al., 2012; Liu
et al., 2018), AACR Project GENIE (Consortium, 2017), MSK-
IMPACT Clinical Sequencing Cohort (Zehir et al., 2017), and
primary and metastatic tumors from the Hartwig Medical
Foundation (Martínez-Jiménez et al., 2023), thanks to the
perpetual focus on cancers heretofore. While not being as
widespread as cancer datasets, NDD-related datasets are also
becoming increasingly available, as interest in understanding both
NDDs and the cancer-NDD association has been on the rise
(see Table 1).

The online single- and multi-omics data resources focused on
cancer have been cataloged in Das et al.’s comprehensive review
(Das et al., 2020). Several reviews covering emerging omics
technologies for prognosis, early cancer screening, and diagnosis
were published, along with a roadmap for multi-omics data
integration techniques based on statistical methods and artificial
intelligence (Biswas and Chakrabarti, 2020; Arjmand et al., 2022; Cai

et al., 2022; Ma et al., 2022; He et al., 2023). Multi-omics integration
techniques were applied to cancer research as well as to
phosphoproteomics data (Mantini et al., 2021). Utilizing a
proteogenomic approach to tumor investigation, the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) of the National
Cancer Institute generates rich multi-omics datasets that link
genomic anomalies to cancer descriptors (Li et al., 2023). Data
on the full exome, whole genome, transcriptome, proteome, and
phosphoproteome are provided for 10 cancer types including
glioblastoma multiforme (GBM), lung adenocarcinoma (LUAD)
and breast cancer (BRCA).

Computational studies mostly harness genomic and
transcriptomic datasets to remedy biological questions (Figure 3).
The genetic etiology of the NDDs is widely investigated through
mutations (obtained with whole genome/exome or targeted
sequencing) and copy number variations (CNVs). Comparisons
of transcriptomic datasets, either bulk or single-cell type RNA-
seq data, can identify disease. Further functional and molecular
insight can be captured through proteomics and metabolomics
approaches as well as post-translational modifications
(Nascimento and Martins-de-Souza, 2015; Mueller and Meador-
Woodruff, 2020; Murtaza et al., 2020; Ristori et al., 2020; Kopylov
et al., 2023). Additionally, prior knowledge deposited in curated
databases can provide information, including on protein structures
(Berman et al., 2000; Varadi et al., 2021), interactomes (Alanis-
Lobato et al., 2016), regulatory networks (Ben Guebila et al., 2021),
metabolic pathways (Kanehisa et al., 2019), cancer drivers
(Martinez-Jimenez et al., 2020), disease-related genes (Arpi and
Simpson, 2022), and more, for sample-derived knowledge.

TABLE 1 Some publicly available omics data sources for NDDs. Omics data sources for NDDs with the number of cases and controls are provided. Control
type is also noted in the last column depending on the availability in the corresponding reference (otherwise specified with “-”).

Disease
type

Study name Data type(s) Number of
cases

Number of
controls

References Control type

Schizophrenia SCHEMA Mutation (WES, de
novo)

24,248 97,322 Singh et al. (2022) 50,437 individuals without a known
psychiatric diagnosis, the remaining

not specified

Epilepsy Epi25 Mutation (WES) 20,979 33,444 Epi et al. (2023) Collected from multiple sources and
not screened for neurological or
neuropsychiatric conditions

Bipolar disorder BipEx Mutation (WES) 13,933 14,422 Palmer et al. (2022) Without known psychiatric diagnosis

Autism spectrum
disorder

ASC Mutation (WES) 5,556 8,809 Buxbaum et al.
(2012)

Ancestry-matchedcontrols

Autism spectrum
disorder

ASC De novo variants 6,430 probands 2,179 Buxbaum et al.
(2012)

Unaffected siblings

Multitude of
phenotypes

de-novo db germline de-novo
variants

(WES/WGS)

23,098 trios 17,698 Turner et al. (2017) -

Multitude of
phenotypes

Deciphering
Developmental

Disorders (DDD)

exome sequencing
and microarray

analysis

1,133 trios - Wright et al. (2015) -

Autism spectrum
disorder

13 Orgo-Seq bulk/single-cell
RNA seq

13 12 Lim et al. (2022) Without CNVs within the two ASD-
associated loci in 16p11.2 and

15q11–13

Autism spectrum
disorder

14 SFARI WES, gene
expression,
metyhlation

Arpi and Simpson
(2022)

-
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FIGURE 3
Input datasets in NDD and cancer. NDDs and cancer research provide various types of datasets, such as single-cell, spatial or bulk omics datasets. In
single-cell methods, Fluorescence activated cell sorting (FACS) and Magnetic-activated cell sorting (MACS) are two common techniques used for the
segregation of individual cells based on their distinct labeling and physical characteristics during the process of cell sorting. In spatial methods, samples
are annoted with regional information by mapping the physical coordinates of cell and labelled for downstream analyses. In the context of bulk
methods, the analysis entails the examination of heterogeneous samples originating from distinct microenvironments in a mixture form. These distinct
methods provide complex insights from different molecular levels, covering genomics, transcriptomics, proteomics, metabolomics, and databases
covering prior knowledge. Disease-specific mutations, copy number variations in patients, whole exome/genome sequencing data, and epigenetic
alterations in patients are collected at the genomic level. Transcriptomics data are processed to identify significant expressions via differential expression
in patients and comparative expression profiles in patient groups. Proteomics and metabolomics data, generated by mass spectrometry analysis, were

(Continued )
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Biological datasets are exceedingly complex and high dimensional
as they cover thousands of genes, transcripts, and proteins. Feeding
these datasets as-is into learning-based models will lead to
incorporation of noisy or repetitive data and increase the
computational costs. Feature extraction and selection methods
prevent such problems as they enable extraction of the most
relevant and simple features (Figure 4). Similarity matrices keep
the pairwise similarities between the data points by utilizing
measures such as Euclidean distance, cosine similarity, Jaccard
similarity, and Pearson correlation coefficient (Guo et al., 2018).
Dimensionality reduction methods–such as principal component
analysis (PCA), t-distributed stochastic neighbor embedding
(t-SNE), Uniform Manifold Approximation and Projection
(UMAP), singular value decomposition (SVD), or non-negative
matrix factorization (NMF)– can be applied to reduce the
dimension of the similarity matrix along with the statistical tests
and feature rankings to represent the data withminimum information

loss (Meng et al., 2016; Guo et al., 2018; Reel et al., 2021). The above-
mentioned dimensionality reduction methods like PCA, tSNE, and
UMAP can be used for data visualization in 2D or 3D by reducing the
dimensional complexity while keeping the maximum amount of
information (Kim et al., 2018; Do and Canzar, 2021). Networks,
such as regulatory networks, coexpression networks, or protein-
protein interaction networks, transform multiple input datasets
into more comprehensible data by using global and local features
of networks (Li and Gao, 2019; Muzio et al., 2020). A community of
interacting genes/proteins in these networks is mainly associated with
specific biological knowledge. Thus, the use of communities in
downstream methods can be advantageous to transform complex
data into interpretable knowledge. Data decomposition approaches
computationally break complex data problems into several
components (Malod-Dognin et al., 2019). Associated and
consistent components or detected -hidden but significant-
components constitute feature sets.

FIGURE 3 (Continued)

assessed for phenotypic alterations at the translational level. Kinases are either active or inactive, depending on post-translational modifications.
Thus, phosphoproteomics and other modification-specific proteomics gained prominence in NDDs and cancer research. In addition to sample-derived
datasets, open-source databases integrate prior knowledge, just a few example of which are PDB (https://www.rcsb.org/) and AlphaFold DB (https://
alphafold.ebi.ac.uk/) for protein structure, GRAND (https://grand.networkmedicine.org/) and TRRUST (https://www.grnpedia.org/trrust/) for
regulatory networks, and STRING (https://string-db.org/) and HIPPIE (http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/) for protein-protein
interaction networks (interactome). Prior knowledge enables the identification and propagation of meaningful omic hits, allowing for the completion of
unnoticed but associated information in cellular cascades. The integration of omics data with prior knowledge enables the establishment of causal links
between different molecular levels. By examining the accessible chromatin areas, regulatory elements and their impact on transcriptomics can be
assessed for biological interpretations in many areas including identification of cell states, cell specific regulatory networks, dynamic cell trajectories as
well as patient stratification.

FIGURE 4
Feature extraction techniques. High-throughput omics datasets are noisy and need preprocessing to remove redundant features and extraneous
before computational analyses and deducing biological interpretations. Feature extraction methods can simplify these datasets by eliminating irrelevant
features, reducing high-dimensional structures, or dividing datasets into meaningful components. Similarity-based multi-omic data integrations identify
the most relevant features at different molecular levels and generate lower dimensional data with minimal information loss. Dimensionality
reduction methods such as PCA and tSNE can select the most explanatory variables or combine variables by generalizing complex datasets. By data
decomposition techniques, input datasets are divided into vectorial compositions and recruited for downstream analysis. Network-based methods
evaluate the topological features of context-specific networks and can detect biologically meaningful network modules and communities. As a result,
associated biological knowledge including enriched pathways, biological processes or molecular functions can be inferred. The extracted biological
knowledge in networks is transformed into vectors for downstream analyses.
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The differences in the experimental protocols, tissue
heterogeneity, and more, are expected to cause inherent noise
among the datasets (Rahnenfuhrer et al., 2023). It is not
uncommon to find inaccurate, or spurious correlations
between unrelated data points due to the high-throughput
nature of omics data, which typically result from a larger
number of compared features (Clarke et al., 2008;
Pudjihartono et al., 2022). As high-throughput data contains
uninformative features, overfitting can lead to low generalization
performance, and purging such features is inevitable. However,
eliminating features without incorporating domain knowledge
can lose critical information (Clarke et al., 2008). The aim of the
study, the nature of data, the possible sources of noise should be
considered carefully before using dimensionality reduction and
other statistical methodologies. Although determining a single
concrete map is challenging, the points discussed above could
help reducing information loss and wrong derivations could
be minimized.

Learning-based algorithms try to learn from the data to be able
to predict the correct or relatable outcomes (Figure 5). Supervised

learning techniques such as regression analysis, random forest, and
decision trees require labeled samples, such as diseased versus
control, where the algorithm can create a logical connection
between the labels and the data to label possible unknown
samples. Unsupervised learning methods such as clustering
algorithms and Gaussian mixture models, on the other hand, do
not depend on such labels and try to come up with common patterns
based on the data itself rather than the labels. Reinforcement
learning algorithms aim to maximize long-term rewards by
learning from the rewards and penalties based on their actions.
Such algorithms can be useful for patient-specific treatment
regimens where selections are based on the biological
characteristics and treatment response of the patients (Eckardt
et al., 2021). DL is based on artificial neural networks and
utilizes a multilayered learning structure that may include
supervised, unsupervised, and semi-supervised methods to extract
non-linear and complex features from high-dimensional datasets.
DL models can be used for various biological problems from disease
assessment to subtyping and survival analysis to precision medicine
(Tran et al., 2021).

FIGURE 5
Learning basedmethods in NDDs and cancer research. Learning-based algorithms can facilitate the understanding of biological phenomena such as
the effect of amutation, molecular stratification of patients, and similarities/differences among complex diseases. Unlabeled sampling pools are recruited
in unsupervised learning algorithms, such as k-means clustering, hierarchical clustering and Gaussian mixture models for clustering samples. On the
other hand, patients and samples in the known phenotypic spectrum can be labeled based on prior knowledge, which allows recruiting supervised
learning algorithms such as decision trees, random forests, support vector machines, ensemble learning, k-nearest neighbors for classification and
regression analysis. Deep learning algorithms provide a substantial computational power to examine high dimensional datasets through the as a
consequence of their multi-layered architecture. A multilayered perceptron utilizes feedforward activation functions to propagate information to the
next layers and backpropagation to iteratively adjust the weights in hidden layers that are placed between input and output layers. These functions
optimize inputs and weights in layers to generate outputs. In the layers of a convolutional neural network, convolution and pooling functions transform
data matrices into smaller matrices, constructing feature maps. Fully connected feedforward neural networks learn and classify pooled features. Also,
reinforcement learning algorithms utilize real-life scenarios by holding dynamic patient regimens and personalized medicines. The algorithm receives
either rewards or penalties for its actions and goals to maximize the total reward.
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4 AI, ML, DL, and other computational
methods in tackling NDDs

Numerous computational techniques have been used to study
cancer, taking advantage of massive and quickly expanding
databases. In addition to medical records, patient populations,
cancer types, and clinical presentations, there are large databases
of sequences, mutations, transcriptomics, and experimental 3D
structures. Over the last years, computations related to NDDs
have also been ramped up (Qi et al., 2016; Jiang et al., 2022).
However, to date, they are of a different nature. They include a
computational perspective on autism (Rosenberg et al., 2015),
including exploiting ML models to understand and diagnose its
pathogenesis in the context of complex neurodevelopmental
heterogeneity (Jacob et al., 2019). They also include
computational neuroscience approaches to identify precise,
objective, and quantifiable markers of autism spectrum
disorders (ASD) in physiological, behavioral, and neural
processing (Computational Models of Autism) and
computational analysis of neurodevelopmental phenotypes to
harmonize clinical features (Lewis-Smith et al., 2022). These
NDDs-related computations are associated with features at a
different size scale than the molecular-level methods discussed
here. Only one literature record compared the gene expression
profiles of ASD frontal cortex tissues and 22 cancer types
obtained by differential expression meta-analysis with reported
gene, pathway, and drug set-based overlaps (Forés-Martos et al.,
2019). The results suggested that brain, kidney, thyroid, and
pancreatic cancers are candidates for direct comorbid
associations with ASD, whereas lung and prostate cancers are
candidates for inverse comorbid associations with ASD.

The most common NDDs are ASD and attention-deficit/
hyperactivity disorder (ADHD). Other common NDDs include
cerebral palsy, communication disorders, intellectual disabilities,
learning disorders, and neurodevelopmental motor disorders
(FamilieSCN2A Foundation, 2023). Intellectual disorder (ID),
ASD, ADHD, schizophrenia, and bipolar disorder (BD) display a
neurodevelopmental continuum that can be explained by gene
nucleotide substitutions and copy number variants, e.g., nonsense
mutations or splice variants. For example, in ASD, there is a strong
association between mutations in CDH8 (a gene encoding Cadherin
8, diseases associated with which include craniofacial-deafness-hand
syndrome and ectodermal dysplasia) (Jiang et al., 2022). Similarly,
16p11.2 with duplication resulting in a low weight; a small head size
(microcephaly), and with deletions playing a major role in
developmental delay, especially in speech and language
(Rosenfeld et al., 2010). Affected individuals also have an
increased risk of behavioral problems, and SCN2A is commonly
associated with early-onset epilepsy and linked to ASD and
developmental delay (Morris-Rosendahl and Crocq, 2020;
FamilieSCN2A Foundation, 2023).

25 distinct classes of brain cells originating from the primary
motor cortex of the mammalians, mouse, marmoset and human,
were identified, including 16 different neuronal classes, each
composed of multiple subtypes (Network, 2021). The locations of
cells related to the NDDs differ, e.g., cerebral palsy-related cells are
in the part of the brain that controls movement, likely differing from
that of ID. At the same time, comorbidity between certain NDD

types suggests some adjoining genes partaking in a common
chromosomal deletion or CNVs as in ASD 16p11.2 deletion. The
mutations might be present on genes depending on the specific cell
types and states, and these genes may exhibit varying levels of co-
expression throughout embryonic brain development. Comorbidity
between the NDDs is frequent. 22%–83% of children with ASD have
symptoms that satisfy ADHD, and 30%–65% of children with
ADHD have ASD symptoms (Morris-Rosendahl and Crocq,
2020). Studies focusing on mental disorders in children aged
7 through 12 have also observed that 55% of the children were
diagnosed with at least one NDD. 40% did not have a diagnosed
comorbid condition, and 26% had an anxiety disorder (Morris-
Rosendahl and Crocq, 2020). ID, ASD, ADHD, and schizophrenia
share specific genetic risks (Owen et al., 2011). Data suggests that in
addition, intellectual disabilities share phenotypes with
schizophrenia (Singh et al., 2017), further supporting the NDDs
continuum (Owen and O’Donovan, 2017).

Below, we first describe computational studies in NDDs. While
we do not dedicate a separate section to cancer-related
computational studies, we encourage interested readers to explore
recent reviews that focus on cancer and machine learning (Zhang
et al., 2023; Ma et al., 2024; Unger and Kather, 2024) in addition to
the ones mentioned earlier. We then proceed to the connection
between NDDs and cancer. Finally, we provide some computational
pipelines for such explorations.

4.1 Disease versus healthy sample
classification

Most of the publicly available genomic datasets for NDDs were
derived from case and control studies. As a result, for each type of
genomic data, there are both diseased and physiological samples. By
using supervised techniques on labeled input and outputs in
datasets, it may be possible to classify disease versus healthy
cases. Unsupervised clustering methods can successfully
distinguish between the two states without labeled information.

Disease diagnosis is one of the most common goals of ML
applications in precision medicine. The ability to separate healthy
and diseased samples based on given data opens the door to early
treatment options as well as detection of diseases that are difficult to
identify. Approaches have been proposed for the detection of NDDs
with varying performance metrics. Among the ways of assessing the
performance measure of an AI algorithm, accuracy is one of the
most common, indicating the proportion of cases that are correctly
predicted (Erickson, 2021). Trakadis et al. used gradient-boosted
trees with regularization for rare variants obtained from whole
exome sequencing data to predict individuals at high risk for
schizophrenia. They obtained an 85.7% accuracy (Trakadis et al.,
2019). Liu et al. also focused on mutations for distinguishing ADHD
cases from controls. They computed p-values for the association of
single nucleotide polymorphisms (SNPs) with ADHD traits and
selected SNP subsets based on different p-value thresholds. Their
convolutional neural network model achieved an accuracy higher
than 90% for the dataset with the most stringent p-value cutoff (Liu
et al., 2021). Li et al. developed a deep canonically correlated sparse
autoencoder model and tested it using SNP and functional magnetic
resonance imaging (fMRI) data (Li et al., 2020). For schizophrenia
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classification, the accuracy with the SNP data was much higher
(~95%) compared to fMRI data (~85%).

Some approaches highly prioritize decreasing the false positive
rates even if it also causes a decrease in the number of total
predictions or the true positive rate. They ensure that no control
cases are falsely predicted as disease cases since an incorrect
diagnosis of a healthy person may lead to severe outcomes. For
example, ODIN (Oracle for DIsorder prediction) utilized de novo
likely gene disruptive variants and gene similarity scores obtained
from brain co-expression data to predict ASD and ID cases (Huynh
and Hormozdiari, 2018). Although the method could only predict a
subset of patients, it delivered a very low false positive rate and could
also detect a group of samples that do not have any mutations on
known frequently mutated genes. Similarly, Chow and Hormozdiari
used shallow neural networks with ASD, ID, and developmental
disorder de novo variants by also incorporating measures of gene
constraint and conservation information (Chow and Hormozdiari,
2023). Their method could capture more than 30% of the cases with
a false positive rate smaller than 1%.

Instead of focusing only on genetic data such as the presence of
variants or gene expression, some studies also add data types such
as fMRI imaging to obtain better performance. For instance, both
Yang et al. and Lin et al. endeavored to classify a cohort of
40 individuals, consisting of 20 healthy subjects and
20 schizophrenia patients, by integrating SNP data with fMRI
data (Yang et al., 2010; Lin et al., 2011). They assessed the efficacy
of using each dataset independently and evaluated their
performance by enlisting 39 participants for training and one
for testing. The integration of SNP-fMRI exhibited superior
performance in both studies. Yang et al. obtained an accuracy
of 87% for the combined method while individual datasets enabled
at most 82% accuracy. Likewise, Lin et al. reported peak accuracy
with fewer variables. In a similar vein, using network-based
methodologies, Deng and colleagues further expanded upon the
integration of SNP and fMRI data by including DNA methylation
data for a cohort of 208 individuals, consisting of 96 patients and
112 healthy controls. The network fusion approach performed
better than other methods with various parameter sets (Deng
et al., 2017).

4.2 Stratification and classification of NDDs

The severity of NDDs varies among patient groups with
different ranges of intellectual and verbal disabilities.
Individuals with NDDs have a phenotype-genotype correlation
restriction due to pleiotropy, insufficient penetrance, and
environmental variables (Nussinov et al., 2019b; Zhou et al.,
2021). However, advances in computational methods are
promising to close the gap between genetics and phenotypic
presentation in NDDs with different strategies, such as the
usage of causal genes and polygenic risk scores. ML
applications were used to discover SNPs in order to develop a
predictive classifier that assessed perturbed pathways or biological
processes for subgroups in NDDs (Uddin et al., 2019; Song et al.,
2022). Common variants that can be protective or pathogenic for
ASD were discovered to create an advanced diagnostic classifier for
ASD and to verify their classifier. In the DeepAutism study, they

selected specific variants among the common variants (more than
1% of the population) from the Simons Simplex Collection (SSC),
which consists of 2,600 simplex families, each with one child
affected by ASD, unaffected parents, and at least one unaffected
sibling (Wang and Avillach, 2021). Convolutional neural network
(CNN) models were constructed and trained with Keras and
TensorFlow python libraries for artificial neural networks. Both
libraries provide developers with the capability to extend
functionality across datasets and take more control over the
training of machine learning models (Abadi et al., 2016; Wang
et al., 2019). They classified cases through common variants, while
most studies focused on rare genetic variants. Common variants
can be crucial in screening ASD at an early stage (Wang and
Avillach, 2021).

Current classification approaches also take polygenic diseases
into consideration. For example, individuals with severe and mild
ASD were classified using variants with specific functionalities
(Talli et al., 2022). Whole exome sequencing (WES) data were
assessed with cognitive and language tasks to link genetic
variation in translated proteins with specific clinical
manifestations. The linear regression polygenic risk score
uncovers molecular fingerprints such as genetic profiles and
biological processes that are specific to mild and severe ASD.
Another study suggested a new approach, netMoST, which
constructed allele-specific networks through correlations
among SNP-alleles, and identified network modules, and their
biological functions in the network (Wei et al., 2023). Following
patients’ stratification, it uncovered the associated haplotype
biomarkers. To prove their concept, the researchers validated
biological subtypes based on neuroimaging. By using SNP, they
stratified schizophrenia patients into three subtypes and
recognized risk SNP modules.

Overlapping genetic factors in NDDs, cancer, and other
developmental disorders suggest shared phenotypic genetic
heterogeneity as well as common biological pathways and
processes (Grove et al., 2019; Di Giovanni et al., 2023). De novo
CNVs and SNVs (single nucleotide variants), as well as loss of
function mutations, are unquestionably more prevalent in patients
than in controls. The main cause of misdiagnosis or missed
diagnosis is their complexity. Bioinformatic predictions based on
pathogenicity cannot confidently categorize the more frequent
missense mutations for disease classification. As a solution, ML
algorithms ultimately focus on clusters of specific disease-associated
genes. For instance, specific gene clusters in autism spectrum
disorder and schizophrenia were demonstrated to have
distinguishing genetic features and associated pathways by WES
data analysis with the regularized gradient-boosted machines
(Sardaar et al., 2020). The algorithms efficiently separated these
patients and clustered the genes associated with each disease.

4.3 NDD and cancer biomarker/disease-
related gene prediction

One of the critical challenges in NDDs is establishing a
comprehensive gene list since NDDs have not been studied as
thoroughly as cancer. NDD-associated mutations and genomic
variants in databases such as OMIM, SFARI, and denovo-db
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have been growing. Genome-wide studies have mainly focused on de
novo and transmitted loss of function mutations and assessed genes
in the context of brain-specific biology for more specific biomarker
prediction. For example, the brain-specific functional relationship
network was constructed through Bayesian network integration of
various functional genomic data types (Duda et al., 2018). Next, a
sophisticated random forest ensemble model ranked candidate
genes and identified associated pathways. Another study with a
brain-specific functional interaction network constructed a genome-
wide probabilistic graph that was composed of genes, pathways, and
their functions, integrating numerous genomic experiments
(Krishnan et al., 2016). Candidate ASD-associated genes were
predicted based on the interaction patterns of known ASD-
associated genes. The top predicted genes and their associated
CNVs were characterized to find functional modules in the brain.

The impact of an uncommon single mutation is poorly
understood in the context of pathogenicity, as well as disease
association (Sergouniotis et al., 2016; Landrum et al., 2018).
When comparing NDDs and cancer, computational approaches
remain inadequate to predict biomarkers due to the scarcity of
labeled data and the use of gene level features. To solve this dilemma,
SHINE, a pathogenicity prediction tool, recruited protein language
models, where protein secondary structure (coil), intrinsically
disordered residues, and relative solvent accessibility were
transformed into protein statistics (Fan et al., 2023). Also, the
tool assessed mutational hotspots on both NDDs and cancer
within the test datasets. Learning-based approaches through
dimensionality reduction methods such as principal component
(Martini et al., 2019; Dugourd et al., 2021), independent component
(Liu et al., 2019), and factor analyses (Argelaguet et al., 2018) are able
to simplify various statistics. In this way, these reduced features
capture potential new information which was not well represented
with the complete set of features, and have better performance for a
range of prediction tasks than conventional methods based on
manually calibrated features (Fan et al., 2023).

A recent study by Pergola et al. (Pergola et al., 2023) aimed to
understand how genes associated with schizophrenia work together
in specific brain regions at different stages of life. The authors
anticipated that during stages of development and aging, these
genes would converge into distinct coexpression pathways in
specific brain regions. To test this idea, they chose a collection of
schizophrenia risk genes based on GWAS (Genome-Wide
Association Studies)-significant SNPs and then developed gene
modules containing these genes. Then, they analyzed the
coexpression of these genes across different age periods in brain
regions that are known to be involved in schizophrenia, such as the
dorsolateral prefrontal cortex (DLPFC), hippocampus, and caudate
nucleus. They discovered that the coexpression patterns of these
genes changed over time and were specific to certain brain regions,
supporting their hypothesis. Then, they reproduced their analysis
using other datasets to confirm their findings and discovered a set of
consistent molecular associates of schizophrenia risk genes in these
networks. They also investigated if GWAS gene coexpression
associations were maintained in induced pluripotent stem cells
(iPSCs), which could shed light on mechanisms causing
schizophrenia. They revealed 28 genes in the prefrontal cortex
that are consistently associated with schizophrenia, 23 of which
had not been identified. Interestingly, according to the findings, the

hereditary causes of schizophrenia are linked to shifting patterns of
gene expression across different parts of the brain and across
different ages, which may help explain how the condition
manifests itself in individuals and emphasizes expression levels
during distinct time windows by distinct cells at specific
brain locations.

4.4 The role of mutations in the emergence
and prognosis of NDDs

Studies implicate germline, de novo, and somatic mutations in
pathologies, including NDDs (Acuna-Hidalgo et al., 2016; D’Gama
and Walsh, 2018; Nishioka et al., 2019; Li et al., 2020; Deb and
Bateup, 2021; Kim et al., 2021; Rashed et al., 2022). Several groups
have recently explored the impact of different types of mutations,
such as missense or truncating mutations, on disease onset and
progression; however, mutations associated with NDDs were mostly
rare. Analysis of brain tissue from individuals with and without
schizophrenia revealed that somatic mutations in brain cells, that is,
mutations that occur after fertilization, may play a role with a higher
frequency of somatic mutations in certain brain cells (Kim et al.,
2021). Although occurring at a low level–affecting only a small
proportion of cells in the brain–these mutations were found to affect
genes associated with neuronal development and function (Kim
et al., 2021). Since NDD mutations are typically weak, the numbers
could be higher than those detected.

Comprehensive computational exome sequencing analysis also
revealed a number of genes, six of which (SETD1A, CUL1, XPO7,
GRIA3,GRIN2A, and RB1CC1) had odds ratios higher than ten, with
their rare mutations markedly increasing the risk for schizophrenia
(Nakamura and Takata, 2023). Several disease models with high
etiological validity have been constructed in light of these discoveries
and the earlier identification of CNVs with comparably significant
outcomes (Nakamura and Takata, 2023). Mutation burden tests and
logistic regression were used to determine whether rare genetic
variants contribute to the risk of schizophrenia and whether this risk
differed between individuals with and without intellectual disability
(Singh et al., 2017). Analysis of rare genetic variants in 6,894 people
with schizophrenia, 2,331 people with intellectual disabilities, and
10,963 healthy people discovered that rare genetic variants were
more strongly associated with schizophrenia in people with
intellectual disabilities than in people without. The mutations
were related to brain development, including in genes involved in
neuronal migration and synapse formation. Individuals with
intellectual disability and schizophrenia were more likely to have
rare genetic variants in genes linked to schizophrenia. This suggests
that mutations associated with intellectual disability may increase
the risk of schizophrenia in people who already have a genetic
predisposition, possibly via shared proteins and pathways.

Teng et al. (Teng et al., 2018) explored the genetic overlap and
pleiotropy of cognitive function and neuroticism in psychiatric
disorders such as schizophrenia, BD, and major depressive
disorders by using mutation burden analysis. Genes involved in
brain development showed different phenotypic associations, with
an increase of disruptive variants in schizophrenia in the DISC1
gene, resulting in lower cognitive ability at an early age. Similarly,
SMARCC2 (a gene encoding BRG1-associated factor 170, BAF170),
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with a vital role in corticogenesis and embryogenesis, is the key
regulator of the ATP-dependent chromatin remodeling BAF
complex. Whole genome sequencing identified 13 heterozygous
mutations in SMARCC2 which are shown to be de novo and had
given rise to neurodevelopmental delay and growth retardation in
15 individuals (Machol et al., 2019).

Whole-exome sequencing on 13,933 patients with major BD
and 14,422 controls identified ultra-rare protein-truncated
variants (PTVs) in both BD major subtypes (bipolar I disorder
and bipolar II disorder). In genes with significant evolutionary
constraints, the study found an excess of ultra-rare PTVs in BD
patients (Palmer et al., 2022). A truncating mutation of
chromodomain helicase DNA-binding protein 8 (CHD8)
represents one of the strongest known risk factors for ASD
(Sugathan et al., 2014). The Schizophrenia Exome Sequencing
Meta-analysis (SCHEMA) revealed CHD8 binding sites for
DYRK1A, CUL3, GRIN2B, POGZ (Cotney et al., 2015) and
enrichment of ultra-rare PTVs. There are no statistical BD
genome-wide association studies (GWASs). AKAP11 (A-kinase
anchoring protein 11), a clear risk gene shared with
schizophrenia that interacts with GSK3B, the presumed target
of lithium, is the main treatment target for BD (Palmer
et al., 2022).

Another computational study that examined the full exomes of
24,248 schizophrenia cases and 97,322 controls observed that some
ultra-rare coding variations (URVs) confer a substantial risk for
schizophrenia, with odds ratios ranging from 3 to 50 and a p-value of
2.14 × 10−6. The study links 32 genes with a 5% false discovery rate in
central nervous system neurons and various biochemical activities to
schizophrenia, and links 10 genes with schizophrenia risk. The
results support the idea that schizophrenia etiology involves
disruption of the glutamatergic system (Singh et al., 2022).

253 genes were observed to be potentially associated with
neurodevelopmental diseases with an excess of missense and/or
probable gene-disrupting mutations, according to exome sequence
data from about 10,000 people with autism spectrum disorder,
intellectual disability, and/or developmental delay. The studies
utilized gene expression and protein-interaction networks (Coe
et al., 2018). To learn more about the potential contribution of
de novo mutations to the etiology of BD, a trio-based exome
sequencing investigation was carried out. 71 de novo point
mutations and one de novo copy-number mutation were
discovered in 79 BD probands. There was a notable enrichment
of genes resistant to protein-altering variations among genes affected
by de novo loss-of-function or protein-altering mutations. Brain
disorders and schizoaffective illnesses both have a global enrichment
of de novo mutations, according to a combined analysis including
data on schizoaffective disorders. De novo protein-altering
mutations in BD probands led to noticeably earlier disease onset
compared to non-carriers (Kataoka et al., 2016).

5 Approaches to validate the NDD-
cancer connection hypothesis

We hypothesized that one major cause for the emergence of
NDDs and cancer—two diseases (or conditions) with vastly different
clinical features—is the mutation load in the same genes. To validate

our hypothesis computationally, firstly we identified mutations that
are common between NDDs and cancer, as well as the mutations
that are preferentially observed in both diseases. Then, we
concentrated on PTEN and PI3Kα, two proteins with NDD and
cancer mutations that we are familiar with their structural and
dynamic properties.

We investigated the domain distributions and the locations in
the 3D structure of commonmutations and the mutations occurring
only in one of the diseases. We observed that cancer mutations
accumulate in critical regions of these proteins that fully thwart
PTEN’s tumor-suppressive activities while promoting PI3Kα′s
oncogenicity (Jang et al., 2021; Jang et al., 2023a). PTEN’s tumor
suppressive functions are also partially tallied in the presence of
PTEN mutations in NDD samples. As to PI3Kα mutations that are
present in NDD patients, we evaluated their oncogenic potential. In
line with our thesis, we observed that they appear incapable of
promoting tumorigenesis on their own.

This approach could be extended to all genes harboring
common mutations and to mutations that are harbored by either
NDDs or cancer. Molecular dynamics (MD) simulations of
commonly mutated gene products can point to their potential
consequences, although conducting the simulations requires a
sufficiently long time (Jang et al., 2023a). Taketomi et al.
employed MD simulations to reveal a novel mechanism relating
a point mutation in the SPARCL1 gene to the molecular and cellular
characteristics associated with ASD (Taketomi et al., 2022). To
investigate the importance of microtubule-associated protein 2
(MAP2) phosphorylation in schizophrenia, the authors
performed a phosphoproteomic analysis of MAP2 in the primary
auditory cortex of schizophrenia and nonpsychiatric control (NPC)
patients. Using network analysis, they discovered 18 distinct
phosphopeptides and divided them into three modules, each with
a unique link to the respective pathology. They also used MD
simulations to go further into the most changed phosphorylation
location, serine 1782 (pS1782), and discovered that phosphomimetic
alteration at this point lowers microtubule interaction (Grubisha
et al., 2021). We applied simulations to PTEN to figure out the
mechanisms of cancer- and NDD-related mutations and
differentiate between them (Jang et al., 2023a), with the aim of a
priori identifying the mutations. Our premise was that strong
oncoprotein mutational variants tend to visit the active, catalytic
state more often than NDD variants do. Another metric for
evaluating mutation strength is utilizing variant-associated
prediction tools, in our case, MutPred2 (Pejaver et al., 2020).
Such tools merge experimental data with predictions and classify
the mutations as harmful or benign with a pathogenicity score
varying from 0 to 1.

Much data has accumulated through single-cell and spatial
omics studies of cancer (Lee et al., 2014; Lei et al., 2021; Zeng
et al., 2022; Camps et al., 2023), which are lagging for NDDs. Single-
cell sequencing technologies have enabled a groundbreaking
resolution of omics where bulk-sequencing data fall short. Single-
cell based methods can address areas ranging from revealing the
tumor, and the tumor microenvironment (TME) heterogeneity (Pan
et al., 2020; Tian et al., 2022), to identify subpopulations and cell
states (Figure 3). They also offer a venue for a more comprehensive
investigation of oncogenic mechanisms (Pan et al., 2020). Single cell
spatial transcriptomics can inform cell-to-phenotype over time
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mapping by capturing the physical tissue structure, which is of
special importance for tissues like the brain (Khodosevich and
Sellgren, 2023; Piwecka et al., 2023; Vandereyken et al., 2023).
These emerging technologies have unrivaled promise for
signatures of tumor growth and progression (Pan et al., 2020;
Tian et al., 2022). They allow higher-resolution analysis, which
could dramatically illuminate molecular processes that fuel
malignancies, aiding cancer surveillance systems and treatment
approaches (Piwecka et al., 2023; Vandereyken et al., 2023).

These technologies could also be useful in NDDs, improving
the understanding of human brain development. This can help in
modeling NDDs and more precisely depicting key developmental
disorders (Nowakowski et al., 2017; Moffitt et al., 2018; Fan et al.,
2020; Kim et al., 2020; Eze et al., 2021; Khodosevich and Sellgren,
2023). For example, a single-cell based analysis by Skene et al.
showed that common schizophrenia GWAS variants, and
previously identified schizophrenia-associated genes, mapped
to certain groups of brain cell types with a much higher
frequency than others, hinting at the distinctive roles of
different cells (Skene et al., 2018). Maynard et al. combined
single-cell and spatial transcriptomics data of the six-layered
human dorsolateral prefrontal cortex (DLPFC) and revealed
layer-enriched expression signatures. Addition of
schizophrenia and ASD-related genes to the analysis
uncovered the presence of differential layer-enriched
expression indicating clinical importance (Maynard et al.,
2021). Replication time of single-cell RNA sequencing
(scRNA-seq) data showed that gene clusters linked to cancer
and ASD are restrained in late replication (Nassir et al., 2021).
International efforts like The Human Cell Atlas Project, which
aims to create a comprehensive molecular map of all human cells
to aid studies of physiological states, could help in grasping the
origin of cellular dysregulation (Regev et al., 2017).

6 Comparison of cancer and NDDs is
challenging

Due to the heterogeneous nature of cancer and NDDs, it is
challenging to draw parallels between two diseases. Exploiting all
cancer types and NDD phenotypes implies bigger datasets to
learn from; the heterogeneity increases the complexity.
Narrowing the comparison to a single phenotype from both
diseases may enable discoveries that would have been missed
otherwise. This is especially the case for NDDs whose phenotypes
overlap, resulting in different phenotypes observed by different
researchers. While data availability is crucial in determining
phenotypes, especially for NDDs, recent epidemiological
cohorts provided convenient starting points. In a cohort study
of 8,438 patients with autism, Chiang et al. observed an increased
risk of genitourinary and ovarian cancers (Chiang et al., 2015).
Another cohort study reported a higher risk of breast cancer in
BD patients and their healthy siblings in comparison to the
control (Chen et al., 2022), again in line with our thesis of the
possible connection between cancer and NDDs. To uncover the
underlying mechanisms, the phenotypes to be studied can be
selected based on already reported connections, such as thyroid
cancer and autism, or breast cancer (Figure 1A) and BD.

7 Conclusion

Computations can analyze the rapidly increasing volume of data,
identify trends, and derive correlations at a scale that experiments are
unable to do. By discovering causal relationships, they can also identify
themost probable events, processes, states, and objects. In our case, such
discoveries are extremely consequential as they can identify the
likelihood of NDDs early in life even prior to emergence of the
debilitating phenotype. No less important, they can project the
likelihood of cancer, assisting with early pharmacology. Cancer onset
is associated with abnormal cell proliferation (Brunner and Finley, 2023;
de Visser and Joyce, 2023), while NDDs are mostly related to
dysregulated differentiation (Khodosevich and Sellgren, 2023). In
terms of cell cycle signaling (Demeter et al., 2022), they differ in
signaling strength and duration (Yavuz et al., 2023a). Under
physiologic conditions, mitogen-promoted strong signaling bursts
over short duration are associated with cell proliferation. Weaker,
extended mitogen-promoted signaling is associated with cell
differentiation. When disease-related, due to activating mutations or
overexpression, signaling is constitutive, thus always extended. When
strong, the outcome is likely to be proliferation in cancer. The
paramount factor is the population of proteins in their active states.
Both strong, mitogen-promoted bursts, and mutation-elicited, lead to a
larger population in the active state (Nussinov et al., 2022a). Higher
expression level due to, e.g., gene duplication, or dysregulation, lead to
the same outcome.

Cancer and NDDs are not the only diseases associated with cell
cycle and signaling strength. Neurodegenerative diseases in old age,
cardiovascular disease (Wiman and Zhivotovsky, 2017), vascular
proliferative disorders (Sriram and Patterson, 2001), diseases with
prolonged mitosis (Levine and Holland, 2018), possibly the outcome
of low translation rates, and more, can all be related to the cell cycle.

Here, we discussed computational approaches, including AI, ML,
and MD simulations, as well as others, such as networks construction,
and their findings. Computational observations based on ‘large enough’,
high quality data, can be powerful. We took up the linkage between
NDDs and cancer, and emerging strategies for pursuing them. Our
comprehensive searches of the literature uncovered an abundance of
experimental and clinical studies. However, unfortunately, we failed to
identify computational approaches, especially at the detailed molecular
level addressing questions such as those that we raised above, leading us
to describe the ones that we have adopted and possible extensions. We
hope that these open the door to future studies of this emerging
innovative and enthralling computational discipline.

Taken together, our broad review underscores the multi-scale
aspect of this type of reasoning, rather than focus on a specific organ
system or disease, with the examples that are used demonstrating
what new understanding can be gained.
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