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Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely
controlled process which is critically depending on muscle stem cells. Muscle
stem cell functionality depends on intrinsic signaling pathways and interaction
with their immediate niche. Upon injury quiescent muscle stem cells get
activated, proliferate and fuse to form new myofibers, a process involving the
interaction of multiple cell types in regenerating skeletal muscle. Receptors in
muscle stem cells receive the respective signals through direct cell-cell
interaction, signaling via secreted factors or cell-matrix interactions thereby
regulating responses of muscle stem cells to external stimuli. Here, we discuss
how muscle stem cells interact with their immediate niche focusing on how this
controls their quiescence, activation and self-renewal and how these processes
are altered in age and disease.
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Introduction

Skeletal muscle fulfills a variety of functions in the body and makes up over 40% of the
human body weight (Frontera and Ochala, 2015). The essential functions of skeletal muscle
include respiration, locomotion, body posture, thermogenesis, carbohydrate and amino
acid storage as well as glucose and energy metabolism of the body (Jensen et al., 2011;
Rowland et al., 2015; Sharma et al., 2019). Moreover, skeletal muscle tissue is also
responsible for the secretion of messenger molecules to facilitate communication with
other tissues (Pedersen and Febbraio, 2012). Loss of muscle mass and functionality, e.g., due
to hormonal changes, malnutrition, aging or disease, can have a prominent impact on the
quality of life and general health (Larsson et al., 2019).

The components of skeletal muscle

For fulfilling its essential functions skeletal muscle consists of a multitude of cell types
including myofibers, blood vessels, muscle stem cells as well as different support cells such
as fibrogenic adipogenic progenitor cells (FAPs) (Figure 1A). Furthermore, the
multinucleated myofibers are innervated by motor neurons, which facilitate
coordinated movements (Heckman and Enoka, 2012). However, postmitotic myofibers
make up the largest portion of cells in skeletal muscle (Figure 1A) containing several
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myofibrils (Figure 1B) and are allowing muscle contraction and
force generation (Dave et al., 2024). Contraction of skeletal muscle
depends on its smallest contractile unit, the sarcomere (Figure 1C),
consisting of thin and thick myofilaments. The thin myofilaments
are composed of two filamentous actin chains (α-actin) which are
anchored at the Z-discs (Cooper and September, 2008; Frontera
and Ochala, 2015; Wang et al., 2021), while the thick myofilaments
are formed by several hundred myosin motor proteins, which slide
on top of the thin myofilaments and thereby accomplish
contraction of skeletal muscle. A third myofilament, titin, is
required for regulating force generation, sarcomere organization

and mechanosensing (Linke and Kruger, 2010; Nishikawa
et al., 2020).

Different cell types in adult skeletal muscle

Skeletal muscle requires a multitude of cell types for full
functionality and to allow proper regeneration. While contraction
is carried out by myofibers, muscle stem cells (MuSCs) and different
kind of support cells such as FAPs (fibrogenic adipogenic progenitor
cells) are required for its regeneration. A fine network of blood

FIGURE 1
Schematic of the structure of skeletal muscle. (A) Myofibers, connective tissue, blood vessels, muscle stem cells (MuSCs), and various support cell
types, such as fibrogenic adipogenic progenitor cells (FAPs), are found in skeletal muscle. Motor neurons innervate the multinucleated myofibers,
enabling coordinated movement. The postmitotic myofiber is the primary cell type in skeletal muscle, responsible for force production and muscular
contraction. (B) Eachmyofiber contains several parallel myofibrils, composed of repeating contractile units, the sarcomeres. (C)Muscle contraction
is mediated by the sarcomere, the smallest contractile unit formed by overlapping elastic, thick, and thin filaments. Created with BioRender.com.
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vessels provide myofibers with oxygen and nutrients, while motor
neurons are required for coordinated contraction of myofibers and
thereby coordinated movements. Blood vessels provide oxygen and
nutrients and motor neurons are required for coordinated
movement of skeletal muscle. Interaction of the different cell
types in skeletal muscle–either through direct cell-cell contact or
via paracrine signaling–is required for homeostasis and full
functionality of skeletal muscle and is a prerequisite for
regeneration of skeletal muscle.

Myofibers make up the largest proportion of skeletal muscle,
they contain the sarcoplasmic reticulum and the mitochondrial
network within the inter-myofilament space which is providing
storage, release and reuptake of calcium after activation as well as
ATP for muscle activity (Hargreaves and Spriet, 2020; Rossi et al.,
2022). Of note, the myonuclei are evenly distributed in myofibers
resulting in the control of transcriptional activity in the surrounding
area of the cytoplasm which is termed the myonuclear domain
(Qaisar and Larsson, 2014). However, at neuromuscular junctions
(NMJ) an accumulation of nuclei occurs (Bruusgaard et al., 2003).

Each myofiber is surrounded by a basal lamina consisting of
different collagens and laminins among other proteins. The
endomysium, a fibrillar connective tissue surrounding each
myofiber, forms a continuous three-dimensional network and
provides a connection between adjacent myofibers (Sanes, 2003;
Purslow, 2020). MuSCs are located underneath the basal lamina next
to the myofibers (Figure 1A). Regeneration of skeletal muscle is
crucially dependent on those adult stem cells which are also termed
satellite cells (Lepper et al., 2011; Murphy et al., 2011; Sambasivan
et al., 2011). In addition to their role in regeneration of skeletal
muscle, MuSCs are contributing to adaptation of skeletal muscle to
physiological demands such as training and growth. Under resting
conditions, MuSCs are mitotically quiescent and are characterized
by the expression of paired box protein 7 (Pax7), sprouty-1, and
calcitonin receptor (CalcR) among others (Fuchs and Blau, 2020;
vonMaltzahn, 2021; Yamaguchi et al., 2015; Yin et al., 2013). Several
myofibers with their adjacent MuSCs are grouped into muscle
fascicles or myofiber bundles, which are surrounded by a second
connective tissue termed the perimysium. The complete muscle is
composed of a multitude of muscle fascicles, surrounded by a thick
layer of connective tissue, the epimysium, which is extending from
the tendons (Zhang W. et al., 2021). This connective tissue is
maintained by residual fibroblasts in skeletal muscle (Purslow,
2020). It provides the connection of the myofiber bundles to the
tendons while the vasculature supplies the individual myofibers with
nutrients, oxygen or signal molecules and removes waste products.
The vasculature consists of endothelial cells, smooth muscle cells
and connective tissue which are embedded as small capillaries in the
endomysium (Pittman, 2000; Korthuis, 2011). However, during
regeneration of skeletal muscle new myofibers are formed along
with the different layers of connective tissue. Especially during
regeneration tissue monocytes and differentiated macrophages
play fundamental roles including the removal of cell debris.
Differentiated macrophages arise either from residential
monocytes within the muscle tissue or are entering skeletal
muscle via the bloodstream (Pillon et al., 2013).

To allow proper control of muscle contraction, motor neurons
are in close contact with individual myofibers at the NMJs
(Figure 1A). Typically, only one NMJ is connected to one

myofiber (Rodriguez Cruz et al., 2020). These chemical synapses
are located between a myofiber and a motor neuron, allow the signal
transmission from the neuron to the myofiber and control the
induction of contraction of individual myofibers (Ang et al.,
2022). The neurotransmitter acetylcholine (ACh) binds to
acetylcholine receptors (AChRs) in myofibers after release by the
motor neuron. AChR subunits undergo a conformational change
resulting in the influx of positively charged ions changing the
membrane potential thereby triggering an endplate potential
resulting in local depolarization. The generated action potential is
spreading from the endplate finally resulting in muscle contraction
(Sanes and Lichtman, 1999; Rodriguez Cruz et al., 2020).
Performance of skeletal muscle declines if innervation and signal
transmission via NMJs are impaired, a condition occurring for
instance during aging and in neuromuscular pathologies such as
spinal muscular atrophy. This emphasizes the need for proper
innervation of skeletal muscle (Tintignac et al., 2015). However,
loss of innervation also affects regeneration of skeletal muscle
(Jejurikar et al., 2002; Wong et al., 2021; Henze et al., 2024). Of
note, also MuSCs actively participate in regeneration of the NMJ
underscoring the importance of proper crosstalk between NMJs and
MuSCs (Liu et al., 2015; Liu et al., 2017).

The myotendinous junction (MTJ) regulates force transmission
between myofibers and tendons (Charvet et al., 2012). MTJs are
responsible for transmitting the force which is generated by the
muscle to the collagen fibers of the adjacent tendon (Ciena et al.,
2010). Recent studies have provided insights into the development
and regeneration of muscles and MTJs. These findings indicate that
even in case of severely damaged MTJs they can still undergo
regeneration, a process which occurs simultaneously with
regeneration of muscle tissue and allows full functionality of
skeletal muscle after completion of the regeneration process
(Yamamoto et al., 2022).

Regeneration of skeletal muscle

Skeletal muscle is one of the tissues with the highest ability to
regenerate after injury, a process which involves different cell types
residing in skeletal muscle and requires a proper cross talk among
them (Bentzinger et al., 2013a) (Figure 2). The fine balance between
different signaling pathways and proper timing of cellular processes
are a prerequisite for effective regeneration of skeletal muscle.
Regeneration of skeletal muscle can be divided in the following
phases: the phase of degeneration, the inflammatory phase, the
regeneration phase and the maturation/remodeling phase
followed by functional recovery (Schmidt et al., 2019; Forcina
et al., 2020).

Injury of skeletal muscle triggers a precisely orchestrated
inflammatory process (Figure 2). Damage-activated mast cells
secrete Tumor Necrosis Factor α (TNF-α), histamine and
Tryptase and then initiate the synthesis of cytokines like IL-6
(Gibbs et al., 2001). This leads to the rapid attraction of
circulating granulocytes mainly consisting of neutrophils which
promote the proinflammatory environment required for the
clearance of cellular debris (Tidball, 1995). Neutrophils then
secrete the chemokines Mip-12, Mcp-1 among others leading to
the recruitment of monocytes (Kasama et al., 1993). Monocytes then
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FIGURE 2
Schematic of cell-cell interactions in skeletal muscle during regeneration. Injury of skeletal muscle triggers mast cells secreting TNF-α and IL-6. This
leads to the rapid attraction of granulocytesmainly consisting of neutrophils. Secreted chemokines (Mip-1α, Mcp-1) recruitmonocyteswhich then start to
differentiate into pro- and anti-inflammatorymacrophages. The pro-inflammatorymacrophages secrete TNF-α and IL-1β inducing proliferation of MuSC
(muscle stem cells), whereas factors secreted by anti-inflammatory macrophages, such as IL-4 or IGF-1, stimulate myogenic differentiation.
Moreover, ECM proteins secreted by anti-inflammatory macrophages, such as Fibronectin and ColVI, promote self-renewal of MuSCs. Upon injury,
MuSCs leave the quiescent state and enter the cell cycle. Activated MuSCs canmigrate to the site of injury and fuse with the damagedmyofibers, which is
controlled by Ephrins andWnt7a signaling. Abbreviations: FAP, fibrogenic adipogenic progenitor cells; IL, Interleukin; TNFɑ, Tumor necrosis factor α; Mip-
12, Macrophage Inflammatory Protein 12; Mcp-1, Monocyte Chemotactic Protein 1; IGF-1, Insulin Growth-Like Factor 1; ColVI, Collagen type VI. Created
with BioRender.com.
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start to differentiate into two subtypes of macrophages (Figure 2).
The pro-inflammatory macrophages, formerly termed
M1 macrophages, secrete IL-1β, IL-6 and TNF-α inducing
proliferation of myogenic cells. The anti-inflammatory
macrophages, formerly termed M2 macrophages, release IL-4 and
IGF-1 thereby promoting myogenic differentiation (Horsley et al.,
2003; Dumont and Frenette, 2010; Saclier et al., 2013). Moreover,
anti-inflammatory macrophages secrete different extracellular
matrix (ECM) proteins which are important components of the
MuSC niche and promote their self-renewal, among them
Fibronectin and Collagen type VI (ColVI) (Gratchev et al., 2001;
Schnoor et al., 2008; Bentzinger et al., 2013b; Urciuolo et al., 2013).
Upon injuryMuSCs get activated and enter the cell cycle (Bentzinger
et al., 2010). They then become myogenic progenitor cells or fuse
with the damaged myofibers after migration to the site of injury, a
process which is controlled by signaling through Ephrins andWnt7a
(Stark et al., 2011; Bentzinger et al., 2014). Wnt signaling is one of
the important signaling pathways in muscle regeneration. Wnt5a,
Wnt5b, and Wnt7a are upregulated at early phases of regeneration
while Wnt3a and Wnt7b expression increase at later phases
(Polesskaya et al., 2003; Brack et al., 2008). While Wnt3a drives
differentiation of MuSCs through activation of the canonical Wnt
signaling pathway, Wnt7a promotes asymmetric MuSC division
together with the ECM protein Fibronectin. Furthermore, Wnt7a
induces migration of MuSCs and growth of myofibers through
activation of different non-canonical Wnt pathways (Polesskaya
et al., 2003; Brack et al., 2008; Otto et al., 2008; Le Grand et al., 2009;
Bentzinger et al., 2014). Interestingly, Wnt7a always signals through
Fzd7 in skeletal muscle activating different signaling pathways in the
respective cell types, among them the planar cell polarity pathway
and the AKT/mTOR pathway (von Maltzahn et al., 2012). A fine
regulation of Wnt signaling is required for proper regeneration of
skeletal muscle. For instance, increased canonical Wnt signaling
during aging causes impaired regeneration of skeletal muscle and
increased fibrosis (Brack et al., 2007). However, the anti-aging
hormone soluble Klotho (sKlotho) is an antagonist of canonical
Wnt signaling and important for maintaining MuSC functionality.
This suggests that Klotho may be a naturally occurring inhibitor of
increased canonical Wnt signaling in aged skeletal muscle and its
availability could overcome over live time acquired changes in aged
MuSCs (Ahrens et al., 2018). Furthermore, R-spondin plays a role in
differentiation of myogenic progenitor cells during regeneration by
positively regulating canonical Wnt signaling (Lacour et al., 2017).
In addition to regulatingWnt activity, a temporal switch fromNotch
to canonical Wnt signaling is required for proper myogenic
differentiation during regeneration (Brack et al., 2008). Here,
Notch ligands control MuSC proliferation and differentiation
(Conboy and Rando, 2002; Conboy et al., 2007; Brack et al.,
2008; Mourikis et al., 2012). Especially the interplay between
Notch and the transmembrane receptor Syndecan-3 (Sdc3)
controls the maintenance of the MuSC pool and myofiber size
after regeneration (Pisconti et al., 2010). Myogenic Regulatory
Factors (MRFs) like Myf5, MyoD, Myogenin and Mrf4 facilitate
myogenic differentiation of MuSCs allowing myogenic lineage
progression required for regeneration of skeletal muscle (Braun
et al., 1992; Rudnicki et al., 1992; Rudnicki et al., 1993; Singh and
Dilworth, 2013). Myogenic progenitor cells become elongated and
then fuse to form multinucleated myotubes expressing

developmental myosin heavy chains (MHCs) (Bentzinger et al.,
2010; Yin et al., 2013). In addition to the formation of new
myofibers during regeneration reinnervation takes place,
important for controlling MuSC behavior and maturation of
myofibers (Vignaud et al., 2007; Forcina et al., 2020; Henze
et al., 2024).

Muscle stem cells and myogenic lineage
progression in the adult

Regeneration of skeletal muscle is critically depending on
MuSCs, a stem cell population residing underneath the basal
lamina of myofibers first described by Alexander Mauro in 1961
(Mauro, 1961; Lepper et al., 2011; Murphy et al., 2011;
Sambasivan et al., 2011; Schmidt et al., 2019) (Figure 1A). In
adult skeletal muscle all MuSCs express the paired box
transcription factor Pax7, which is essential for MuSC
functionality, while subsets of them also express Pax3 or
myogenic regulatory factor 5 (Myf5) (Relaix et al., 2005;
Kuang et al., 2007; Lepper et al., 2011; Relaix and Zammit,
2012; Relaix et al., 2021). Although all MuSCs are expressing
the canonical marker Pax7, the MuSC population is
heterogeneous (Kuang et al., 2007; Mourikis et al., 2012;
Chakkalakal et al., 2014). Under resting conditions MuSCs are
quiescent but can be readily activated due to injury or other
stimuli such as exercise (Fry et al., 2015; Schmidt et al., 2019).

After injury of skeletal muscle quiescent MuSCs become
activated and then undergo myogenic lineage progression
resulting in the expression of MyoD and Myf5. This causes
their transformation into myogenic precursor cells (Chang and
Rudnicki, 2014; Henze et al., 2020; von Maltzahn, 2021). However,
MuSCs are capable of self-renewal thereby maintaining the MuSC
pool and giving rise to myogenic progenitor cells required for
regeneration of skeletal muscle (Blau et al., 2015). Myogenic
differentiation is driven by the MRFs which comprise Myf5,
MyoD, Myogenin and Mrf4, which control the process of
elongation of myogenic progenitor cells into myocytes
(Soleimani et al., 2012; Singh and Dilworth, 2013; Hernandez-
Hernandez et al., 2017). Of note, fusion of myocytes into
multinucleated myotubes depends on the expression of
myomaker and myomerger (Millay et al., 2013; Leikina et al.,
2018). The final step in regeneration of skeletal muscle is the
maturation of myofibers which is coinciding with the migration of
the centrally located nuclei into the periphery of myofibers
(Forcina et al., 2020).

Receptors in muscle stem cells

Proper regeneration of skeletal muscle requires an effective
communication between the different cell types in skeletal muscle
and MuSCs (Figure 2). MuSCs receive signals from the immediate
niche and surrounding cells through a variety of transmembrane
receptors. The interactions of signaling molecules with the
transmembrane receptors in MuSCs activate signaling pathways
which regulate their quiescence, activation and differentiation
(Figure 3). Interactions of MuSCs with their surroundings can be
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divided into the following categories: direct cell-cell interactions
(Figure 3A), signaling via secreted factors (Figure 3B) or cell-matrix
interactions (Figure 3C) which we will discuss in detail in the
following paragraphs.

Direct cell-cell interactions

Notch signaling

One of the main receptors in MuSCs controlling quiescence and
differentiation are the Notch receptors. They are highly conserved
single-pass transmembrane proteins with a large extracellular
portion (Figure 3A). Mammals comprise four different Notch
receptors (Notch 1–4) which are expressed on the cell surface of
the signal-receiving cell. The Notch ligands Delta-like
(Dll) −1, −4 and Jagged (Jag) −1, −2 are also transmembrane
proteins located on the opposing signal-sending cell making a
direct cell-cell communication a prerequisite for activation of the
Notch signaling pathway. Activation of the Notch receptor by its
ligands then leads to proteolytic cleavage of the receptor into a
Notch extracellular domain (NECD) by Adam10 and into a Notch
intracellular domain (NICD) by γ-secretases. The ligand remains
bound to the extracellular part and is endocytosed by the signal-
sending cell, while the cytosolic part migrates to the nucleus and
binds to the transcription factor Recombination Signal Binding
Protein for Immunoglobulin Kappa J Region (RBPJ) regulating
the expression of Notch target genes (Vasyutina et al., 2007a;
Kopan and Ilagan, 2009; Gioftsidi et al., 2022).

Notch signaling controls asymmetric division and quiescence of
MuSCs. Importantly, high levels of Notch keep MuSCs in a
quiescent state (Bjornson et al., 2012; Wen et al., 2012). The
essential role of Notch signaling in maintaining MuSC quiescence
was further supported by the finding that loss of Notch 1 and Notch
2 receptor in murineMuSCs results in break of quiescence (Fujimaki
et al., 2018). Of note, expression of RBPJ, a downstream factor of
Notch signaling, is a prerequisite for maintenance of MuSC
quiescence (Bjornson et al., 2012; Mourikis et al., 2012). The
genetic loss of RPBJ induces a break of quiescence and leads to
spontaneous activation and premature differentiation of MuSCs
(Bjornson et al., 2012; Bentzinger et al., 2013a). RBPJ and the Notch
ligand Dll1 play an essential role in the maintenance of muscle
progenitor cells (Vasyutina et al., 2007a), e.g. mutations in RBPJ and
Dll1 lead to extensive and uncontrolled differentiation of progenitor
cells resulting in an increased population of differentiated myogenic
cells expressing MyoD and Myogenin and a reduced number of
progenitors expressing Lbx1 and Pax3 (Vasyutina et al., 2007b;
Schuster-Gossler et al., 2007). This uncontrolled myogenic
differentiation leads to the depletion of the progenitor cell pool,
resulting in insufficient muscle growth during development and
severe muscle hypotrophy (Vasyutina et al., 2007a; Vasyutina et al.,
2007b; Brohl et al., 2012).

While the Notch 2/Dll1 signaling pair was identified as the
mediator of MuSC self-renewal (Yartseva et al., 2020), Dll1 also
controls the differentiation of early myoblasts and the maintenance
of myogenic progenitor cells in mouse embryos (Schuster-Gossler
et al., 2007). In addition to its role in regulating MuSC functionality
in the adult, Notch signaling plays an important role in embryonic

FIGURE 3
Receptors in MuSCs. MuSCs expresses various transmembrane receptors to interact with their local niche including (A) the myofiber (green
background), (B) the stem cell niche (blue background), and (C) the extracellular matrix (ECM) (light brown background). Arrows indicate interaction
partners. Abbreviations: Dvl, Dishevelled; LRP, Low density lipoprotein Receptor-related Protein; Wnt, Wingless-related integration site; Fzd, Frizzled
receptor; Sdc, Syndecan; Itg, Integrin; Dll, Delta-like protein; Notch, Neurogenic locus notch homolog protein; EGF, Epidermal Growth Factor;
EGFR, Epidermal Growth Factor Receptor; ErbB, Anti-apoptotic ErbB receptor; FGF, Fibroblast growth factor; FGFR, Fibroblast Growth Factor Receptor;
HGF, Hepatocyte growth factor; c-Met, Mesenchymal epithelial transition factor; CalcR, Calcitonin receptor; Gpr116, adhesion G-protein-coupled
receptor 116. Created with BioRender.com.
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and postnatal myogenesis controlling processes such as
maintenance of the quiescent state, regulation of self-renewal and
differentiation (Bjornson et al., 2012).

Furthermore, Notch signaling controls the interaction of MuSCs
with their immediate niche, e.g., Notch1/RBPJ regulates the
expression of the ECM molecule ColV, which promotes
quiescence of MuSCs by binding to the Calcitonin receptor
(CalcR) in an autocrine manner (Baghdadi et al., 2018) (Figures
3A, B). Notch also interacts with the single-pass transmembrane
proteoglycan Sdc3 to regulate maintenance of the MuSC pool as well
as self-renewal and reversible quiescence of MuSCs (Pisconti et al.,
2010) (Figure 3). Syndecans interact with ECM proteins (e.g.,
Collagens, Laminins, Fibronectin) and growth factors (e.g., FGF-
2, HGF, EGF, VEGF) via their ectodomain and with intracellular
signaling molecules and cytoskeletal proteins through their
intracellular domain (Leonova and Galzitskaya, 2013; Gondelaud
and Ricard-Blum, 2019). Sdc3, along with Notch, is expressed in
MuSCs and regulates their maintenance, proliferation and
differentiation emphasizing the connection of the different
signaling pathways (Fuentealba et al., 1999). Furthermore,
Sdc3 controls myofiber size after regeneration and can be used as
a membranous molecular marker to identify MuSCs next to Sdc4
(Pisconti et al., 2010; Wang et al., 2014).

Cadherins

Quiescence of MuSCs is controlled by Notch signaling as well as
through signaling via cadherins. Cadherins are single pass
transmembrane glycoproteins, which mediate calcium-dependent
cell-cell adhesion (Ivanov et al., 2001). Cadherins facilitate the direct
binding of MuSCs to myofibers (Figure 3A). Three different
cadherins are expressed by MuSCs and adult myofibers: M-, N-
and VE-Cadherin. However, not all Cadherins appear to play similar
roles in skeletal muscle (Kann et al., 2021). M-cadherin was found in
quiescent and activated MuSCs and is one of the molecular markers
of MuSCs (Wang et al., 2014). M- and N-cadherin regulate MuSC
quiescence through the canonical Wnt/β-catenin signaling (Goel
et al., 2017). In the absence of injury, removal of N-cadherin from
adult MuSCs induces a break in quiescence, which can be enhanced
by additional removal of M-cadherin. Removal of N-cadherin alone
from MuSCs does not lead to an exit from the niche or loss of cell
polarity, suggesting that the function of N-cadherin is rather related
to maintenance of MuSC quiescence (Goel et al., 2017). Under
homeostatic conditions, expression of M-cadherin in MuSCs
mediates their adhesion to myofibers (Marti et al., 2013).
Furthermore, M-cadherin is crucial for activation of cell division,
e.g., in vitro treatment of MuSCs with M-cadherin stimulates cell
division, whereas incubation with M-cadherin blocking antibodies
reduces cell divisions (Marti et al., 2013).

Gpr116

Another important regulator of MuSC quiescence is the
adhesion G-protein-coupled receptor Gpr116, which belongs to
the G-protein-coupled receptor (GPCR) superfamily. GPCRs are
seven-pass-transmembrane receptors which are stimulated by

extracellular ligands leading to the dissociation of the
heterotrimeric G-protein (Gα, Gβ, Gγ) resulting in the activation
of the respective intrinsic signaling cascades. Nevertheless, adhesion
GPCRs have several atypical characteristics, including an
exceptionally long extracellular N-terminus, which contains
adhesion domains and a highly conserved region for
autoproteolytic cleavage (Bassilana et al., 2019). Adhesion GPCRs
like Gpr116 carry an agonistic sequence within the autoproteolysis-
inducing (GAIN) domain. Short peptides derived from this region,
called Stachel sequence, serve as a tethered agonist and can activate
the respective receptor and initiate the respective signaling cascade
(Stoveken et al., 2015; Demberg et al., 2017). Sénéchal and colleagues
recently showed that adhesion GPCR Gpr116 is present at high
levels in quiescent MuSCs being essential for long-term
maintenance of the MuSC pool regarding quiescence and self-
renewal capacity (Figure 3C). Of note, stimulation of MuSCs
with the Gpr116 Stachel peptide prevents activation and
differentiation of MuSCs. This stimulation also leads to a strong
association with β-arrestins and increases the nuclear localization of
β-arrestin 1, where it interacts with the cAMP response element
binding protein (CREB) to regulate gene expression (Senechal et al.,
2022). Furthermore, expression of Gpr116 is rapidly downregulated
in activated MuSCs. MuSCs lacking Gpr116 are incapable of
maintaining quiescence by showing progressive depletion over
time and impaired self-renewal underscoring the importance of
Gpr116 for maintenance of MuSC quiescence (Senechal et al., 2022).

Interaction with secreted niche factors

Wnt signaling

In addition to direct cell-cell-interactions controlling mainly
MuSC quiescence, MuSC functionality is regulated by secreted niche
factors, e. g., Wnt signaling regulating divisions of MuSCs. Wnt
signaling through Frizzled (Fzd) receptors plays an important role in
asymmetric division and migration of MuSCs. Fzd receptors are
seven-pass transmembrane proteins with a large extracellular
cysteine-rich domain (CRD), which is involved in ligand binding
(Nusse, 2008; Sethi and Vidal-Puig, 2010; Clevers and Nusse, 2012).
Fzd receptors are activated by different Wnt proteins, a large family
of secreted glycoproteins, related to the wingless gene in Drosophila
(Sethi and Vidal-Puig, 2010; Willert and Nusse, 2012). In mammals,
the Wnt family comprises 19 members, with high amino acid
sequence identities but distinct signaling properties resulting in
multiple intracellular responses (Nusse, 2008).

The canonical Wnt signaling pathway, also known as Wnt/β-
catenin pathway, requires the transmembrane low density
lipoprotein receptor-related protein (LRP) as a co-receptor as
well as the transcriptional activity of β-catenin (Nusse, 2012). β-
catenin forms a degradation complex with axin, adenomatous
polyposis coli (APC) and glycogen synthase kinase-3 beta (GSK-
3β). In the absence of Wnt, β-catenin is phosphorylated within the
degradation complex, leading to its own degradation (Katoh and
Katoh, 2007). Binding of Wnt ligands to their respective Fzd
receptors causes the activation of heterotrimeric G-proteins and
the cytoplasmic phosphoprotein Dishevelled (Dvl). This results in a
phosphorylation-dependent recruitment of axin to the Fzd co-
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receptor LRP and inactivation of the β-catenin degradation complex,
followed by the accumulation and stabilization of β-catenin in the
cytoplasm and its translocation into the nucleus. Here, β-catenin
binds to the transcription factors T-cell factor (TCF) and lymphoid
enhancer factor (LEF) and acts as a transcriptional coactivator
inducing Wnt/β-catenin target genes (Abu-Elmagd et al., 2010;
Grumolato et al., 2010). In adult skeletal muscle canonical Wnt
signaling is mainly mediated through the Fzd ligand Wnt3a which
drives differentiation of MuSCs (Otto et al., 2008; von Maltzahn
et al., 2012) (Figure 3B). Upon activation of MuSCs canonical Wnt
signaling increases and antagonizes the effects of Notch signaling.
The temporal switch from Notch to Wnt signaling is essential for
normal myogenesis regarding differentiation and progression of
myogenic commitment (Brack et al., 2008). Additionally,
maintaining a balanced and proper canonical Wnt signaling is
crucial for successful regeneration. It has been demonstrated that
R-spondin, a modulator of canonical Wnt signaling, plays an
important role in differentiation of myogenic progenitor cells
during regeneration (Lacour et al., 2017). Furthermore, it was
shown that conditional activation or disruption of β-catenin in
adult MuSCs also impairs regeneration of skeletal muscle (Rudolf
et al., 2016).

In contrast to the canonical pathway, non-canonical Wnt ligands
activate several non-canonical pathways inMuSCs and myofibers, such
as the planar cell polarity, the PI3K/AKT/mTOR and theWnt/Calcium
pathway (von Maltzahn et al., 2011; von Maltzahn et al., 2013a; von
Maltzahn et al., 2013b). Of note, all ligands signal through Fzd receptors
independently of β-catenin and LRP (Nusse, 2012; von Maltzahn et al.,
2012). In skeletal muscle, Wnt7a and its receptor Fzd7 mediate non-
canonical Wnt signaling thereby regulating regeneration and growth of
skeletal muscle (Bentzinger et al., 2014; Bentzinger et al., 2013b; Le
Grand et al., 2009; Schmidt et al., 2022; von Maltzahn et al., 2011; von
Maltzahn et al., 2013b) (Figure 3B). Wnt7a signaling specifically
promotes symmetric satellite stem cell divisions, a subpopulation of
MuSCs, via the formation of a coreceptor complex with the ECM
glycoprotein Fibronectin and the receptor Sdc4 (Le Grand et al., 2009;
Bentzinger et al., 2013b) (Figure 3B). Another Wnt family protein,
Wnt4, is released by myofibers and controls MuSC quiescence by
activating the Rho GTPase and repressing the Yes-associated protein
(YAP) via a non-canonical Wnt pathway (Eliazer et al., 2019).

FGF, EGF, and HGF signaling

While Wnt signaling mainly regulates MuSC divisions, FGF
signaling preferentially controls proliferation of MuSCs. Fibroblast
growth factor receptors (FGFRs) are receptor tyrosine kinases
(RTKs) comprising the four homologous members FGFR1-4.
Like all common RTKs, they contain an intracellular tyrosine
kinase domain and a large extracellular ligand-binding domain,
which binds fibroblast growth factors (FGFs) as their native ligands.
FGFR signaling is involved in various physiological processes like
proliferation, differentiation, cell migration and survival (Dai
et al., 2019).

The expression of all four FGF receptors was shown in
myofiber cultures and in MuSCs (Kastner et al., 2000). The
fibroblast growth factors FGF-2 and FGF-6 regulate MuSC
function via various signaling pathways including ERK MAPK,

p38α/β-MAPK, PI3 kinase, PLCγ or STAT signaling
(Pawlikowski et al., 2017). FGF-2 and FGF-6 promote
proliferation of MuSCs and inhibit their differentiation in
mice (Bentzinger et al., 2010; Pawlikowski et al., 2017). In rat
myofiber cultures, FGF-1, FGF-4 and FGF-6 enhance
proliferation of MuSCs similar to FGF-2 in mice (Kastner
et al., 2000). FGF-6 is present at high concentrations in
isolated myofibers, suggesting that the myofiber is the main
source of FGF-6 in vivo (Kastner et al., 2000). The unique
localization of FGF-6 and FGFR4 may have a specific function
during myogenesis (Kastner et al., 2000). However, presumably
FGF-6 has a dual role during myoblast proliferation, migration
and muscle differentiation, hypertrophy and regeneration which
is depending on the activation of distinct signaling pathways that
recruit either FGFR1 or FGFR4 receptors in a dose-dependent
manner (Armand et al., 2006). Proper FGF signaling in MuSCs
requires the interaction with Sdc4, β1-Integrin and Fibronectin
(Pawlikowski et al., 2017) (Figure 3B). Alteration or reduction of
levels of either β1-Integrin, Fibronectin or Sdc4 modulates FGF
signaling in MuSCs and affects their behavior (Pawlikowski et al.,
2017). For example, an abnormal localization of β1-Integrin
during aging leads to a diminished FGF-2 response, resulting
in aberrant ERK signaling controlling activation of MuSCs (Rozo
et al., 2016).

In addition to FGF receptors, MuSCs express another class of
RTK receptors, the anti-apoptotic ErbB receptors which comprise
four members: the epidermal growth factor (EGF) receptor (also
known as ErbB1), ErbB2, ErbB3 and ErbB4. They are single-pass
transmembrane proteins with an extracellular ligand-binding
domain for EGF-related growth factors, and a cytoplasmic
protein tyrosine kinase domain being able to form homo- and
heterodimers (Olayioye et al., 2000) (Figure 3B). Golding et al.
demonstrated in 2007 that MuSCs do not express any ErbB
receptors in the quiescent state. However, within 6 h of
activation ErbB1, ErbB2 and ErbB3 are expressed, while ErbB4 is
activated in the first 24 h of activation. Furthermore, Golding and
colleagues show that ErbB2 signaling plays a role in preventing
apoptosis thereby preserving MuSCs during the critical phase of
stem cell activation (Golding et al., 2007).

Receptors can be also used as molecular surface markers to
identify MuSCs, among them c-Met and CXCR4 (Figure 3B).
Mesenchymal epithelial transition factor (c-Met) is a single-pass,
disulfide-linked α/β-heterodimer of the RTK family with high
affinity to hepatocyte growth factors (HGF). Ligand/receptor
interaction activates different signaling pathways, which are
involved in proliferation, motility, migration, invasion and
evasion of apoptosis (Organ and Tsao, 2011). c-Met is one of the
molecular markers of MuSCs and required for regeneration of
skeletal muscle (Webster and Fan, 2013; Wang et al., 2014;
Lahmann et al., 2021). The study by Lahmann et al. (2021)
showed that c-Met and C-X-C chemokine receptor type 4
(CXCR4) signaling cooperate during muscle regeneration.
CXCR4 is a GPCR of the chemokine family, which is activated
by the chemokine CXCL12 (Sdf-1α) and stimulates proliferation and
migration of MuSCs (Vasyutina et al., 2005; Griffin et al., 2010).
Consequently, MuSCs deficient of c-Met and CXCR4 are susceptible
to apoptosis, while c-Met and CXCR4 signaling protects MuSCs
from TNF-α-induced apoptosis (Lahmann et al., 2021).
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Cell-matrix interactions

Integrin signaling

MuSCs are embedded in their niche. ECM molecules make up a
large portion of the MuSC niche and regulate MuSC functionality.
Here, Integrin receptors (Itg) are responsible for cell-matrix and
cell-cell interactions. They function as extracellular receptors for
ECM ligands such as Fibronectin, Laminin, Collagens or Vitronectin
and thus form the structural and functional link between the ECM
and intracellular cytoskeletal proteins (Figure 3C). Integrins consist
of non-covalently bound α- and β-subunits. In the resting state they
present in an inactive conformation, while binding of chemokines
and growth factors results in their activation and binding of
intracellular molecules such as Paxillin, Talin and Kindlin to the
β-subunit thereby allowing binding to ECM components. This
binding promotes the recruitment of signaling molecules such as
Integrin Linked Tyrosine (ILK), Focal Adhesion Kinases (FAK) and
modulation of signaling pathways such as AKT, ERK, Rho-GTPases
and mTOR (Hynes, 2002; Takada et al., 2007; Campbell and
Humphries, 2011; Taylor et al., 2022).

The heterodimer α7/β1-Integrin can be mainly found in skeletal
muscle and has a high affinity for Laminin (Kramer et al., 1991;
Loreti and Sacco, 2022) (Figure 3C). Quiescent MuSCs express high
levels of α7- and β1-Integrin, which makes them good molecular
markers of MuSCs (Blanco-Bose et al., 2001; Wang et al., 2014). Of
note, β1-Integrin is involved in the maintenance of MuSC
homeostasis as well as the expansion and self-renewal of MuSCs
during regeneration. Moreover, β1-Integrin interacts with FGF-2
thereby controlling MuSC proliferation and self-renewal while β3-
Integrin regulates differentiation of MuSCs in regenerating muscle
(Liu et al., 2011; Rozo et al., 2016). Integrins also play an important
role in the interaction of MuSCs with their immediate niche, MuSCs
adhere to the ECM molecule Fibronectin via α4/β1-, α4/β7-and α5/
β1-Integrins or to Laminin via α6/β1-Integrin (Figure 3C),
interactions which are especially important during myogenesis
(Taylor et al., 2022). Here, Fibronectin mediates the peripheral
nuclear positioning through binding to α5-Integrin, a process
depending on activation of FAK and the tyrosine kinase Src
(Roman et al., 2018).

Signaling through the calcitonin receptor

While the ECM molecules Fibronectin and Laminin mainly
interact with Integrins, ColIV binding to the Calcitonin receptor
(CalcR) regulates quiescence of MuSCs (Baghdadi et al., 2018)
(Figure 3C). The CalcR is another member of the GPCRs which
regulates quiescence of MuSCs, similar to Gpr116. Binding of the
peptide hormone Calcitonin to the CalcR causes its activation
resulting in the activation of multiple signaling pathways through
its interaction with different G-protein family members (Gs and Gq)
involved in maintaining calcium homeostasis (Masi and Brandi,
2007). In addition to regulating quiescence by signaling via the
CalcR-protein kinase A (PKA)-Yes-associated protein 1 (Yap1) axis,
CalcR is a molecular marker of MuSCs (Wang et al., 2014;
Yamaguchi et al., 2015; Zhang et al., 2019; Zhang L. et al., 2021).
MuSCs are retained in a quiescent state by the Notch-ColV-CalcR

signaling pathway (Baghdadi et al., 2018). Here, ColV is produced as
a result of Notch signaling and acts as a ligand for the CalcR. ColV
production is reduced uponMuSC activation and inhibition of ColV
synthesis leads to their activation and differentiation (Baghdadi
et al., 2018).

The MuSC niche and its remodeling
after injury

Receptors in MuSCs are connecting MuSCs to the local
environment, also known as the MuSC niche. The niche plays a
prominent role in regulating quiescence and activation of MuSCs,
myogenic differentiation and thereby regeneration of skeletal
muscle. For instance, quiescence of MuSCs is regulated through
the tight expression of multiple transcription factors in MuSCs.
Binding of ECM components from the MuSC niche by receptors in
MuSCs controls their expression and thereby the state of quiescence
(Chang and Rudnicki, 2014). The ECM, a complex network of
proteins and carbohydrates, provides structural support to MuSCs.
Its composition is tightly connected to the age of an individual and
state of regeneration regulating MuSC functionality. The most
prominent components of the ECM in the MuSC niche include
Collagens, Laminins, Vitronectin, Fibronectin and other
glycoproteins as well as adhesion molecules such as M-Cadherin
and CD34 (Casaroli Marano and Vilaro, 1994; Beauchamp et al.,
2000). Post-translational modifications (PTMs) are essential for the
proper functionality of ECM molecules and play an important role
in regulating cellular behavior (Hu et al., 2022). These PTMs can
occur at various stages of ECM protein synthesis, secretion or
degradation and include mostly phosphorylation, glycosylation,
acetylation and ubiquitination (Yuan and Ye, 2021).

The MuSC niche is severely remodeled during regeneration of
skeletal muscle including a change in the composition of cell types in
the immediate MuSC niche. Here, the interplay betweenMuSCs and
various muscle resident cell types such as fibroblasts, immune cells
(including macrophages, eosinophils and neutrophils) and FAPs
affects and controls proper regeneration of skeletal muscle (Abou-
Khalil et al., 2010; Lander et al., 2012). During regeneration dynamic
remodeling of the ECM takes place, which is driven by changes in
expression and thereby secretion of ECM molecules by MuSCs and
other cell types in regenerating muscle. This remodeling causes
alterations in MuSC behavior required for regeneration. For
instance, MuSCs become activated through upregulation of
Fibronectin expression and consequently activation of the
respective receptors (Bentzinger et al., 2010; Shirakawa et al.,
2022). Of note, activated mast cells create a pro-inflammatory
environment after injury through secretion of cytokines, tryptase
and TNF-α, which in turn is responsible for the downregulation of
the expression of Pax7 (Palacios et al., 2010). Afterwards, monocytes
differentiate into macrophages (pro-inflammatory and anti-
inflammatory) which stimulate the early and late phases of
myogenic processes by secretion of ECM components including
Fibronectin and ColVI, respectively (Bentzinger et al., 2014;
Mashinchian et al., 2018). In addition to MuSCs and immune
cells, FAPs get activated after injury and rapidly increase in
number (Sastourne-Arrey et al., 2023). They contribute to
myogenic differentiation by secretion of the cytokine interleukin
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(IL)-6. However, eosinophils secrete additional cytokines such as IL-
4 or IL-3, which are responsible for blocking the adipogenic
differentiation of FAPs (Bentzinger et al., 2013a). Moreover,
endothelial cells secrete a variety of antiapoptotic factors (e.g.,
VEGF) which stimulate the proliferation of MuSCs during
regeneration (Frey et al., 2012).

Alterations in regeneration of skeletal
muscle in age and disease

As outlined above, regeneration of skeletal muscle is a highly
orchestrated process in which each step is tightly controlled. During
aging as well as in different disease states this precise control is out of
balance resulting in impairments or delays of regeneration.

Aging is characterized by a decline of organ function and
integrity, accompanied by a decrease of regenerative capacity and
an increase in vulnerability. The reduced ability of tissues to
regenerate is mainly caused by stem cell exhaustion and
deterioration (Kirkwood, 2005; Sousa-Victor et al., 2014; Lopez-
Otin et al., 2023). Aging of skeletal muscle is marked by the gradual
loss of muscle mass, strength and overall impaired physical
performance, also called sarcopenia (Cruz-Jentoft et al., 2019).
Additionally, muscle tissue is often replaced by adipose tissue
(Rahemi et al., 2015; Yoshiko et al., 2017). During aging MuSCs
switch to an irreversible cell cycle arrest and show increased levels of
H3K27me3, which is associated with transcriptional repression (Liu
et al., 2013; Sousa-Victor et al., 2014; Sousa-Victor et al., 2018)
(Figure 4). Furthermore, functionality of MuSCs is impaired
through the aberrant induction of developmental pathways
caused by permissive chromatin states (Figure 4). For example,
expression of Hoxa9 is induced and activates pathways such as JAK/
STAT signaling limiting MuSC function (Schworer et al., 2016).
Also, p38α/β-MAPK signaling displays aberrant upregulation in
aged MuSCs inhibiting their self-renewal and thus regenerative

potential (Cosgrove et al., 2014). Upregulation of
developmentally important signaling pathways such as canonical
Wnt signaling, JAK/STAT signaling and downregulation of Notch
signaling further diminishes MuSCs functionality and drives them
into a fibrogenic fate (Brack et al., 2007; Carlson et al., 2009; Price
et al., 2014; Tierney et al., 2014) (Figure 4). In MuSCs from geriatric
mice epigenetic p16INK4a depression is lost driving MuSCs into an
irreversible pre-senescent state (Sousa-Victor et al., 2014; Schworer
et al., 2016). An additional driver for loss of stem cell functionality
with increasing age is their reduced autophagic activity leading to an
accumulation of damaged mitochondria and increased ROS levels
(Garcia-Prat et al., 2016). In addition to intrinsic changes in MuSCs,
systemic factors show alterations during aging, e.g., serum levels of
TGF-β1 are increased in elderly humans and mice which stimulates
the expansion of tissue-resident fibroblasts and inhibits the
myogenic differentiation of MuSCs, leading to a diminished
regenerative capacity of aged muscle (Carlson et al., 2009).
Furthermore, reduced levels of the well-known anti-aging
hormone Klotho lead to a perturbed number and functionality of
MuSCs resulting in a reduction of the regenerative capacity of
skeletal muscle (Ahrens et al., 2018).

As outlined above, MuSCs are also directly affected by their local
environment. Here, the ECM shows the biggest alterations during
aging (Birch, 2018).With increasing age, systemic cytokine levels are
altered and shift towards a low-grade chronic inflammation, a
process also known as “inflammaging” (Franceschi et al., 2018).
In skeletal muscle, this leads to the deregulation of ECM remodeling
enzymes and their inhibitors, thereby increasing the amount of
fibrotic tissue and impairing differentiation of myoblasts into
myofibers (Blau et al., 2015). Additionally, the altered elasticity of
fibrotic muscle tissue is likely to impair self-renewal of MuSCs
(Urciuolo et al., 2013). Furthermore, it was shown that the direct
interactions betweenMuSCs and the myofiber are controllingMuSC
behavior (Bischoff, 1990). The exact mechanism for this interaction
is not known but FGF-2 is increasingly secreted by aged myofibers

FIGURE 4
Alterations in MuSCs during aging. Induction of developmental pathways during aging impairingMuSCs functionality. MuSC, muscle stem cell; ECM,
extracellular matrix; FN, fibronectin; FAP, fibro-adipogenic progenitor; NMJ, neuromuscular junction. Figure was modified from Henze et al. (2020).
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and, at least in part, responsible for the age-related depletion of the
MuSC pool (Chakkalakal et al., 2012). Increased FGF-2 levels hinder
MuSCs to return to quiescence via constant activation of ERK
signaling (Chakkalakal et al., 2012). In addition to alterations in
the secretome of myofibers, the myofiber size seems to directly affect
number and function of MuSCs, both of which are reduced during
aging (Verdijk et al., 2007). Moreover, other muscle resident cell
types change their functionality during aging, e.g., FAPs, which
contribute to muscle homeostasis and regeneration, are displaying
alterations during aging. For instance, it was shown that the
matricellular protein Wisp1 is important to promote the
expansion of MuSCs during regeneration. However, with
increasing age Wisp1 secretion by FAPs is reduced, contributing
to impaired MuSC functionality which then causes a reduced
regenerative capacity. This is reminiscent of the observation that
loss of Fibronectin expression in aged skeletal muscle impairs its
regeneration (Lukjanenko et al., 2016; Lukjanenko et al., 2019).

With increasing age regeneration of skeletal muscle is reduced.
However, other physiological states or diseases can also lead to an
insufficient tissue restoration and/or maintenance of skeletal muscle.
Among those are cancer cachexia, congestive heart failure, chronic
obstructive pulmonary disease, chronic infectious diseases,
neuromuscular diseases, chronic inflammatory diseases and acute
critical illness. In those diseases functionality of MuSCs is affected
through increased inflammation, oxidative stress, metabolic changes
or unbalanced nutrition (Sharifi-Rad et al., 2020). Duchenne
Muscular Dystrophy (DMD) pathology is one of the degenerative
diseases affecting regeneration and maintenance of skeletal muscle.
Here, the absence of the Dystrophin protein leads to sarcolemma
instability and fragility. DMD is associated with extensive damage of
myofibers upon contraction which cannot be rescued by newly
regenerated myotubes (Ohlendieck et al., 1993; Grounds et al.,
2008). Furthermore, divisions of MuSCs are affected in mdx
mice, the mouse model of DMD (Dumont et al., 2015). Another
example for muscle wasting diseases is myositis which affects
proximal skeletal muscles and is clinically characterized by
muscle weakness and a low level of muscle endurance (Lundberg
et al., 2016). Here, an inflammatory cell infiltration, mainly
composed of T-cells, macrophages and dendritic cells, occurs in
skeletal muscle although the molecular mechanisms causing muscle
wasting is not fully understood yet (Engel and Arahata, 1984;
Greenberg et al., 2005). However, it was suggested that muscle
weakness is caused by a loss of capillaries leading to tissue hypoxia
and a loss of myofibers due to degeneration and necrosis of
myofibers as a result of direct cytotoxic effects of T-cells (Emslie-
Smith and Engel, 1990; Hohlfeld and Engel, 1991). Severe muscle
wasting and loss of MuSC functionality is also occurring in cancer
cachexia, the loss of muscle mass and functionality due to cancer.
Here, Wnt7a was shown to effectively counteract muscle wasting
through activation of the anabolic AKT/mTOR pathway as well as
improve MuSC functionality (Schmidt et al., 2020). In addition to
loss of muscle mass, cancer cachexia is associated with muscle
damage which results in activation of MuSCs. Although MuSCs
are activated, they fail to properly differentiate due to aberrant
expression of Pax7 (He et al., 2013), a situation which shows
similarities to rhabdomyosarcoma cells, a type of cancer cells
thought to arise from myogenic precursor cells and which are
also characterized by impaired myogenic differentiation.

Rhabdomyosarcomas

Although skeletal muscle is a tissue which does not undergo
extensive tissue replacement and proliferation in the adult–except
after injury - myogenic cells undergo proliferation during
development, the time when rhabdomyosarcomas (RMS) arise.
Rhabdomyosarcomas are the most common soft-tissue sarcoma
in children and resemble cells committed to the skeletal muscle
lineage in embryonic and fetal stages of development (Wei et al.,
2022). However, the cell of origin is not well characterized so far.
Literature suggests that RMS tumors could be initiated by cells of
myogenic origin or by cells of non-myogenic origin (Keller et al.,
2004; Hatley et al., 2012; Blum et al., 2013; Drummond et al., 2018).

RMS can be divided in two main subtypes, the most common
embryonal rhabdomyosarcoma [ERMS, (~70%)] and the more
aggressive alveolar rhabdomyosarcoma [ARMS, (~20%)]. The
remaining RMS cases are caused by pleomorphic and spindle
cell/sclerosing RMS (Ognjanovic et al., 2009). Classification in the
clinics is mainly done by morphological and cytological assessment
of hematoxylin and eosin-stained histology sections (Asmar et al.,
1994; Davicioni et al., 2009). RMS tumors tend to occur at three
main anatomical regions of the human body including the head and
neck regions, the genitourinary system and the extremities (Arndt
and Crist, 1999; Ma et al., 2015). However, RMS tumors can arise
also at other locations in the human body. Of note, in all types of
RMS a deregulated myogenic differentiation program leads to
continuous proliferation and impaired terminal myogenic
differentiation (Skapek et al., 2019).

The genetic alterations in most ARMS cases (approximately
80%) are well understood, here a chromosomal translocation
between the PAX3 [t (2; 13) (q35; q14)] or PAX7 [t (1; 13) (q36;
q14)] and Forkhead box protein O1 (FOXO1) occurs. This results in
fusion genes thereby generating oncogenic transcription factors
consisting of the DNA binding domain of the PAX and the
transactivation domain of FOXO1, PAX-FOXO1. A minority of
ARMS cases (~20%) lacks these translocations and shares clinical
and biological features of ERMS (Parham and Barr, 2013). The
presence of a PAX-FOXO1 fusion (fusion-positive/FP RMS cases)
drives unfavorable outcomes in children and is recognized as an
important prognostic factor (Hibbitts et al., 2019). Both PAX-
FOXO1 fusion proteins show more transcriptional activity, are
expressed at a higher level and are proteolytically more stable
than their wild-type PAX counterparts (Davis and Barr, 1997;
Bennicelli et al., 1999; Miller and Hollenbach, 2007). Thereby,
they contribute to tumorigenicity through affecting growth,
apoptosis, differentiation and cell migration. The enhanced
expression of PAX3 or PAX7 in ARMS–here as a fusion
protein–is reminiscent of MuSCs in cancer cachexia which are
also displaying aberrant high levels of Pax7 expression (He et al.,
2013). The aberrant expression of Pax7 or Pax3 might be one of the
main drivers of impaired myogenic differentiation in ARMS as
observed in MuSCs in cancer cachexia.

While ARMS tumors are classified as fusion-positive tumors
ERMS tumors are fusion-negative and show a high variability in the
genetic alterations causing cancer. Among those alterations are a
loss of heterozygosity at chromosome 11p15.5, an increase in
aneuploidy, mutations of TP53, RAS genes, PIK3CA, β-catenin
and FGFR4, as well as NF1, FBXW7 and BCOR affecting RTK-
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RAS-RAF-MAPK, PI3K-AKT-mTOR signaling, cell cycle
progression, apoptosis and developmental pathways such as Wnt,
Notch, SHH and Hippo among others (Scrable et al., 1989; Stratton
et al., 1989; Taylor et al., 2009; Zibat et al., 2010; Annavarapu et al.,
2013; Shern et al., 2014; Mohamed et al., 2015; Conti et al., 2016;
Skapek et al., 2019). Interestingly, mutations in ERMS often affect
signaling pathways and receptors which also control MuSC
functionality (Figure 3). However, in the vast majority of ERMS
tumors the transcriptional repressor TRPS1 displays an increased
expression causing impaired myogenic differentiation (Huttner
et al., 2023). Of note, reduction of aberrant TRPS1 levels in
ERMS tumor cells permits myogenic differentiation (Huttner
et al., 2023).

All RMS tumors are diagnosed by the expression of myogenic
markers such as the myogenic regulatory proteins MYOD and
MYOGENIN, MHCs, skeletal α-ACTIN, Creatine Kinase and
DESMIN (Tonin et al., 1991; Dias et al., 2000; Sebire and Malone,
2003). Histologically ERMS resembles an undifferentiated and
embryonal state, while ARMS tumors are characterized by a more
widely expression of key myogenic regulatory factors responsible for
terminal differentiation such as MYOD and MYOGENIN (DeMartino
et al., 2023). RMS treatment involves a multimodal approach including
surgical excision, chemotherapy and radiation therapy. The outcome of
metastatic or recurrent RMS patients remains poor, but localized
instances are curable (Malempati and Hawkins, 2012; Dantonello
et al., 2013). In recent decades, chemotherapy regimens have steadily
improved, but remain non-specific to the tumor and include the
application of vincristine, actinomycin D combined with
cyclophosphamide or ifosfamide. However, recent modifications of
these standard regimens have shown improvements in the outcomes
of patients with rhabdomyosarcoma (Chen et al., 2019; Miwa et al.,
2020). Nevertheless, additional treatment options for RMS would be
desirable, potentially through inducing myogenic differentiation in
tumor cells.

Conclusion

Skeletal muscle is the most abundant tissue of the human body,
it is characterized by a high plasticity and ability to self-renew.
Skeletal muscle supports mobility and body posture. Any kind of
muscle impairments, such as disease, aging, injury, etc. has an
impact on the general health and therefore quality of life.
Regeneration of skeletal muscle is a highly orchestrated process
involving the reception of signals from the niche through a variety of

receptors located in the plasma membrane of MuSCs. A better
understanding of the interplay of the different cell types and
signaling pathways during regeneration of skeletal muscle is
required, especially in age and disease. A focus on the secretome
of the different cell types in skeletal muscle and how the secreted
factors are affecting MuSC functionality might be a promising
approach to the development of new therapies for improving
regeneration of skeletal muscle.
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