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Mammalian stem cell-based embryo models have emerged as innovative tools
for investigating early embryogenesis in both mice and primates. They not only
reduce the need for sacrificing mice but also overcome ethical limitations
associated with human embryo research. Furthermore, they provide a
platform to address scientific questions that are otherwise challenging to
explore in vivo. The usefulness of a stem cell-based embryo model depends
on its fidelity in replicating development, efficiency and reproducibility; all
essential for addressing biological queries in a quantitative manner, enabling
statistical analysis. Achieving such fidelity and efficiency requires robust systems
that demand extensive optimization efforts. A profound understanding of pre-
and post-implantation development, cellular plasticity, lineage specification, and
existingmodels is imperative formaking informed decisions in constructing these
models. This review aims to highlight essential differences in embryo
development and stem cell biology between mice and humans, assess how
these variances influence the formation of partially and fully integrated stem cell
models, and identify critical challenges in the field.
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Introduction

Headlines featuring “Synthetic Embryo Models” (SEMs) or “Artificial Embryos” are
sensational, but can be misleading and potentially cause unnecessary concern among the
general public. These terms serve attempts to describe stem cell-based embryo models,
which are further categorized into non-integrated and integrated stem cell models (Rossant
and Tam, 2021; Hyun et al., 2020). The non-integrated models focus on specific aspects of
embryonic development; while the integrated models, such as blastoids and ETX
embryoids, simulate the progressive development of the entire mammalian conceptus,
including its extra-embryonic tissues. The forthcoming review further classifies integrated
stem cell-based embryo models into partially and fully integrated types. Fully integrated
models encompass all extra-embryonic lineages, whereas partially integrated models
represent only a subset of these extra-embryonic lineages. Integrated stem cell-based
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embryo models can take shape through an assembly approach,
involving the aggregation of various appropriate early lineage-
specific stem cells that are known to mutually influence each
other’s development. Alternatively, they can also be constructed
through an inductive approach, where the formation of the stem
cell-based embryo model depends on elaborate cell culture media
that will chemically dictate the fate of the used cells. These models
are created from biological materials and are thus far from being
synthetic or artificial. The primary goal of designing and using stem
cell-based embryomodels is not to generate human or animal beings
from in vitro entities. They rather offer a versatile approach to study
early mammalian embryonic development and provide valuable
insights into cellular processes and molecular mechanisms, all
without the need for real human embryos or sacrificing pregnant
lab mice. Their versatility enables researchers to assess specific
aspects of mammalian embryonic development, making them
effective tools for scientific research and advancements in animal
and human reproductive medicine. Furthermore, for drug testing
and screening, these models provide a controlled environment
enabling the assessment of drug efficacy, in supporting
complicated pregnancies, as well as evaluating potential embryo
toxicity during pregnancy. In the upcoming sections, this review
comprehensively addresses the significant differences in embryo
development and stem cell biology between mice and humans,
highlighting how these variances influence the production
methods of partially and fully integrated stem cell-based embryo
models tailored to each species. Moreover, it critically examines
recent developments in both human and mouse partially and fully
integrated stem cell models, offering insights into the notable
challenges encountered within this field. Additionally, the review
explores the potential of non-human primate embryos and non-
human primate stem cell-based embryo models in advancing
knowledge of primate embryogenesis, particularly in contexts
where ethical limitations surrounding human embryos and
human stem cell-based embryo models restrict research.

Pre- and post-implantation
development in mice versus humans

Preimplantation development, spanning fertilization to
implantation, is a crucial phase in early mammalian
embryogenesis, marked by several key milestones. These key
milestones include zygotic genome activation (ZGA), the
transition to multicellularity through slow cell division,
compaction, polarization, and subsequent blastocyst formation.
Within the blastocyst, cells differentiate into the inner cell mass
(ICM) and trophectoderm (TE), with further specification of the
primitive endoderm (PrE; hypoblast) and epiblast within the ICM.
Preimplantation development in mice spans 5 days, whereas in
humans it generally takes 6–7 days. While mouse and human
preimplantation development appears morphologically similar,
differences emerge in cell fate specification, characterized by
variations in the expression of lineage specific transcription
factors and the activity of signaling pathways. After implantation,
mouse and primate embryos clearly exhibit significant
morphological and molecular differences. Lab mice have a
gestation period of 19–20 days. In contrast, human gestation

typically spans approximately 270 days, whereas in cynomolgus
and rhesus monkeys this takes around 160 days each (Nakamura
et al., 2021) (Figure 1A).

Following implantation, cell proliferation markedly increases in
mouse embryos. This is accompanied by epithelialization of both the
epiblast and the polar TE, leading to the formation of the
characteristic cylindrical, elongated embryo, commonly referred
to as the egg cylinder (Bedzhov et al., 2014a). The extra-
embryonic ectoderm (ExEc), originating from the polar TE, plays
a critical role in BMP4 production (Figure 1B). BMP4 is essential for
establishing an anterior-posterior axis and initiating mesoderm
formation in a NODAL dependent manner on the posterior side
of the epiblast during gastrulation (Winnier et al., 1995; Lawson
et al., 1999). After exposure to BMP4, WNT3 is first produced in the
posterior visceral endoderm (VE) (Liu et al., 1999) before also
appearing in the posterior epiblast (Rivera-Perez and Magnuson,
2005) (Figure 1B). Simultaneously, VE cells located at the anterior
side of the egg cylinder are replaced by the anterior VE (AVE) cells
which are initially formed at the distal tip of the egg cylinder
(Thomas and Beddington, 1996; Thomas et al., 1998). The AVE,
marked by transcription factors OTX2, HHEX, HESX1, FOXA2,
and LHX1, acts as a protective barrier, preventing adjacent epiblast
cells from responding to posteriorizing signals. The AVE does so by
producing Wnt, Bmp, and Nodal antagonists like DKK1, CER1, and
LEFTY1, thereby inhibiting ectopic primitive streak formation on
the anterior side (Acampora et al., 1995; Belo et al., 1997; Thomas
et al., 1998; Perea-Gomez et al., 1999; Kimura et al., 2000; Perea-
Gomez et al., 2002; Yamamoto et al., 2004; Kimura-Yoshida et al.,
2005) (Figure 1B).

In contrast, epiblast and TE cell proliferation in primate
embryos, exhibits different morphological characteristics. The TE
invades the endometrium, while the epiblast expands to form a flat
sheet of cells, resulting in a flattened embryo known as an embryonic
disc (Nakamura et al., 2016; Rossant and Tam, 2017; O’Rahilly and
Muller, 2010). This early structure consists of two layers: the epiblast
and the hypoblast. As development progresses, an amniotic cavity
emerges following the separation of the amniotic epithelium from
the epiblast layer, while the primary yolk sac is formed by the
hypoblast layer. This primate-specific morphogenesis also presents
already an extraembryonic mesoderm (ExEM) lineage in the pre-
gastrulation embryo whereas in mice the ExEM (including the
allantois, and mesoderm component of amnion and yolk sac)
develops during gastrulation. However, the origin of the primate
ExEM is unclear; it could have an epiblast origin as in mice, but
could also be derived from the TE or the hypoblast (reviewed in
(Pham et al., 2022; Rossant and Tam, 2022)). Also, in contrast to
mice, where the ExEc serves as the signaling source for inducing
gastrulation; in primates, BMP4 originates from the amnion
(Figure 1B). Staining and profiling of in vivo non-human primate
embryos indeed revealed the accumulation of BMP4 in the amnion
of pre-gastrulating embryos (Sasaki et al., 2016; Bergmann et al.,
2022). Similarly to mice, WNT3/WNT3 is detected in the non-
human primate posterior epiblast (Niu et al., 2019; Bergmann et al.,
2022). In cynomolgus monkeys, OTX2, along Wnt and Nodal
inhibitors DKK1 and CER1, are detected in the AVE (Sasaki
et al., 2016; Ma et al., 2019). In the human peri-implantation
embryo, and similar to mice, the putative AVE exhibits an
accumulation of CER1 and LEFTY1. At the gene expression level,
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the human AVE also presents an accumulation of LHX1,HHEX and
DKK1-transcripts (Mole et al., 2021). In vitro experiments using
human pluripotent stem cells (PSCs) have shown that the amnion is

the source of BMP4 in primates and that BMP4 induces gastrulation
in a WNT-dependent manner (Shao et al., 2017a; Zheng et al., 2019;
Yang et al., 2021). It seems therefore that the formation of the

FIGURE 1
Embryonic development in mice versus primates. (A) Embryonic development of mice and primates. Mice go through egg cylinder stages of
development, whereas primates form a bi-laminar disc. E, Embryonic days; AC, Amniotic Coelom; PYS, Primary Yolk Sac; SYC, Secondary Yolk Sac (B)
Signaling mechanism inducing gastrulation in mice and in primates. In mice the source of BMP4 is the ExEc, whereas in primates the amnion
produces BMP4.
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primitive steak in mice and primates depends on the same
signaling pathways.

These variations in development underscore substantial
differences in early post-implantation developmental processes
between mice and primates. Thus, making direct assumptions
about human embryogenesis is challenging if based solely on the
knowledge obtained from mouse development. Ethical restrictions
will continue to limit the study of human embryogenesis. Using
either non-human primate embryos or primate stem cell-derived
embryo models holds the potential to provide valuable insights into
the intricacies of human early embryonic development, effectively
bridging the gap between mouse and human.

Lineage emergence during
preimplantation development

During the preimplantation phase, the TE, the epiblast, and the
PrE are the first three lineages to emerge. The TE plays a role in
forming the embryonic part of the placenta, while the epiblast gives
rise to the embryo proper and the mesoderm of the allantois,
amnion, and yolk sac. The PrE is vital for embryo patterning and
contributes to the development of the yolk sac.

In mice, the major ZGA at the 2-cell stage (Schultz, 1993) marks
the initiation of the expression of genes encoding various lineage
specific transcription factors (TFs). The first lineage commitment in
mice occurs with the specification of the TE from the outer cells of
the morula stage embryo. This commitment is highly dependent on
the expression of Cdx2 initiated between the 8- and 16-cell stage
(Niwa et al., 2005; Strumpf et al., 2005; Dietrich and Hiiragi, 2007;
Ralston and Rossant, 2008; Jedrusik et al., 2010; Ralston et al., 2010)
and on the inhibition of the Hippo signaling pathway (Yagi et al.,
2007; Nishioka et al., 2008; Nishioka et al., 2009). Hippo-pathway
inhibition in the TE cells results in the release of cytoplasmic
sequestration of TEAD co-activator YAP1, enabling TE-specific
genes like Cdx2 and Gata3 to be transcribed (Yagi et al., 2007;
Nishioka et al., 2008). In comparison to mice, the major ZGA in
humans occurs at the 4 to 8-cell stage (Braude et al., 1988; Blakeley
et al., 2015). Human TE specification seems to be more dependent
on GATA3 than on CDX2. GATA3 can be detected in all cells of the
morula stage human embryo, but subsequently becomes restricted
to the TE (Petropoulos et al., 2016; Gerri et al., 2020), whereas
CDX2 only appears well beyond the formation of the human
blastocyst (Niakan and Eggan, 2013). Although the TE specifiers
TEAD1, YAP and GATA3 predominantly co-localize in polarized
outer cells of human 16-cell morulae, their presence is also detected
in certain cells of compacting embryos before the establishment of
cell polarity (Regin et al., 2023). This observation lends support to
the idea that the initiation of TE formation in humans might occur
independently of cell polarity. The observation that a genomic
deletion of TEAD4 does not affect the GATA3 profile in
blastocyst-stage human embryos, unlike CDX2, supports that
notion (Stamatiadis et al., 2022). Cell polarity therefore influences
the TE lineage formation in humans, but its importance in TE
specification appears to be less evident than in mice (Gerri et al.,
2020; Zhu et al., 2021).

The second cell fate decision in preimplantation embryos
involves the specification of the PrE and the epiblast in ICM

cells. The murine ICM is composed of a random mixture of cells
in a “salt and pepper” pattern displaying varying levels of GATA6 or
NANOG (Chazaud et al., 2006). Ultimately FGF produced by
epiblast-biased cells expressing Nanog, support further
specification of murine PrE-biased cells (Silva et al., 2009;
Messerschmidt and Kemler, 2010; Yamanaka et al., 2010;
Frankenberg et al., 2011). Without sufficient FGF signaling, PrE-
biased cells revert back to the epiblast fate. This mechanism most
likely ensures a perfect balance between the number of PrE and
epiblast cells. This same second cell fate decision in human embryos
is less well understood, and differs from its murine counterpart as
FGF signaling does not seem to be as essential for human PrE
development (Kuijk et al., 2012; Roode et al., 2012). Additionally,
detection of TFs POU5F1, SOX2 and NANOG generally associated
with the pluripotent epiblast, also differs between mouse and human
preimplantation embryos. In mouse, SOX2 is the first pluripotency
TF to selectively mark the epiblast (Frum and Ralston, 2015),
whereas in human this role is reserved to NANOG (Cauffman
et al., 2009). Variations can also be observed in the KLF family
members expression profiles. As such, while Klf2 expression
delineates the mouse epiblast, KLF17 expression performs a
similar role in the human epiblast (Blakeley et al., 2015; Lea
et al., 2021).

Cellular plasticity in preimplantation
development

In the intricate nomenclature hierarchy of cellular potential,
totipotent cells stand at the top. Totipotency can be interpreted as
the capacity of a single diploid cell to independently give rise to an
entire organism. Alternatively, a more lenient interpretation
considers totipotency as the capacity of a cell to differentiate into
all types of lineages, in amniotes including all embryonic and extra-
embryonic lineages. To delineate these distinctions, the term
“totipotency” has been suggested for the former, emphasizing
organism-forming ability, while the term “plenipotency” has been
proposed for the latter (Condic, 2014). Pluripotent cells, on the other
hand, while highly versatile, are confined to producing derivatives
specific to the epiblast (for a discussion of used functional assays for
pluripotency and their limitations, with mouse and human cells, see
(De Los Angeles et al., 2015)). Despite their adaptability, they lack
the organizational finesse required to forming an integrated body
plan and can generate neither TE nor PrE derivatives. In the strict
sense of the word, a fertilized oocyte is classified as totipotent.
However, due to ethical considerations, the developmental potential
of individual human blastomeres to give rise to viable offspring has
never been assessed. Inmice, blastomeres of 2-cell stage embryos can
be categorized as totipotent because a single blastomere from the 2-
cell stage embryo, albeit with a lower potency, is sufficiently
competent to produce offspring (Tarkowski, 1959; Tsunoda and
McLaren, 1983; Lawitts and Graves, 1988; Papaioannou et al., 1989;
Papaioannou and Ebert, 1995; Wang et al., 1997; Sotomaru et al.,
1998; Morris et al., 2012b; Casser et al., 2017; Rahbaran et al., 2022).
Four-cell stage embryos are generally assumed not be totipotent
anymore (Tarkowski and Wroblewska, 1967; Rossant, 1976; Morris
et al., 2012b) although at least one report describes offspring from a
single blastomere removed from 4-cell stage embryos (Maemura
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et al., 2021).Whereas a critical aspect of this potency loss is due to an
insufficient number of cells forming the epiblast (Rossant, 1976;
Morris et al., 2012b), resulting in smaller sized offspring (Tsunoda
and McLaren, 1983; Morris et al., 2012b; Casser et al., 2017),
blastomeres from 2- and 4-cell stage mouse embryos have also
been shown to possess differing developmental potentials
(Piotrowska-Nitsche et al., 2005; Torres-Padilla et al., 2007;
Morris et al., 2012b). This implies that lineage specification,
involving the initial commitment of cells to specific fates starts
already at the 2-cell stage. Nevertheless, blastomeres from mouse
cleavage stage embryos retain the plasticity to contribute to all
lineages and are not yet committed to one specific fate. Even
cells within the ICM of early blastocyst-stage mouse embryos
(E3) retain plenipotency, capable of producing both the
trophectoderm (TE) and the primitive endoderm (PrE) in
addition to the epiblast (Handyside, 1978; Hogan and Tilly, 1978;
Spindle, 1978; Rossant and Lis, 1979; Suwinska et al., 2008; Wigger
et al., 2017). However, TE cells lose the competency to produce the
ICM once a blastocyst is formed (Suwinska et al., 2008). In mice, the
ICM loses its potency to form the TE after the second cell fate
decision, with the specification of the PrE and the pluripotent
epiblast (Posfai et al., 2017; Wigger et al., 2017). Blocking this
second cell fate decision using small molecules specifically
targeting FGF/ERK signaling, preserves the potency of the
murine ICM to form TE (Wigger et al., 2017). Plenipotency
during human embryonic development is maintained longer than
observed in mice. Both the TE and ICM of the human early
blastocyst-stage embryo retain the potency to form all lineages,
as demonstrated in an embryo dissociation study (De Paepe et al.,
2013). Additionally, the human naïve epiblast maintains its potential
to form TE and PrE (Guo et al., 2021). Pseudotime analysis of single
cell transcriptomics in mouse embryos confirms two sequential
lineage determination events, with TE-specific cells emerging at
the morula stage, and PrE-specific cells emerging in the ICM of the
blastocyst stage embryo (Meistermann et al., 2021). A similar
analysis in human embryos also identifies two lineage
determination events, but both occur sequentially after the
blastocyst is formed (Meistermann et al., 2021), albeit that an
earlier study suggested that the first and second lineage
segregation occur simultaneously (Petropoulos et al., 2016). It
seems, thus, that the morphological appearance of the blastocyst
in humans does not fully align with the molecular divergence.

Murine early lineage stem cells

The first murine embryonic stem (ES) cells were isolated in 1981
(Evans and Kaufman, 1981; Martin, 1981). These cells are derived
from the epiblast of blastocyst-stage embryos and have the capacity
to contribute to all embryonic lineages when injected into murine
preimplantation embryos, but these cells rarely contribute to extra-
embryonic tissues (Bradley et al., 1984; Beddington and Robertson,
1989). The unrestricted potential to produce all embryonic lineages
is the defining trait of pluripotency, a trait which is maintained after
implantation of the blastocyst in the uterus up until the epiblast
starts gastrulation. Whereas, initially PSCs were derived from the
epiblast of preimplantation embryos (Evans and Kaufman, 1981;
Martin, 1981), they could also be derived from the post-

implantation epiblast (Brons et al., 2007; Tesar et al., 2007). The
epiblast-derived PSCs of the pre- and post-implantation embryo
were labeled as naïve and primed PSCs (Figure 2A), respectively
(Nichols and Smith, 2009). Primed PSCs are also frequently named
epiblast stem cells (EpiSC). Naïve ES cells grow as small, compact,
domed colonies; while primed ES cells grow as flat epithelialized
colonies. Whereas the primed PSCs can contribute to the epiblast
when injected into a post-implantation embryo, they are
developmentally too advanced to efficiently contribute to
offspring when injected into recipient preimplantation embryos
(Brons et al., 2007; Tesar et al., 2007; Huang et al., 2012). This
makes the generation of chimeric mice using primed PSCs
technically challenging.

Furthermore, also mouse trophoblast stem (TS) cells (Tanaka
et al., 1998; Kubaczka et al., 2014; Ohinata and Tsukiyama, 2014)
and mouse eXtra-embryonic ENdoderm (XEN) stem cells (Kunath
et al., 2005; Zhong et al., 2018) have subsequently been derived from
the mouse TE and PrE, respectively (Figure 2A). Following injection
into preimplantation embryos, TS cells and XEN cells contribute
exclusively and respectively to the trophoblast and extra-embryonic
endoderm lineages. Whereas ES cells can in adapted culture
conditions transdifferentiate to trophoblast (Hayashi et al., 2010)
as well as extra-embryonic endoderm (Cho et al., 2012; Niakan et al.,
2013; Anderson et al., 2017), the overexpression of lineage-specific
transcription factor (TF) (trans)genes greatly facilitates this
conversion. As such, induced expression of trophoblast TF
(trans)genes (e.g., Cdx2 and Gata3) supports a transformation
towards TS cells (Niwa et al., 2000; Niwa et al., 2005;
Kuckenberg et al., 2010; Ralston et al., 2010; Cambuli et al., 2014;
Wei et al., 2016; Kaiser et al., 2020); whereas the induced expression
of PrE TF (trans)genes (e.g., Gata6 and Sox17) supports the
formation of mouse XEN cells (Fujikura et al., 2002; Shimoda
et al., 2007; Shimosato et al., 2007; Qu et al., 2008; Niakan et al.,
2010; McDonald et al., 2014;Wamaitha et al., 2015;Wei et al., 2016).
Nevertheless, epigenetic barriers, such as methylation of the Elf5
promoter in ES cells, hamper generally a complete
transdifferentiation of ES cells into TS cells (Ng et al., 2008;
Hemberger, 2010; Cambuli et al., 2014).

Scientists have therefore been captivated by creating a
plenipotent stem cell that could contribute to the embryonic and
extra-embryonic tissues. Three types of plenipotent stem cells have
been described, i.e., 2-cell like stem cells (2CLCs), expanded/
extended potential stem cells (EPSCs) and morula like stem cells
(MLSCs). The 2CLCs were discovered as a small (less than 1%)
transient population in ES cell cultures (Macfarlan et al., 2012). The
2CLCs present characteristics of blastomeres of the 2-cell stage
embryo when major ZGA occurs, and their population size can
be increased by modulating culture media and/or overexpression of
specific (trans)genes (Macfarlan et al., 2011; Hisada et al., 2012;
Macfarlan et al., 2012; Maksakova et al., 2013; Dan et al., 2014; Lu
et al., 2014; Hayashi et al., 2016; Choi et al., 2017; Rodriguez-
Terrones et al., 2018; De Iaco et al., 2019; Yan et al., 2019; Hu et al.,
2020; Rodriguez-Terrones et al., 2020; Huang et al., 2021; Olbrich
et al., 2021; Shen et al., 2021; Wang et al., 2021; Xu et al., 2022; Yang
et al., 2022; Hu et al., 2023; Meharwade et al., 2023). Cells presenting
more or less characteristics of the 2-cell stage embryo have been
labeled in the literature as 2-cell-like cells (2CLCs), but also as
totipotent blastomere-like cells (TBLCs), totipotent-like stem (TPS)
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cells, totipotent-like stem cells (TLSCs) and chemically induced
totipotent stem cells (ciTotiSCs). These cell types seem to be more
potent than ES cells as they can contribute to all extra-embryonic
lineages when injected into preimplantation embryos (Macfarlan
et al., 2012; Choi et al., 2017; Shen et al., 2021; Wang et al., 2021; Xu
et al., 2022; Yang et al., 2022; Meharwade et al., 2023). In this
manuscript, the cell types presenting some characteristics of the 2-

cell stage are all compiled under 2CLC terminology (Figure 2A).
2CLCs should however not be confounded with EPSCs. Murine
EPSCs which can be obtained by modifying culture media
composition, have also the potential to form all extra-embryonic
lineages (Yang et al., 2017a; Yang et al., 2017b; Yang et al., 2019). A
thorough assessment of EPSCs, however, labels EPSCs to be more
similar to a blastocyst than a pre-blastocyst stage embryo and their

FIGURE 2
Stem cells resembling early embryonic lineages in mice and humans. Many of these stem cell types have been derived from existing ES cells by
modifying culture conditions. Following the implementation of these cell culture conditions, certain studies have also shown that specific cell types could
be directly derived from the embryo (underlined stem cell types). (A) Since 2CLCs, TPS cells, TLSCs, TBLCs, ciTotiSCs, MLSCs, and EPSCs can form both
embryonic and extra-embryonicmurine lineages, these cell types can be classified as plenipotent. On the other hand, EPSCs could also be classified
as pluripotent as they have limited potential to form the mouse trophoblast. (B) Whereas naïve and primed human ES cells are classified as pluripotent,
they could also, together with 8CLCs and EPSCs, be classified as plenipotent, as all can form the embryonic and extra-embryonic cell lineages.
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capacity to differentiate into trophoblast has been questioned
(Stirparo et al., 2018; Posfai et al., 2021). MLSCs, which would
relate to the morula-stage embryo, have recently also been described
(Li et al., 2023a). Whereas the authors reported that MLSCs are
plenipotent and can form the extra-embryonic lineages, the
formation of the trophoblast seemed difficult as observed during
the formation of blastoids.

An analytical exploration that highlights the commonalities
among embryos at different developmental stages and certain
in vitro cell types recognized for their enhanced developmental
potential (2CLCs, TBLCs, TPS, and EPSCs) reveals that the analyzed
cell types all display a predominant association withmorula and pre-
and post-implantation epiblast stages (Xu et al., 2022). Are all these
alleged murine ‘plenipotent’ cell types fundamentally dissimilar, or
are they merely a product of in vitro adaptation to distinct culture
conditions or the result of overexpressed (trans)genes? A larger
integration of diverse datasets obtained from single-cell RNA
sequencing across various stages of preimplantation embryos,
including ES cells, EpiSCs, various cell types clustered under
2CLC type in this manuscript, as well as EPSCs and MLSCs,
would be extremely welcome to correlate them better with a
specific developmental stage (Figure 2A).

Human early lineage stem cells

Human ES (hES) cells were derived over a decade ago, following
the establishment of germline-competent mouse ES cell lines
(Thomson et al., 1998). Unlike mouse ES cells, which were
isolated and maintained in cell culture in their naive state,
conventional hES cells resemble the pre-gastrulation epiblast and
are thus in the primed pluripotent state (Nakamura et al., 2016). It
has been suggested that the naïve ES cells frommice rely on signaling
pathways governing murine diapause (Nichols et al., 2001), a
reversible state of suspended embryonic development that allows
blastocyst-stage embryos to delay implantation until favorable
environmental conditions arise. In contrast, human development
is continuous, and lacks a natural mechanism like diapause to halt
blastocyst development without compromising viability.

The delayed onset of ZGA in humans at the 8-cell stage
(Braude et al., 1988; Blakeley et al., 2015), as opposed to the 2-cell
stage in mice (Schultz, 1993); is expected to influence lineage
specification and modify the signaling pathways governing this
process (Rossant and Tam, 2017). Although several culture media
have been described to support the culture of naïve human PSCs
(Gafni et al., 2013; Takashima et al., 2014; Theunissen et al., 2014;
Duggal et al., 2015; Qin et al., 2016; Zimmerlin et al., 2016; Guo
et al., 2017; Bredenkamp et al., 2019; Bayerl et al., 2021; Yu et al.,
2022; Ai et al., 2023), the precise nature of true naïve pluripotency
remains elusive. All human naïve pluripotency cell culture media
likely represent different shades of pluripotency between true
naïve and primed pluripotency (Figure 2B). To date, 5iLAF
(Theunissen et al., 2014), t2iLGö (Takashima et al., 2014; Guo
et al., 2017) and PXGL (Bredenkamp et al., 2019) are considered
the naive and complex culture systems that produce naive hES
cells representing the pre-implantation epiblast (Stirparo et al.,
2018). Naive hES cell cultures exhibit considerable heterogeneity,
presenting 8-cell-like cells (8CLCs) with features of ZGA (Wang

et al., 2018; Mazid et al., 2022; Moya-Jódar et al., 2023;
Taubenschmid-Stowers et al., 2022; Yoshihara et al., 2022; Yu
et al., 2022) as well as TE- and PrE-like cells (Linneberg-
Agerholm et al., 2019; Dong et al., 2020; Moya-Jódar et al.,
2023). The human preimplantation epiblast retains the
plasticity to form trophoblast and PrE after the blastocyst has
been formed (De Paepe et al., 2013; Guo et al., 2021) which is
likely associated with the naïve state of the epiblast. Since the
human preimplantation epiblast maintains naïve characteristics
at least until E7 (Messmer et al., 2019), it could be assumed that
this plasticity extends at least until that day. Reflecting this
plasticity, naïve hES cells besides having the capacity to form
EPSCs (Yang et al., 2017b; Gao et al., 2019; Liu et al., 2021a) can
also be easily directed towards the extra-embryonic lineages
including TS cells (Xu et al., 2002; Cinkornpumin et al., 2020;
Dong et al., 2020; Io et al., 2021; Mischler et al., 2021; Wei et al.,
2021; Viukov et al., 2022), hypoblast-like stem cells (Linneberg-
Agerholm et al., 2019; Mackinlay et al., 2021) and ExEM (Pham
et al., 2022) (Figure 2B).

Human extra-embryonic stem cell lines, however, are not as well
characterized as their murine counterparts. Human TS cells can be
directly derived from embryos (Okae et al., 2018) or
transdifferentiated from hES cells (Xu et al., 2002; Cinkornpumin
et al., 2020; Dong et al., 2020; Io et al., 2021;Mischler et al., 2021;Wei
et al., 2021; Viukov et al., 2022). Human hypoblast-like stem cells,
named naïve endoderm (nEnd) and yolk like stem cells (YLSCs), on
the other hand, have been exclusively obtained following
differentiation of hES cells (Linneberg-Agerholm et al., 2019;
Mackinlay et al., 2021). Several studies have suggested that
differentiation towards the early extra-embryonic lineages (TE
and PrE) is only possible when using naïve hES cells, but
impossible when using primed hES cells (Linneberg-Agerholm
et al., 2019; Dong et al., 2020; Guo et al., 2021; Io et al., 2021).
However, other studies claim that early extra-embryonic lineages
can be formed from primed hES cells (Xu et al., 2002; Wei et al.,
2021; Viukov et al., 2022). Primed hES cells, representing the post-
implantation epiblast, are very responsive to somatic differentiation
cues (e.g., BMP4, ACTIVIN) unlike naïve hES cells that do not
respond well to somatic differentiation cues and prefer to be re-
primed before differentiation (Guo et al., 2017; Liu et al., 2017;
Rostovskaya et al., 2019). It is worth considering whether primed
hES cells retain the capacity to generate early lineages while also
displaying responsiveness in forming somatic cell derivatives, which
could potentially result in the overgrowth of the initially formed
early lineage cell types. Unlike murine extra-embryonic stem cells,
human extra-embryonic stem cells require intricate culture media
for maintenance. The true nature of human extra-embryonic stem
cell lines is still unclear. Although human TS cells serve as valuable
models for investigating trophoblast differentiation, they are
generally regarded as having closer associations with post-
implantation cytotrophoblasts than with the TE of the blastocyst
(Okae et al., 2018; Castel et al., 2020; Mischler et al., 2021). Thus far,
no PrE stem cell line has been directly established from human
embryos. A better characterization of how the PrE emerges in the
human embryo may provide valuable insights on how to generate a
hypoblast-like stem cell line directly derived from embryos.
Nevertheless, it seems that naïve hES cells are sufficiently
plenipotent to form the early lineages emerging during
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development. Culture procedures for growing naïve hES cells,
however, still require further refinement.

The blastoid or pre-implantation
integrated stem cell-based
embryo model

The blastoid, which mimics the blastocyst stage, has been
successfully generated in mouse (Yang et al., 2017b; Rivron et al.,
2018; Li et al., 2019; Sozen et al., 2019; Li and Izpisua Belmonte,
2021; Vrij et al., 2022; Xu et al., 2022; Yang et al., 2022; Li et al.,
2023a) by assembling one or two types of stem cells in vitro
(Figure 3A). While there have been reports of mouse iBlastoids
forming spontaneously during the reprogramming of primed to
naïve states (Kime et al., 2019), this strategy does not allow robust

and high-throughput blastoid production, and their trophectoderm
is not well defined. The initial study detailing the formation of
murine blastoids used ES cells in combination with TS cells (Rivron
et al., 2018). A notable challenge encountered was the
underrepresentation of the PrE in these structures as the used ES
cells did not naturally form PrE-like cells. To address this issue, the
protocol was chemically modified to stimulate ES cell lines to
differentiate into PrE, contributing to the formation of blastoids
better featuring PrE (Vrij et al., 2022). In alternative approaches,
researchers have sought to leverage the increased developmental
potential of EPSCs, 2CLCs and MLSCs, to generate blastoids (Yang
et al., 2017b; Li et al., 2019; Sozen et al., 2019; Li and Izpisua
Belmonte, 2021; Xu et al., 2022; Yang et al., 2022; Li et al., 2023a).
Protocols were devised to exclusively use EPSCs (Li et al., 2019; Li
and Izpisua Belmonte, 2021) or combine EPSCs with TS cells (Sozen
et al., 2019). While blastoids formed using EPSCs morphologically

FIGURE 3
Summary of strategies used for blastoid formation in mouse and human. (A)Diverse strategies have been employed to produce mouse blastoids, all
struggle with the formation of the extra-embryonic lineages. (B) Diverse strategies have been employed to produce human blastoids, naïve human ES
cells as starting cell type showed the best capacity to produce blastocyst alike blastoids.
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resembled blastocysts and exhibited the correct distribution of
lineage markers across all three early lineages of the blastocyst,
including the PrE. Detailed single-cell transcriptomic analyses
revealed inadequate specification of the TE alongside the
presence of undefined intermediate, mesoderm-like populations
when EPSCs were part of the aggregation protocol (Posfai et al.,
2021). Three additional studies reporting on the formation of stem
cells with plenipotent traits, namely, TLSCs (2CLC-like) (Yang et al.,
2022), TPS cells (2CLC-like) (Xu et al., 2022) and MLSCs (Li et al.,
2023a), demonstrated the competency of these cells to form
blastoids. While these blastoids appeared to exhibit the early
three lineages (TE, PrE, and epiblast) similar to blastocysts, a
comprehensive analysis was not the main focus of these studies.
However, an under-representation of TE cells was observed in
blastoids generated from TPS cells (Xu et al., 2022) and MLSCs
(Li et al., 2023a).

Mouse blastoids thus present difficulties in forming extra-
embryonic lineages. While ES cells face challenges with PrE
formation; EPSCs, 2CLCs, and MLSCs struggle with TE
specification. This also partially elucidates the limited capacity of
mouse blastoids to develop further in vitro and in vivo. As authentic
blastocysts also encounter hurdles in transitioning to post-
implantation development in vitro, there is a pressing need for
the enhancement of culture platforms supporting the post-
implantation development of blastocysts to more accurately
assess the developmental potential of blastoids.

Various approaches have been used in the development of
human blastoids, employing different cell types as starting
materials (Figure 3B). Human blastoids have been successfully
generated using hES cells in both the naive (Yanagida et al., 2021;
Yu et al., 2021; Kagawa et al., 2022; Karvas et al., 2023; Yu et al.,
2023) and primed-to-naive intermediate pluripotency states (Tu
et al., 2023), as well as EPSCs (Fan et al., 2021; Sozen et al., 2021)
and 8CLCs (Mazid et al., 2022; Yu et al., 2022). Moreover,
iBlastoids have been observed to form during the
reprogramming of fibroblasts into a pluripotent state (Liu et al.,
2021b). Thus far, there have been no reports of human blastoid
formation using human TS cells (Okae et al., 2018). This may be
explained by the closer similarity of human TS cells to post-
implantation cytotrophoblasts rather than TE (Okae et al., 2018;
Castel et al., 2020; Mischler et al., 2021). While certain studies have
outlined some in vitro post-implantation development following
2D culture, human blastoids typically do not easily transition into
this stage. This limitation may be partially attributed to the
presence of cell types more related to post-implantation
development (ExEM, amnion-like, definitive endoderm, etc.
(Pham et al., 2022; Zhao et al., 2024)), particularly evident in
iBlastoids (Liu et al., 2021b) and blastoids formed from EPSCs
(Fan et al., 2021; Sozen et al., 2021). In general, blastoids derived
from naive hES cells appear to align better with the blastocyst
(Yanagida et al., 2021; Yu et al., 2021; Kagawa et al., 2022; Karvas
et al., 2023; Yu et al., 2023) and present fewer cell types
characteristic of advanced developmental stages (Zhao et al.,
2024). Blastoids formed from naive hES cells thus have the best
capacity to display in vitro post-implantation development, with
3D matrices further augmenting this potential (Karvas et al., 2023;
Tu et al., 2023). Blastoids generated from 8CLCs have also been
described, but their thorough analysis to assess lineage alignment

with human embryonic pre- or post-implantation stages
is pending.

Unlike in mice, where the formation of extra-embryonic
lineages poses challenges, human blastoids demonstrate the
ability to form these lineages using solely hES cells or their
derivatives such as EPSCs (Fan et al., 2021; Sozen et al., 2021)
and 8CLCs (Mazid et al., 2022; Yu et al., 2022). This distinction is
attributed to the plenipotent plasticity of the human stem cells,
which facilitates the human blastoid protocol but also introduces
unintended or undesired cell types. Further research efforts and
refinements of human blastoid generation protocols are essential
to overcome current limitations and enhance their accuracy and
efficiency as models for both pre- and post-implantation
development. While optimizing post-implantation culture
protocols can enhance the in vitro development of blastoids,
assessing in vivo development of human blastoids will remain
ethically restricted (Hyun et al., 2020). To evaluate the
implantation potential of blastoids, both 2D and 3D
endometrial cell cultures can be used to model the attachment
and invasion of blastoids into the endometrium. For instance,
blastoids can be seeded onto an open-faced endometrial layer
obtained from endometrium organoids cultured in 2D to
simulate attachment to the endometrium (Kagawa et al.,
2022). Alternatively, recent advancements in 3D endometrial
models offer promising alternatives to study not only adhesion
but also invasion of blastocysts into the endometrium (Shibata
et al., 2024). Furthermore, the recent report of non-human
primate blastoid generation (Li et al., 2023b), offers an avenue
to evaluate the in vivo implantation and developmental potential
of blastoids in non-human primate species.

Optimizing culture conditions for
extended embryo culture using
real embryos

To develop effective models for studying post-implantation
embryogenesis in both mice and humans, prioritizing the
optimization of culture conditions first with authentic
embryos is essential. However, creating an environment that
faithfully mirrors the intricacies of human embryonic
development proves more challenging than in mice. In mice,
implantation occurs through the mural TE, co-explaining the
typical egg cylinder shape. In humans, trophoblast invasion is
initiated by the polar TE, leading to the formation of a bi-
laminar disc shape (Weberling and Zernicka-Goetz, 2021). In
mice, the polar TE independently develops into an extra-
embryonic ectoderm, playing an instructive role in epiblast
development without direct dependence on the endometrium.
Conversely, human epiblast development relies more on
interaction with the endometrium. Adding to the complexity
is the inherently slower pace of human embryonic development,
likely increasing the challenges associated with culture
procedures. While in vitro conditions are advancing, they can
never replicate the finely tuned environment of the uterine
womb perfectly. In fact, the longer the span of in vitro
culture, the greater the risk of inducing aberrations in
embryonic development (Sunde et al., 2016).
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Decades ago, numerous studies documented the in vitro
growth of mouse preimplantation embryos, extending up to
somite and limb bud stages (Hsu, 1971; Hsu, 1973; Hsu et al.,
1974; Pienkowski et al., 1974; Chen and Hsu, 1982; Tachi, 1992).
Remarkably, this research was revived nearly 40 years later,
initially describing the development of preimplantation
embryos up to the egg cylinder stages (Morris et al., 2012a;
Bedzhov et al., 2014b; Bedzhov and Zernicka-Goetz, 2014).
Subsequent modifications refined the culture procedures,
enabling development again up to embryonic day 11 (E11)
(Aguilera-Castrejon et al., 2021; Aguilera-Castrejon and
Hanna, 2021). However, significant opportunities for further
optimization exist. Mouse embryos retrieved at the pre-
implantation stage (E3.5-E4.5) rarely progress through in vitro
development, and only up to 20% of embryos retrieved at the
early post-implantation stage (E5.5) can develop until a stage
comparable to E11.5 (Aguilera-Castrejon and Hanna, 2021). The
challenge in supporting the development of preimplantation
embryos to such advanced stages arises at least partially from
the need for these stages to undergo a cell adhesion phase on a 2D
surface, disrupting normal embryonic morphogenesis.
Consequently, various research groups have invested in
developing 3D platforms that would mimic the uterine
environment. Recently published studies suggest promising
outcomes in these 3D platforms (Gu et al., 2022; Ichikawa
et al., 2022; Bondarenko et al., 2023). In one study, it was
demonstrated that 11% of retrieved mouse preimplantation
embryos developed up to early organogenesis when cultured
in a 3D platform (Gu et al., 2022). At E11.5, the placenta is
necessary to distribute nutrients to the fetal body and eliminate
waste (Zhai et al., 2022). Thus, to extend such in vitro cultures,
efforts will have to be undertaken to provide better support of
placenta development.

Concurrently, culture conditions conducive to prolonged
human embryo development have been established, allowing up
to 31% of preimplantation embryos to progress until a stage
resembling E14 (Lindenberg et al., 1985; Deglincerti et al., 2016;
Shahbazi et al., 2016; Zhou et al., 2019; Xiang et al., 2020).
Nevertheless, ethical constraints present considerable challenges
to advancing human embryo culture, limiting our understanding
of embryonic development beyond gastrulation and impeding the
exploration of organogenesis in the human embryo (Warnock,
1985). Given these ethical challenges, the exploration of culture
platforms for non-human primate embryos becomes a valuable
alternative (Lopata et al., 1995; Ma et al., 2019; Niu et al., 2019;
Gong et al., 2023; Zhai et al., 2023). Unlike human embryos, non-
human primates offer a more permissive experimental environment,
facilitating a more comprehensive exploration of embryonic
development, particularly during stages beyond gastrulation and
into organogenesis. Using similar culture conditions as those used
for extended culture of human preimplantation embryos, 21%–35%
of cynomolgus monkey embryos could be cultured until a stage
resembling E19-E20 before collapsing, due to technical limitations
(Ma et al., 2019; Niu et al., 2019). Remarkably, two recently
introduced adapted 3D culture platforms have demonstrated the
ability to sustain ex utero growth of 20%–34% of cynomolgus
monkey embryos up to E25-like stage, thereby extending ex utero
development until early organogenesis (Gong et al., 2023; Zhai et al.,

2023). Similar to mice, efforts will have to be directed towards
enhancing placental development to support prolonged ex utero
development in primates.

Partially and fully integrated stem cell-
based embryo models mimicking early
mouse post-implantation development

In contrast to blastoids, which rely on complex culture media for
formation, the development of integrated post-implantation
embryoids primarily depends on the interactive dynamics of
employed stem cell lines or formed lineages to guide each other’s
development.

In mouse embryonic development, the ExEc serves as the pivotal
signaling center orchestrating germ layer formation. Experimental
models, relying on the assembly of TS and ES cells, enable the
simulation of early mouse post-implantation development. Initial
studies formed self-organized bi-compartmental structures
resembling the epiblast and ExEc observed in the egg cylinder, by
simple aggregation of ES and TS cell suspensions (Harrison et al.,
2017). Those egg cylinder-like aggregates (ETS models) exhibited
anterior-posterior embryo polarity and demonstrated the
emergence of mesoderm as well as Primordial Germ Cells
(PGCs). A similar study, assembling pre-aggregated TS and ES
cell aggregates, resulted in the formation of EpiTS embryoids.
The authors noted that an egg cylinder displaying anterior-
posterior polarity could only be obtained when the ES cell
compartment displayed an epithelial-like morphology before the
ES and TS cell aggregates were assembled (Girgin et al., 2021).
Notably, both studies used Matrigel to induce epithelialization of the
epiblast (Bedzhov and Zernicka-Goetz, 2014). In vivo, the basement
membrane between the VE and the epiblast plays a crucial role in
inducing epiblast cell polarization and lumenogenesis. The murine
Embryonic-Trophoblast-eXtra embryonic endoderm (ETX) model
circumvents the need for Matrigel by employing real extra-
embryonic endoderm cells during aggregation. Mouse ETX
models rely solely on the assembly of these three types of stem
cells, with minimal interference from culture media. However,
achieving optimal results requires precise titration of cell
numbers to simulate normal, dose-dependent effects of signaling
factors orchestrating embryogenesis and accurately model murine
embryonic development. The initial model employing these three
lineages for assembly used XEN cells as suppliers for the extra-
embryonic endoderm (Sozen et al., 2018). However, this model did
not progress beyond early gastrulation. A crucial enhancement for
further development involved substituting XEN cells with ES cells
expressing PrE-specific TF (trans)genes in an inducible manner
(Amadei et al., 2021; Amadei et al., 2022; Lau et al., 2022; Tarazi
et al., 2022; Dupont et al., 2023). The limited competence of XEN
cells, resembling parietal endoderm (Kunath et al., 2005), likely
explains their less favorable performance. Conversely, substituting
TS cells with ES cells capable of forming TS cells through induced
expression of trophoblast-specific TFs was not beneficial when
compared to using authentic TS cells (Lau et al., 2022; Tarazi
et al., 2022). Epigenetic barriers between TS and ES cell lineages
(Ng et al., 2008; Hemberger, 2010; Cambuli et al., 2014) likely hinder
ES cells from easily forming fully developed TS cells. Chimeric
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experiments have provided ample support regarding the
developmental restrictions of ES, TS, and XEN cells (Bradley
et al., 1984; Beddington and Robertson, 1989; Tanaka et al., 1998;

Kunath et al., 2005; Kubaczka et al., 2014; Ohinata and Tsukiyama,
2014). During the assembly of ETX embryoids, the used stem cells
also remain developmentally restricted, contributing exclusively to

FIGURE 4
Schematic representation of recent partially and fully integrated stem cell-based embryo models mimicking early human post-implantation
development. The upper six models do not display trophectoderm lineages, the bottom two models present epiblast, hypoblast and trophectoderm
related lineages. Day 2 and day 4 representations of the E-assembloids are extrapolated from fluorescence images.
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their lineage of origin (Dupont et al., 2023). This observation is
crucial as it enables scientists to explore early lineage interactions
using stem cell lines harboring targeted mutations in key
developmental genes, thus addressing biological inquiries
previously unattainable in in vivo embryos. Currently, the murine
post-implantation model recapitulates embryonic development
until a stage that strongly resembles E9 (Lau et al., 2022; Tarazi
et al., 2022). Given the nuanced nature of developmental outcomes,
optimizing the efficiency of ETX embryoid production (Dupont
et al., 2023) is still essential to ensure an adequate supply of
data points.

Partially and fully integrated stem cell-
based embryo models mimicking early
human post-implantation
development

While extensive knowledge exists regarding mouse embryonic
development, ethical constraints limit the study of human
embryonic development. Nonetheless, valuable insights have been
gained from the post-implantation amniotic sac embryoid (PASE)
stem cell model (Shao et al., 2017a; Shao et al., 2017b). This model is
a non-integrated stem cell-based embryo model that uses hES cells,
and accurately simulates the development of the amniotic
epithelium from the epiblast. It shows that the formation of the
amniotic epithelium along PGCs, is dependent on BMP signaling
(Zheng et al., 2019). The origin of BMP is speculated to be extra-
embryonic. Subsequently, the amnion produces BMP4, triggering
mesoderm formation in the posterior epiblast in a WNT-dependent
manner (Shao et al., 2017a; Shao et al., 2017b; Zheng et al., 2019;
Yang et al., 2021). However, there are still unanswered questions
about the source of signaling molecules and the manner different
lineages interact in these non-integrated stem cell-based embryo
models that lack the extra-embryonic cell types. Human stem cell-
based embryo models presenting extra-embryonic lineages could
offer significant value in addressing these challenges.
Six recent studies have presented stem cell-based embryo models
featuring a bi-laminar disc structure comprising hypoblast and
epiblast cells, while lacking a trophoblast compartment. The key
commonality across all six studies is the induced formation of the
hypoblast layer, facilitating the development of a bi-laminar disc
structure. The models are known as heX embryoid, human extra-
embryoid (hEE), peri-gastruloid, human gastruloid, E-assembloid
and bilaminoid models (Ai et al., 2023; Hislop et al., 2023; Liu et al.,
2023; Okubo et al., 2023; Pedroza et al., 2023; Yuan et al., 2023)
(Figure 4). In heX embryoids (Hislop et al., 2023), hypoblast
development relied on the continuous induction of GATA6
transcription in primed hES cells. This induction occured while
co-culturing hES cells expressing GATA6 with non-induced hES
cells on a cell culture dish. Consequently, induced cells encapsulated
non-induced ones, leading to the formation of bi-laminar disc
structures featuring an amniotic cavity. Notably, some hypoblast
cells acquired characteristics similar to the AVE. Prolonged culture
under modified conditions triggered the emergence of yolk sac
mesoderm and blood progenitors (Hislop et al., 2023). In
bilaminoids (Okubo et al., 2023), hypoblast induction relied on
induced GATA6 expression in naïve hES cells. Upon aggregation

with naïve hES cells, the hES cells expressing GATA6 encapsulated
those that did not. Subsequently, theGATA6 non-expressing ES cells
gave rise to an amniotic cavity and epithelium, along with AVE-like,
mesoderm-like, and PGC-like cells that were observable by day 9.
The formation and expansion of the amniotic cavity relied on the
addition of IL6 during the first 4 days, whereas the formation of
PGCs and most likely also the amnion relied on addition of
BMP4 from day 5 onwards (Okubo et al., 2023). The human
extra-embryoids (hEEs) model employed hES cells, which
underwent spontaneous differentiation toward hypoblast during
the aggregation procedure in non-adhesive culture conditions
(Pedroza et al., 2023). Human ES cells cultured in RSET
(intermediate pluripotency) were chosen due to challenges in
forming organized structures with both naïve and primed hES
cells. This spontaneous differentiation led to a mixed cell
population, with some cells biased toward hypoblast formation
while others retained pluripotency. Co-culture with TS cells
compromised structural organization, however in their absence
organized structures could form. By day 6, the pluripotent cells
had formed an amniotic cavity with cells resembling amnion,
epiblast, and primitive streak. The hypoblast, predominantly
present, encompassed the entire structure, with some cells
exhibiting AVE-like characteristics (Pedroza et al., 2023). A
fourth paper, outlining the peri-gastruloid model (Liu et al.,
2023), used EPSCs as the cell source. During the first 4 days of
aggregation in non-adherent culture wells, the cells or aggregates
were exposed to culture media promoting hypoblast formation. A
portion of the cells acquired the hypoblast fate, leading to their
efficient organization into embryoids resembling post-implantation-
like human embryos. By day 11, the peri-gastruloids had developed
bilaminar discs, amniotic and yolk sac cavities, initiated gastrulation,
formed PGCs, and even exhibited features of early organogenesis
(Liu et al., 2023). In the fifth paper, primed hES cells were used to
form post-implantation-like aggregates known as human
gastruloids (Yuan et al., 2023). Upon exposure to culture media
supporting nEnd formation (first stage medium), hES cells
underwent differentiation into hypoblast-like cells, which
subsequently organized into a hypoblast-like cell layer and
formed a primary yolk sac. Subsequent exposure to BMP4 and
bFGF in the second stage medium facilitated the formation of the
amnion. Remarkably, by day 7, the human gastruloids exhibited
anterior-posterior polarity, accompanied by the emergence of AVE-
like cells, mesoderm, and PGCs (Yuan et al., 2023). Finally, embryo-
like assembloids (E-assembloids) (Ai et al., 2023) were derived from
naïve hES cells and partially differentiated hES cells, termed
Signaling Nest Cells (SNLs), which transiently emerged during
trophoblast induction and secrete WNT and BMP ligands. The
naïve hES cells were aggregated 1 day prior to the addition of SNLs
to the non-adherent wells. While SNLs themselves did not form the
trophoblast compartment, their presence facilitated the efficient
aggregation of cells into an organized structure resembling a
bilaminar embryonic disc. By day 8, the E-assembloids presented
an amniotic cavity and a yolk sac, both surrounded by an extra-
embryonic cell type. PGC-like cells were detected and although not
definitely confirmed, an anterior-posterior axis with cells resembling
the AVE and mesoderm was identified. From these models; peri-
gastruloids, human gastruloids, and E-assembloids exhibit
remarkable similarity to human post-implantation embryos. The
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reduced dependence on intricate culture media, however, make
models like peri-gastruloids of greater utility for studying lineage
interactions.

Two additional recent studies reported on the development of
embryoids capable of incorporating all three early lineages into
embryo-like structures (Oldak et al., 2023; Weatherbee et al., 2023)
(Figure 4). These models, similar to murine ETX embryoids, involve
the assembly of three distinct cell types with the potential to form
trophoblast, hypoblast, and epiblast. In one approach, a group used
transgene-overexpressing hES cell lines to generate the extra-
embryonic lineages (trophoblast and hypoblast) necessary for
constructing the human post-implantation model (Weatherbee
et al., 2023). This model shares similarities with the human
extra-embryoids (hEEs) (Pedroza et al., 2023), albeit that the
entire embryoid is surrounded by TE-like cells and PGC-like
cells can be detected. However, it may not be classified as fully
integrated. In the second approach, researchers successfully
employed three lineage-biased stem cell lines to create a structure
resembling a human post-implantation embryo (Oldak et al., 2023).
They used extra-embryonic stem cell lines partially chemically
transdifferentiated from naïve hES cells (Oldak et al., 2023).
Morphologically, this study provided compelling evidence,
including images demonstrating the similarity of the model to
E13-E14 post-implantation human embryos. The efficiency of
producing these models remains notably low, likely due to
challenges in forming the extra-embryonic lineages.

Enhanced understanding of the embryonic and extra-embryonic
early lineages within the human blastocyst is imperative for selecting
appropriate cell lines and establishing precise culture conditions in the
development of stem cell-based human post-implantation embryo
models. Conversely, a diverse array of partially integrated human
post-implantation stem cell models has demonstrated remarkable
fidelity in modeling post-implantation development beyond
gastrulation; using solely either EPSCs, naïve hES cells and even
primed hES cells. This significant finding highlights both the plasticity
of the human epiblast in efficiently forming the hypoblast and the
crucial role of the epiblast in establishing its own signaling center—the
amnion. The successful formation of partially integrated post-
implantation models modeling embryonic development up to the
gastrulation stage suggests that, depending on the research question,
integration of the trophectoderm may not be necessary to model and
study human early post-implantation development.

Comparative analysis methods of stem
cell-based embryo models to
natural embryos

To accurately assess the fidelity of stem cell-based embryo
models in replicating mouse or primate embryonic development,
direct comparisons with natural embryos are indispensable. Since
transcription factors are not lineage-specific, accurately localizing a
subset of transcription factors within a morphologically similar
model is insufficient for evaluating the similarity between the
embryo model and the natural embryo. While single-cell RNA
sequencing (scRNA-seq) of dissociated embryo models enhances
cell type characterization, additional assessments using
immunostaining to locate these cell populations within the model

are indispensable. To facilitate these comparisons, it is essential to
have access to scRNA-seq and immunostaining data from natural
embryos. While these libraries exist for mouse pre- and post-
implantation embryos (reviewed in (Posfai et al., 2021)), creating
similar resources for humans poses ethical challenges. Given these
ethical constraints, non-human primate embryos serve as a
complement for investigating primate embryonic development.
As such, valuable scRNA-seq and immunostaining data have
been derived from human (Blakeley et al., 2015; Stirparo et al.,
2018; Petropoulos et al., 2016; Yan et al., 2013) and non-human
primate (Boroviak et al., 2018; Nakamura et al., 2016)
preimplantation embryos, in vitro-cultured human (Zhou et al.,
2019; Xiang et al., 2020; Mole et al., 2021; Ai et al., 2023) and non-
human (Ma et al., 2019; Niu et al., 2019; Gong et al., 2023; Zhai et al.,
2023) embryos into post-implantation stages, human terminated
pregnancies (Tyser et al., 2021; Xu et al., 2023) and uterine-retrieved
non-human primate embryos (Nakamura et al., 2016; Zhai
et al., 2022).

The integration and comparison of data from multiple sources,
such as transcriptomic profiles and immunostaining of natural
embryos and stem cell-based models, however, is challenging.
Transcriptomic data, while informative, may encounter
discrepancies between experimental systems due to variations in
protocols and employed techniques. Similarly, immunostaining of
post-implantation embryos and their corresponding stem-cell based
embryo models is complex, as it requires meticulous sample
preparation, orientation, and sectioning. It is therefore important
to consider technical nuances and potential sources of variability,
when comparing natural embryos and stem cell-based embryo
models. While dissociation-based approaches struggle to preserve
tissue structure, thereby restricting expression analysis within the
natural context, spatial transcriptomic technologies aim to
overcome this limitation. Whereas some studies have employed
spatial transcriptomics technologies to study mouse (Peng et al.,
2019; Chen et al., 2022; Sampath Kumar et al., 2023; Srivatsan et al.,
2021) and human (Xu et al., 2023; Zeng et al., 2023) embryogenesis,
the employed techniques currently still face too many technical and
computational challenges (reviewed by (Zhang et al., 2023; Zhou
et al., 2023)) to be routinely used for comparative analyses.

Discussion

Partially and fully integrated stem cell-based embryo models offer
an innovative tool to study primate and mouse embryonic
development. These models not only alleviate the need for
sacrificing living pregnant mice but also avoid the use of human
embryos for research purposes. Moreover, they offer a framework to
explore scientific inquiries that are otherwise impossible or exceedingly
challenging to study in vivo. Studying embryonic development using
stem cell-based embryo models requires not only faithful replication of
embryonic processes but also necessitates achieving a high level of
efficiency in replicating these events. Indeed, given the complexity of
biological responses, employing large sample sizes is essential for
accurate quantitative analysis of results.

Human and mouse stem cell-based embryo models, whether
partially or fully integrated, present distinct challenges. Firstly,
developmental differences between mice and primates impact the
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approach to construct these models. For example, in mice, where the
ExEc acts as a pivotal signaling hub directing gastrulation, the
inclusion of a trophoblast compartment becomes imperative
when modeling post-implantation development. In contrast, in
humans, where the epiblast-derived amnion governs gastrulation,
the inclusion of a trophoblast compartment in early post-
implantation stem cell models is not as important. Variations in
potency of existing stem cell lines in humans and mice also
contribute to differences observed between mouse and human
integrated stem cell models. Human stem cell lines, such as
8CLCs, EPSCs, naïve- and primed-pluripotent stem cells,
demonstrate plenipotent characteristics and have been used as
the primary cell source for forming human integrated stem cell-
based pre- and post-implantation embryo models. In contrast, the
development of these mouse models depends on the incorporation
of multiple lineage-restricted stem cell populations. This results in
two discernable strategies, the ‘inductive’ and ‘assembly’ approaches.
While the inductive strategy uses complex culture media to direct
lineage development, the assembly approach leverages the self-
organizing potential of different stem cell lineages. Both strategies
have their advantages and disadvantages. Assembly methods, such
as those seen in models like ETX, require precise titration of cell
numbers from various stem cell lines to accurately model the
normal, dose-dependent effects of signaling factors during early
embryogenesis. Meanwhile, the use of lineage-restricted stem cells,
facilitates genetic perturbation studies in specific cell lineages. On
the other hand, approaches based on ‘induction’ using plenipotent
stem cells, as seen in human integrated post-implantation models,
do not require as rigorous a titration of cell numbers but may not be
as suitable for lineage-specific genetic perturbation studies,
considering the uncertain developmental fate of a plenipotent
cell. A deeper understanding of human early lineage specification
may, in the future, aid in the development of integrated human
embryo models constructed from lineage-restricted stem cell lines.

In addition to addressing biological challenges, it is imperative to
consider technical and ethical limitations when developing models
for studying post-implantation embryogenesis in mice and humans.
Optimizing in vitro culture conditions with authentic embryos is
important for refining the culture procedure and establishing a
framework for comparing the models. However, due to the ethical
limitations surrounding human embryo research, these 3D culture
procedures may be more easily optimized using non-human
primates. Additionally, non-human primates provide an
opportunity to explore culture procedures beyond gastrulation
and into organogenesis. The development of culture platforms
that support placental development will most likely be pivotal to
support development even further. Due to ethical restrictions that
human integrated stem cell-based embryo models face (Hyun et al.,
2020), the development of non-human primate integrated embryo

models will also be instrumental. These non-human primate models
offer an avenue to explore the developmental potential of these
models beyond gastrulation and into organogenesis, both in vivo
and during in vitro culture.

In conclusion, mammalian integrated stem cell-based embryo
models have become instrumental tools for studying early
embryogenesis in both mice and primates. The differences in
embryonic development and stem cell biology between humans
and mice have shaped and will continue to shape strategies used to
construct these models.
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