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Background: 5-Hydroxymethylcytosine (5hmC) is an important DNA epigenetic
modification that plays a vital role in tumorigenesis, progression and prognosis.
Previous studies have shown that it plays an important role in the prognosis of diffuse
large B-cell lymphoma (DLBCL) and in the prediction of the efficacy of R-CHOP
therapy. However, its potential for diagnosing DLBCL has not been reported. Here,
we investigated the utility of 5hmC in plasma cfDNA in the diagnosis of DLBCL.

Methods: Applying 5hmC-Seal technique, we obtained genome-wide 5hmC
profiles in plasma cell-free DNA (cfDNA) samples from 176 Chinese subjects,
included 86 DLBCL patients and 90 healthy controls. To investigate whether
5hmC can be used as a diagnostic biomarker for DLBCL, we separated patients
and healthy controls into training (DLBCL = 56, Healthy = 60) and validation (DLBCL =
30, Healthy = 30) cohorts and developed a 5ShmC-based logistic regression model
from the training cohort to diagnose the DLBCL patients in the validation cohort.

Results: In this study, we found 10 5hmC biomarkers, and the models created by
these differentially regulated 5ShmC modified genes showed high accuracy in
distinguishing DLBCL patients from healthy controls (validation cohort: AUC =
0.94; (95% CI 88.8%-99.4%)).

Conclusion: Our study suggested that 5hmC markers derived from plasma
cfDNA can served as effective epigenetic biomarkers for minimally invasive
diagnosis of DLBCL.

KEYWORDS

epigenetics, DLBCL, 5-hydroxymethylcytosine (5hmC), logistic regression modeling,
cell-free DNA

Abbreviations: cfDNA, Cell-free DNA; 5hmC, 5-Hydroxymethylcytosine; 5mC, 5-Methylcytosine; AUC, Area
under ROC curves; DLBCL, Diffuse Large B-Cell Lymphoma; STRING, Search Tool for the Retrieval of Interacting
Genes; LDH, Lactate dehydrogenase; p2MG, B2 Microglobulin; IPI, International Prognostic Index; DhMRs,
Deferentially 5ShMc-enriched regions; DhMGs, Differentially hydroxymethylated genes; OS, Overall survival.
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Introduction

Diffuse Large B-Cell Lymphoma (DLBCL) is an aggressive
cancer, accounts for about 30% of all lymphomas (Sehn and
Salles, 2021), and it is estimated that there are approximately
150,000 new cases of DLBCL worldwide each year (Sehn and
Salles, 2021). Currently, the diagnosis of DLBCL is mainly based
on biopsy and puncture of the lesion site tissue (Malpica et al., 2022).
However, tissue biopsies cannot be repeated, and the results of
pathological analysis are affected by tumor heterogeneity. Therefore,
discovering a set of noninvasive surrogate markers that diagnose
DLBCL is urgently needed.

Recently, considerable attention has been focused on the
modification of 5hmC in cell-free circulating DNA (cfDNA).
This modification has gained significant interest as it offers a
non-invasive approach for diagnosing and predicting human
diseases through liquid biopsies (Zemmour et al, 2018; Luo
et al, 2021). It is well known that cfDNA is endogenous DNA
free from cells and released into blood and other body fluids through
apoptosis or necrosis (Yeh et al., 2017; Tuchalska-Czuron et al.,
2020). In addition, tumor cells release DNA into serum or plasma,
enable detection of cancer-associated genetic alterations (Diaz and
Bardelli, 2014). ¢fDNA fragmentomics analysis studies have shown
that the length of cancer-derived cfDNA may be more variable than
that of cfDNA from non-cancer cells, and that these differences
reflect changes in chromatin structure and other genomic and
epigenome abnormalities in cancer. ¢fDNA fragments can be
used as biomarkers for cancer detection in a location-specific
manner (Snyder et al, 2016; Cristiano et al, 2019; An et al,
2023). At the same time, some studies have proved that the
cfDNA fragment pattern is related to the cfDNA epigenetic
pattern, which can be used as a marker for cancer detection in
combination (Zhou et al., 2022). Several recent studies have reported
that somatic mutations reflecting changes in primary tumor genes
can be detected in ¢fDNA of DLBCL patients. Additionally,
abnormal promoter methylation of acellular circulating DNA has
been observed in the plasma of DLBCL patients (Bohers et al., 2015;
Kristensen et al, 2016). Thus detecting genetic and epigenetic
biomarkers in ¢fDNA has emerged as a promising noninvasive
approach for the diagnosis, prognosis, and treatment of cancer (Li
W. et al, 2017; Lo et al,, 2021; Luo et al., 2021). Epigenetic changes
play a major role in both normal B cell maturation and DLBCL
development (Wedge et al.,, 2017).

Specifically, 5-methylcytosine (5 mC), as a fundamental
component of DNA methylation, has shown promising potential
for diagnosis and therapy in various critical areas such as prenatal
testing, oncology, and transplantation monitoring (Sun et al., 2015;
Loyfer et al., 2023). With the advancement of research, there has
been a growing interest in the scientific community regarding 5-
hydroxymethylcytosine (5hmC), which is the oxidation product of
5 mC and is catalyzed by the 10-11 translocation protein family. It is
not only considered to be a relatively stable active DNA
demethylation intermediate, but also regarded as a novel
epigenetic marker of cancer (Vasanthakumar and Godley, 2015;
Chen et al,, 2016). Recent studies have shown that 5hmC patterns in
cfDNA plays a critical role in gene expression regulation, as well as
in the carcinogenesis of multiple solid tumors (Li W. et al,, 2017;
Song et al, 2017). Moreover, the role of 5ShmC in prognosis of
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DLBCL and its response to R-CHOP treatment has been extensively
investigated (Chiu et al., 2019; Chen et al., 2021), but its potential in
the early diagnosis of DLBCL remains largely unexplored.
Furthermore, exploring the diagnostic value of 5ShmC in DLBCL
can contribute to more accurate and timely identification of this
disease. Therefore, 5ShmC in c¢fDNA have potential to be promising
biomarkers for minimally invasive diagnosis in DLBCL.

In this study, we used 5ShmC-Seal technique to obtain genome-
wide 5hmC profiles from plasma cfDNA of 86 DLBCL patients and
90 healthy controls. Our results demonstrated that DLBCL patients
and healthy controls had distinct 5hmC profiles and that 5hmC
markers selected by machine learning algorithms may serve as
preliminary research for the diagnosis of DLBCL and provided
new insight for the future molecularly target therapy of DLBCL.

Materials and methods
Study participants

In total, 86 DLBCL patients were enrolled from the multi center
studies including Peking University Third Hospital, Fifth Medical
Center of PLA General Hospital, and Cancer Hospital Chinese
Academy of Medical Sciences, from 2017 to 2019. All patients
had signed the patient consent form. In all cases, the diagnosis of
DLBCL was made using appropriate diagnostic criteria from the
2016 WHO classification of lymphoid tumors with combinations of
histologic, immunohistochemical, and cell of origin (Coo) defined
according to the Hans algorithm (Fang et al., 2010). This study was
conducted in accordance with the Declaration of Helsinki.

Clinical samples collection and
cfDNA isolation

Peripheral blood samples (8-10 mL) from DLBCL patients were
obtained through routine intravenous blood sampling and collected
into a Cell-Free DNA collection tube (Roche). Plasma separation
was performed within 24 h, Whole blood samples were
centrifugation twice at 4°C 1350xg for 12 min and once at 4°C
13,500xg for 12 min. The plasma layers were then transferred to a
new tube. Then the plasma samples were immediately stored
at —80°C for future use. The plasma cfDNA was extracted from
2-4 mL plasma using the Quick-cfDNA Serum & Plasma Kit
(ZYMO) and then stored at —80 °C. The concentration and
quality of cfDNA were quantified by Qubit fluorometer and
nucleic acid electrophoresis before library preparation.

5hmC library construction and high-
throughput sequencing

5hmC libraries for all cfDNA samples were constructed using
the high-efficiency hmC-Seal technology described previously (Song
et al., 2011). Given the high sensitivity of the chemical labeling
method, we assigned low values of 1-10 ng for the input cfDNA. The
plasma-derived cfDNA was subjected to end-repairing and then
ligated with sequencing compatible adaptors. 5ShmC bases were
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biotinylated via two-step chemistry and purified by the DNA Clean
& Concentrator Kit (ZYMO), and subsequently enriched by binding
to Streptavidin beads (Life Technologies). Then, the beads were re-
suspended in RNase-free water and amplified with 14-16 cycles of
PCR amplification. Finally, the PCR products were purified using
AMPure XP beads (Beckman). All libraries were quantified with a
Qubit 3.0 fluorometer (Life Technologies). 5hmC sequencing was
performed on the Next-Seq 500 platform according to pairedend 38-
bp high-throughput sequencing. Finally, we used the Agilent
2,100 bioanalyzer for quality control of the 5hmC library and
based on the strip size to determine the presence of adaptor
dimers (120-150bp).

Mapping and identifying 5ShmC-
enriched regions

FastQC (version 0.11.5) was used to check the sequence
quality. Additionally, bowtie2 (version 2.2.9) was adopted for
aligning raw reads to the human genome (version hgl9)
(Langmead and Salzberg, 2012), and then filtered with SAM
tools (version 1.9) (parameters used: Sam tools view-f 2-F
1548 -q 30) (Li et al, 2009). Subsequently, the paired-end
reads were converted into the Bed Graph format, and
normalized them to the overall quantity of aligned reads by
exploiting bed tools (version 2.19.1) (Langmead, 2010).
Meanwhile, with the aid of UCSC BedGraphToBigWig, we
also converted the paired-end reads into the BigWig format,
so that the Integrated Genomics Viewer-assisted visualization
could be achieved. Potential 5hmC enriched regions were
identified using MACS2 (version 2.1.1) in each sample (Zhang
et al., 2008). Peak regions that appeared in more than 10 samples
and that were less than 1,000 bp were combined into one unified
catalog for each patient. Genomic regions that tend to show
artifact signals, according to ENCODE, were filtered out. The
5hmC enriched regions were generated by intersecting the
individual peak call file with the merged peak file. We
annotated the 5hmC-enriched region using the CHIP seeker
package and used the genes closest to this region for
subsequent analysis.

Feature selection, model training, and
validation

DLBCL patients were randomly divided into training and
validation groups in a ratio of 2:1; using train_test_split in scikit-
learn (version 0.22.1) package in Python (version 3.6.10), the logistic
regression CV (LR) model was chosen to establish warning models
(Abraham et al, 2014). In the training cohort, we identified
deferentially =~ 5hMc-enriched  regions  (DhMRs)  using
DESeq2 package (version 1.30.0) in R (version 3.5.0), with the
filtering threshold (p-value <0.05 and |log2FoldChange| > 0.5).
To avoid overfitting, 10-fold cross-validation was carried out for
5 rounds in the following manner. Subsequently, this study carried
out 100 repeats for further filtering with the use of Scikit-Learn
module’s recursive feature elimination (parameters adopted:
estimator = LogisticRegressionCV (class weight = “balanced”,
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cv = 2, max_iter = 1,000), scoring = “accuracy”). Meanwhile,
tenfold cross-validation was repeated 100 times in each round,
and the final markers observed in at least three rounds were used
to build the final warning model in the training cohort. Next, trained
LR model was used to predict the treatment outcome for patients in
the validation cohort. Receiver operating characteristics (ROC)
analysis was used to evaluate model performance. Area under the
curve (AUC), best cutoff point, sensitivity, and specificity were
computed with sklearn metrics module. A weighted diagnostic
score (wd-score) was then calculated as the sum of the gene-wise
product of logistic model coefficients and corresponding 5hmC
marker value for each individual: wd-score = Y}_ fk x genek,
where fy is the coefficient from the final multivariable logistic
model for the kth marker gene, and gene, is the 5hmC level of
the kth marker gene. The area under curve (AUC) and 95% CIs were
generated to evaluate the model performance.

Exploring the functional relevance of the
5hmC modified genes

Differentially hydroxymethylated genes (DhMGs) were
annotated using R Package’s ChIPseeker 1.20.0 (Schmitz
2018), and further
accomplished on the genes situated nearest to the marker

et al, functional assessments were
zones. The enrichment analysis of the GO biological process
(BP) was completed by the ClueGO (version 2.5.8) and
CluePedia (version 1.5.8) plug-in from Cytoscape software
(version 3.7.1). Additionally, medium network specificity,
adjusted p < 0.01, enriched gene

number >5 were chosen as the criteria for significance. We

Bonferroni and
used the Search Tool for the Retrieval of Interacting Genes
(STRING) database (version 10.0, https://string-db.org) to
find protein-protein interactions for 5hmC markers. Then,
the Cytoscape software was used to construct the PPI network.

Survival analysis and gene expression
correlation analysis in TCGA-DLBC

For our survival analysis, we utilized the gdc-client (version
1.5.0) to download mRNA HTseq FPKM data from 48 patients with
Diffuse Large B-Cell Lymphoma (DLBCL) as part of the TCGA-
DLBC dataset (Li T. et al, 2017) from the GDC Data Portal.
Concurrently, we manually retrieved curated clinical data,
encompassing overall survival (OS), disease-specific survival
(DSS), disease-free interval (DFI), and progression-free interval
(PFI), from the UCSC Xena platform (Goldman et al, 2020).
The survival analysis in this study utilized the Survminer package
(version 0.4.6) and Surviva packages (version 2.44-1.1) in R. Forty-
eight patients were categorized into either the high-expression group
or low-expression group based on cutoff points determined by the
maximally selected rank statistics algorithm. Survival analysis for
each gene was conducted using Kaplan-Meier curves (Barakat et al.,
2019) and the log-rank test (Torbicki et al., 2019). For the survival
analysis, p-value <0.05 was considered statistically significant. For
gene expression correlation analysis, we used a web tool called
TIMER2.0 (Li et al., 2019), which incorporated all TCGA expression
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TABLE 1 characteristics of healthy controls and patients with DLBCL.

10.3389/fcell.2024.1387959

Characteristics Subgroup Whole set (n = 86) Training set (n = 56) Validation set (n = 30)
Age (patients/healthy) Patients with DLBCL 86 56 30
<40 20/57 15/38 5/19
40-49 7/19 311 4/8
50-59 25/11 15/9 10/2
260 34/3 23/2 11/1
Mean (SD) 54.7 (15.5) 544 (162) 55.2 (14.4)
Sex (patients/healthy) F 30/36 22/25 18/11
M 46/54 34/35 12/19
Stage I 6 2 4
il 18 11 7
I 7 4 3
v 48 33 15
Unknown 7 6 1
Subtype BCL2- 18 10 8
BCL2+ 50 34 16
Unknown 18 12 6
Mean LDH (SD) 36333 (362.72) 362.95 (361.87) 364.04 (363.44)
MeanB2MG (SD) 2.84 (2.77) 2.86 (2.73) 2.80 (2.84)

LDH, actate dehydrogenase; p2MG, beta2 microglobulin.

data, to explore the mRNA expression relationship between 5hmC
markers and other genes of interests in the TCGA DLBC dataset.
The correlation analysis was done using Spearman rank correlation.

Statistical analysis

With the use of GraphPad Prism 8, data were statistically
processed as detailed in Table 1. For data showing normal
distribution, two-tailed t-tests (either paired or unpaired) were
employed. With the purpose of calculating 95% confidence
intervals, the percentile method was used. Differences were
thought to be of significance with p < 0.05.

Results

Clinical characteristics of diffuse large B Cell
lymphoma (DLBCL) patients

Plasma samples from 86 DLBCL patients (Male 46, Female
40), and 90 healthy donors were collected. Clinical data were
collected from all samples, and detailed information is listed in
Table 1. The mean age of all patients was 54.6 years. Besides, there
were 50 BCL2-positive patients, 18 BCL2-negative patients and
18 unknown patients (2.3%). Finally, the mean values of LDH
and P2MG in all patients were 364.33 U.L' and 2.84 mg.L™},
respectively.
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5hmC profiles differ between healthy
volunteers and DLBCL patients

86 DLBCL patients and 90 healthy volunteers were randomly
divided into a training cohort (DLBCL = 56, healthy = 60) and
validation cohort (DLBCL = 30, healthy = 30) (Figure 1). First,
5hmC-Seal was performed with extracted cfDNA to map the
genome-wide 5hmC profiles for all samples. In training cohort,
sequencing data showed that 5hmC was mainly enriched at
transcription start sites (TSS) and transcription end sites (TTS)
(Figure 2A), which was consistent with previous reports (Quail and
Joyce, 2013), suggesting that the accumulation of 5hmC is related to
transcriptional activity. 5ShmC was mostly distributed (75%) on the
gene body (GB) in the four groups, and the relative enrichment of
5hmC on GBs was the highest in the DLBCL group (Figure 2B).
With the aim of increasing the significance of the findings, our study
employed highly stringent peak selection criteria and selected peak
base pairs that overlapped in the biological replicates (Figures 2C,D;
S1IA). As a
development, 5hmC loss is attributed to the intergenic regions
and tends to accumulate slowly on GBs. Differential analysis

Supplementary Figure result, during disease

between healthy volunteers and DLBCL patients showed that
there were 972 genes with high hydroxymethylation and
160 genes with low hydroxymethylation in DLBCL (Figure 2E,
Supplementary Table S1). For instance, DDII (Figure 2F) was
highly enriched in hydroxymethylation for DLBCL (p = 9.3e-07),
and GPRI2 (Figure 2G) was highly enriched in hydroxymethylation
for healthy volunteers (p = 4.6e-08). Finally, using the default
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FIGURE 1

Overview of study design. A total of 86 cfDNA samples were
collected at the time of diagnosis from patients with DLBCL. 86 DLBCL
patients and 90 healthy controls were randomly divided into a training
cohort and validation cohort. A logistic regression model was
trained by the training cohort that was used to predict treatment
response in the validation cohort.

clustering methods, the heat map results showed that Top50 DhMRs
in these 1,132 DhMRs could effectively separate DLBCL patients
from healthy controls (Figure 2H).

Pathway analysis and function exploration

Pathway analysis of 1,132 differentially hydroxymethylated
genes (DhMGs) (Supplementary Table S1) in DLBCL patients
suggested functional enrichment in certain canonical pathways.
The GO biological pathways is mainly concentrated in immune
and inflammation related signaling pathways such as myeloid
leukocyte activation, CD4-positive alpha-beta T cell activation,
peptidyl-serine modification, T cell differentiation involved in
immune response and cell activation involved in immune
response (Figure 3A). Among these pathways, signaling by alpha-
beta T cell differentiation was known to be relevant to tumor growth
and apoptosis, which suggested that the DhMRs might be involved
in the immunity system (Aucamp et al., 2018; Cioroianu et al., 2019;
Roma-Rodrigues et al., 2019). Meanwhile, the hubs of the GO
functional interaction networks (Figure 3B) showed that these
genes, including Interleukin-6 (IL-6), BCL2 apoptosis regulator

Frontiers in Cell and Developmental Biology

10.3389/fcell.2024.1387959

(BCL2), Interleukin-18 (IL-18), CD33, CD44, phosphodiesterase
4D (PDE4D) and Mitogen activated protein kinase 8 (MAPKS),
participated in  the related

immune and inflammation

signaling pathways.

5hmC as diagnostic biomarkers for DLBCL

First, using RFECV based on logistic regression CV estimator,
we reduced the number of DhMRs (Supplementary Table S2) in
the training cohort, which achieved the best cross-validation
Then,
constructed a diagnostic model with these ten markers.

score. Using a logistic regression method, we
Applying the model yielded a sensitivity of 93% and specificity
of 98% for DLBCL in the training data set of 56 DLBCL and
60 normal samples (Figure 4A) and a sensitivity of 83% and
specificity of 87% in the validation data set of 30 DLBCL and
30 normal samples (Figure 4B). Subsequently, We also
demonstrated this model could differentiate DLBCL patients
from normal controls both in the training data set (AUC =
0.96) and the validation data set (AUC = 0.94) (Figures 4C,D).
Unsupervised hierarchical clustering of these 10 markers was able
to distinguish DLBCL from normal controls with high specificity
and sensitivity. (Figures 4E,F). Finally, we also calculated the
individual AUC for each of the 10 5hmC markers in the training
and validation cohorts (Supplementary Figure S2B). Among
these, THRAP3 showed the best diagnostic performance,
an AUC of 0711 in the

(Supplementary Figure S2). These results indicate that plasma

yielding validation cohort
cfDNA-based 5ShmC markers are a promising diagnostic tool for
DLBCL. Meantime, we also applied this model to calculate the wd-
score for every single sample, and showed that the wd-score in
DLBCL patients was

healthy volunteers (Supplementary Figure S3A). In addition,

significantly higher than those in

we also used the wd-score value to draw the box plot of
different stages of the disease and clinical diagnostic indicators.
The results showed that each stage and clinical diagnostic
indicators were significantly different from the wd-score value
of the healthy volunteers, but there was no difference between the
groups (Supplementary Figure S3B).

Potential associations between 5hmC
markers and DLBCL

Next, we sought to investigate the potential association of those
10 markers with DLBCL. Since our previous data showed that
significantly expressed hydroxymethylation genes were mainly
concentrated in immune-related signaling pathways, it was
believed that these genes were related to DLBCL immune
response. Therefore, we first intersected these 10 genes with
immune-related genes to obtain two genes, DENNDIA (DENN
domain containing 1A) and TSC22D1 (TSC22 domain family
member 1) (Supplementary Figure S2A), and then among the
two 5hmC-modified marker genes, DENNDIA had the higher
AUC in the validation cohort (Supplementary Figure S2B). In
our study, DENNDIA was highly
hydroxymethylation in the DLBCL patients (p =

enriched in
4.7e-08)
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FIGURE 2
Characteristics of 5hmC distribution in plasma cfDNA of DLBCL patients. (A), The profiled 5hmC-Seal data in all samples cfDNA are enriched in gene bodies

and depleted in the flanking regions. (B), Presence of 5hmC peaks that overlapped within biological replicates on different genomic elements. (C,D), Venn diagram
showing gene number associated with peaks observed of those two groups. (E), Volcano plot. Significantly altered DhMGs (|log2FC| > 0.5, p-value < 0.05) are
highlighted in red (up) or green (down) using the DLBCL patients vs. Healthy controls cfDNA samples. Grey dots represent the genes that are not differentially

expressed. (F,G), Boxplots of DDI1 and GPR12. Log? transformed of TMM normalized 5hmC enrichment values were plotted, and the Wilcoxon t-test was used.
(H), Heatmap of top 50 DhMGs with sample type, age, and sex information labeled. Unsupervised hierarchical clustering was performed across genes and samples.

(Figure 5A) and its mRNA expression level in the TCGA-DLBC In addition, from the PPI network constructed from the STRING
dataset was consistent with the hydroxymethylation level in our  database, we identifed several genes linked to DENNDIA, including
data-set (Figure 5B). AKT serine/threonine kinase 1 (AKT1), AKT serine/threonine kinase 2
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FIGURE 3

GO enrichment analysis and function exploration of 1,132 5hmC markers using Cytoscape software. (A), GO enrichment bar plot. (B), GO

enrichment and Gene-Concept Network.

(AKT2), AKT serine/threonine kinase 3 (AKT3), Ras-related protein
Rab-35 (RAB35), MAP kinase activating death domain (MADD) and
CHM like Rab escort protein (CHML) (Figure 5C). Interestingly, we
found that all of these gene expressions (AKT1 (rho = 0.485), AKT2
(rho = 0.523), AKT3 (rho = 0.342), RAB35 (rho = 0.585), CHML (rho =
0.453), MADD (rho = 0.612)) were positively associated with that of
DENNDIA (Figures 5D-I) (Supplementary Figure S4A). Moreover,
from survival analysis results in the TCGA DLBC dataset, we found that
the overall survival time (OS, days) of patients with high expression of
DENNDIA and AKT1 was significantly lower than that of patients with
low expression in these two genes (Figures 5J,K).
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Discussion

cfDNA in the circulating blood originates from dying cells from
different tissues, which release DNA into the peripheral bloodstream
upon degradation after cell death (Aucamp et al, 2018). Recent
studies have reported that 5hmC in plasma ¢fDNA plays a critical
role in gene expression regulation and is also a novel tool to identify
biomarkers for disease diagnosis and prognosis (Han et al., 2016). In
this study, we utilized a sensitive 5ShmC-Seal method (Takahara
et al,, 2023) to generate the genome-wide profiles of cell-free 5hmC
in DLBCL patients and healthy controls.
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Our study proved that the 5ShmC signals were enriched in the
promoter, exons, UTR, and TTS regions. DLBCL patients and
healthy controls showed significant differences in 5hmC
enrichment, including 1,132 differentially hydroxymethylated
genes (DhMGs) detected by differential analysis method.
Additionally, GO analysis of those 1,132 marker genes with
differentially modified 5hmC between DLBCL patients and
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healthy controls suggested enrichment in immune and
inflammation-related signaling pathways, such as myeloid
leukocyte activation, CD4-positive alpha-beta T
activation, peptidyl-serine modification. There is a broad
consensus in cancer research that inflammation and immune
response facilitate

cell

infiltration, and
2022), and

tumor progression,

metastasis via different mechanisms (Bi et al.,
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MRNA expressions of genes, including AKT1, AKT2, AKT3, RAB35, MADD and CHML in DLBCL in the TCGA-DLBC dataset. (J,K), Overall survival
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tumor progression is also highly correlated with the
physiological state of tumor microenvironment (TME) (Xiao
and Yu, 2021). The TME is composed of complex components,
mainly including tumor cells, interstitial factors, extracellular
matrix, inflammatory and immune cells, etc., (Cioroianu et al,,
2019). Some studies have reported that immune cell subtypes
the
microenvironment of DLBCL are related to its progression
and prognosis (Uddin et al., 2006; Hasselblom et al., 2010).
Importantly, cfDNA is not only derived from tumor cells, but
the (Gahan
Swaminathan, 2008). Therefore, these 5ShmC modified genes
could be related to the progression of DLBCL.

Furthermore, we found that ten 5hmC markers filtered by

machine learning algorithms could well distinguish DLBCL

and immune-related signaling pathways in tumor

also from tumor microenvironment and

patients from healthy controls in both the training and validation
cohorts. Meantime, the prediction performance of the logistic
regression model, established by 10 5hmC markers, achieving
83% sensitivity and 87% specificity (AUC = 0.94). Due to in the
clinic, digital evaluation criteria would be more preferred, so a wd-
score was then computed according to the logistic model coefficients
and modification level of the corresponding markers for each
individual. We speculated that 5hmC markers identified in this
study might be used for the early diagnosis of DLBCL given that a
significant difference in wd-scores between DLBCL patients and
healthy volunteers was observed. Taken together, these findings
indicated that 5ShmC markers derived from ¢fDNA may serve as
effective epigenetic biomarkers for minimally noninvasive diagnosis
for DLBCL.

According to recent studies, the regulation of immune
response and function plays a key role in the pathogenesis and
progression of DLBCL (Kulasekaran et al., 2015; Cai et al., 2019;
Zeng etal.,, 2019), and our data are also concentrated in immune-
related functional regions. Therefore, in this study, we intersected
the above 10 biomarkers with immune-related genes in the
database, and found that TSC22D1 and DENNDIA were
associated with immunity. Notably, among this two 5hmC
DENNDIA the best
performance. Meantime, DENNDIA expression was positively
correlated with AKT1, AKT2, AKT3, RAB35, and CHML. Recent
work suggested constitutive activation of the PI3K/protein kinase

modified genes, showed predictive

B (AKT) pathway that plays a crucial role in mediating growth,
proliferation, and cell survival in a substantial number of DLBCL
patient samples (Langmead and Salzberg, 2012; Bi et al., 2022).
Interestingly, Functional study of DENNDIA found that
DENNDIA acted as a guanine nucleotide exchange factor for
RAB35, which activated RAB35 and regulated the activation of
AKT, a key protein in PI3K signaling pathway. After down-
regulating the expression of RAB35, AKT activity was
decreased (Steen et al, 2021; Xiao and Yu, 2021). Other
studies have also found that RAB35 is a new regulator of PI3K
pathway, the of RAB35 inhibit AKT
phosphorylation, while the expression of RAB35 mutants
activates the PI3K/AKT pathway, and RAB35 plays a role
in the downstream of growth factor receptors and the
upstream of PDKI. RAB35 was co-expressed with PI3K in

depletion can

Frontiers in Cell and Developmental Biology

10

10.3389/fcell.2024.1387959

immunoprecipitation assay (Steen et al., 2021). Taken
together, these data indicate that DENNDIA as RAB35
guanine nucleotide exchange factor, may participate in
regulating the PI3K/AKT signaling pathway affecting DLBCL
progress, but its specific mechanism is unclear.

Nevertheless, there are limitations to our study. Firstly, the
number of DLBCL patients is relatively small and may not fully
represent all DLBCL patients. Recently, 5hmC has become a
novel class of cancer epigenetic biomarkers. Compared with the
clinical gold standard, it has high sensitivity and specificity in the
early detection of some cancers (Scholler et al.,, 2022), and has
shown the potential for the diagnosis and prognosis of different
diseases (Gahan and Swaminathan, 2008), which has application
prospects in the field of precision medicine. Thus, the
performance of our model still needs to be tested in larger
study cohorts. Secondly, In this study, we included a small
number of patients in each stage, which may have a certain
impact on the current diagnostic results of DLBCL. In addition,
considering that the early diagnosis of DLBCL is of great
significance, we will include more samples of early DLBCL
patients in the later study, in order to achieve the early
diagnosis of DLBCL by minimally invasive means. Thirdly,
this study only focuses on Chinese patients and may not
represent DLBCL patients in other races, and therefore more
validation will be necessary to demonstrate the generalizability of
the results in prospective studies which will cover other
populations, geographical regions, and disease risk factors.
Fourthly, In the clinical cohort of this study, we have not
included samples of other types of blood tumors. In future
studies, we plan to broaden the sample range to encompass
early-stage diffuse large B-cell lymphoma (DLBCL) as well as
other blood tumors in order to validate and establish the
reliability of the 5ShmC marker for early diagnosis of DLBCL
the
DENNDIA is still not clear. In the future, we aim to increase

patients.Finally, regulatory mechanism of 5hmC in
the sample size of DLBCL patients and find more stable and

reliable 5hmC marker genes to diagnose DLBCL patients.

Conclusion

In conclusions, our research indicated that 5ShmC signatures in
plasma cfDNA can be served as effective biomarkers for non-
invasive diagnosis of DLBCL. Our findings have the potential to
be the development of new strategies for diagnosis and therapeutic
treatment of DLBCL.
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(B—K), The other graphs represent the Individual ROC curves for each
marker in the training and validation cohort.
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box plot of different stages of the disease and clinical diagnostic indicators.
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Correlation plots of the mRNA expression of DENNDIA with the mRNA
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dataset. (A), GDI1. (B), GDI2. (C), THADA. (D), CHM.
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