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In heart disease patients, myocyte loss or malfunction invariably leads to fibrosis,
involving the activation and accumulation of cardiac fibroblasts that deposit large
amounts of extracellular matrix. Apart from the vital replacement fibrosis that
follows myocardial infarction, ensuring structural integrity of the heart, cardiac
fibrosis is largely considered to be maladaptive. Much work has focused on
signaling pathways driving the fibrotic response, including TGF-β signaling and
biomechanical strain. However, currently there are very limited options for
reducing cardiac fibrosis, with most patients suffering from chronic fibrosis.
The adult heart has very limited regenerative capacity. However, cardiac
regeneration has been reported in humans perinatally, and reproduced
experimentally in neonatal mice. Furthermore, model organisms such as the
zebrafish are able to fully regenerate their hearts following massive cardiac
damage into adulthood. Increasing evidence points to a transient immuno-
fibrotic response as being key for cardiac regeneration to occur. The
mechanisms at play in this context are changing our views on fibrosis, and
could be leveraged to promote beneficial remodeling in heart failure patients.
This review summarizes our current knowledge of fibroblast properties
associated with the healthy, failing or regenerating heart. Furthermore, we
explore how cardiac fibroblast activity could be targeted to assist future
therapeutic approaches.
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1 Introduction

Cardiovascular disease is the leading cause of adult death, and a major cause of
disability, worldwide (Benjamin et al., 2019). Its incidence has been on the rise due to our
ageing population, sedentary behavior, and poor dietary habits. Cardiovascular diseases are
a vast group of disorders of the heart and blood vessels, arising from etiologies as diverse as
diabetes, myocarditis, and myocardial infarction, all with a common outcome, the spiral of
destruction that is progressive heart failure (HF). A major component driving HF is cardiac
fibrosis. The latter is a pathological remodeling process, classically defined as the activation
and accumulation of cardiac fibroblasts, resulting in excessive overproduction of fibrous
connective tissue (Baudino et al., 2006). Cardiac fibroblasts (CFs) are the cell type chiefly
responsible for producing the extracellular matrix (ECM), the dynamic modulatory
network comprising a multitude of structural and non-structural macromolecules
(Goldsmith et al., 2014). They are emerging as an intriguing cell type to study,
regarding both normal cardiac functions, and in response to injury. It is becoming clear
that the modulation of fibroblast activity will be key in the future management of
HF patients.
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Historically, fibroblast were considered to be a highly numerous, if
not the most numerous, cell type (Souders et al., 2009). A recent study
relying on robust fibroblast markers placed their number at only 11% of
total cells in mouse heart, substantially less than previous estimations
(Pinto et al., 2016). Zebrafish heart is composed of a far lower proportion
of epicardial cells/fibroblasts, at just 1%–2% of all cells (Rolland et al.,
2021). Concerning humanheart, estimates vary between 10% and 30%of
cells, but approaches such as quantification of immune-labelled
fibroblasts is less efficient than in mice (Pinto et al., 2016). Diversity
in CF proportions among species likely reflect different requirements for
ECM content linked to physiological characteristics such as size and
mechanical stress, and likely influences response to injury.

Much of the current knowledge on CF function derives from
studies focusing on fibrosis and HF. However, recent studies in the
field of cardiac repair and regeneration have changed our view on this
process. Indeed, both regenerative and non-regenerative responses
include inflammatory and proliferative phases, the latter involving
fibroblast proliferation and ECM deposition. However, contrary to
HF, regeneration is associated with a transient fibrotic response
(Sánchez-Iranzo et al., 2018). Exploiting the signaling driving fibrosis
resolution could offer new therapeutic possibilities for regulating
fibrosis in HF patients. In this review, we discuss properties of
fibroblasts and the fibrotic process in HF and regeneration,
highlighting common and context-specific features.

2 Fibroblasts in the healthy heart

2.1 Markers

Fibroblasts have been defined as widely distributed mesenchymal
cells that produce extracellular matrix constituents, notably Collagen
Type I (Souders et al., 2009). However, the relative abundance, origins
and biological properties CFs have remained controversial due to a lack
of consensus over definitive markers. Several studies using putative
markers such as FSP1 or CD90/thy-1, now known to be expressed by
other lineages (Moore-Morris et al., 2016), pointed to endothelial-to-
mesenchymal transition and recruitment of circulating progenitors as

major sources of fibroblasts in HF (Zeisberg et al., 2007). More recently,
the tyrosine kinase receptor, platelet-derived growth factor receptor
alpha polypeptide (PDGFRα) and the bHLH transcription factor, Tcf21,
have beenwidely accepted as a comprehensivemarkers for fibroblasts in
both mice and zebrafish (Smith et al., 2011; Acharya et al., 2012;
Sánchez-Iranzo et al., 2018) (see Table 1). Furthermore, the
development of single cell/nuclei sequencing has revealed that
fibroblasts form a clearly identifiable cell-type and validated the
specificity of markers such as PDGFRα for the fibroblast lineage in
humans (Litviňuková et al., 2020).

Fibroblast activation has been explored in common murine
models of HF, notably coronary artery ligation and transverse
aortic constriction, discussed in more detail below. In response
to cardiac injury or stress, fibroblasts undergo activation,
including fibroblast-to-myofibroblast transition. As well as for
morphological reasoning, the term myofibroblasts was coined due
to their de novo expression of contractile genes, including ACTA2,
which codes for α smooth muscle actin (α-SMA) (Gabbiani et al.,
1971). α-SMA expression characterizes myofibroblasts, and allows
these cells to physically contribute to scar tissue remodeling, but it is
worthwhile noting that it is also used to mark for vascular smooth
muscle cells (vSMCs) and is not expressed by all activated fibroblasts
(Moore-Morris et al., 2015). Fibroblast activation protein α (FAP), a
membrane-bound serine protease, has also been shown to be
associated with cardiac myofibroblasts (Tillmanns et al., 2015).
Another key marker for myofibroblasts is the matricellular
protein periostin, which is associated with a strong fibrotic
response after injury (Snider et al., 2009). It is important to note
that the use of (secreted) ECM constituents as markers for
fibroblasts can lead to mislabeling, which can be overcome at
least in animal models by the use of reporter lines (see Table 1).

2.2 Origins

During development, the majority of CFs derive from epithelial-
to mesenchymal transition of the epicardium, as first shown in the
avian system by retroviral tagging of proepicardial progenitors in

TABLE 1 Major fibroblast markers, genetic tools and antibodies for their identification and lineage tracing in mice and zebrafish.

Marker Fibroblast
status

Specificity Expression in other
cardiac cell types

Mouse Zebrafish

Tcf21 All High Epicardium Tcf21iCre/+ (Acharya et al., 2011) tcf21:DsRed2 and tcf21:
CreERT2 (Kikuchi et al., 2011)

Pdgfrα All High Epicardium, endocardium Ab staining (Moore-Morris et al., 2014);
PDGFRαEGFP (Hamilton et al., 2003)

pdgfra:mCitrine; kdrl:mCherry
(Wang et al., 2020a)

ColI* All High Epicardium, activated VSMCs,
activated pericytes

coll1a1-GFP (Yata, 2003) Tg (col1a2:loxP-mCherryNTR)
(Sánchez-Iranzo et al., 2018)

Ddr2 All High Epicardium Ab staining (Goldsmith et al., 2004; Banerjee
et al., 2007)

N/A

αSMA Activated/
myofibroblast

Low VSMCs, pericytes Ab staining (Moore-Morris et al., 2014; Fu
et al., 2018); SMA-Cre-ER (T2) (Wendling

et al., 2009)

Ab staining (Rolland et al., 2023)

Periostina Activated/
myofibroblast

High N/A PostnMCM/+ (Kanisicak et al., 2016) postb-CreERT2 (Sánchez-Iranzo
et al., 2018)

aColI and periostin are secreted ECM, constituents for which reporter lines, but not immunostaining, accurately labels fibroblasts. Ab, antibody. VSMCs, vascular smooth muscle cells.
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chick embryos (Mikawa and Gourdie, 1996). PDGFR signaling has
been shown to play a key role in this process (Smith et al., 2011).
Genetic lineage-tracing methods have confirmed that a majority of
fibroblasts derive from epicardium but also revealed that a subset of
fibroblasts, enriched in the interventricular septum, are derived from
embryonic endocardium (Moore-Morris et al., 2014; Han et al.,
2023). Importantly, these developmentally-derived populations give
rise to the vast majority of fibroblasts in fibrotic conditions (Ali et al.,
2014; Moore-Morris et al., 2014; Han et al., 2023). The endocardium
forms the inner most layer of the heart chambers. During mid-
gestation, endocardial EMT contributes mesenchymal cells to the
forming atrioventricular and semilunar valves (de Lange et al.,
2004). A subset of fibroblasts produced during formation of the
atrioventircular valves migrate invests the ventricular septum and
sub-endocardial myocardium, complementing the distribution of
the epicardium-derived fibroblasts (Moore-Morris et al., 2014).
Lastly, the cardiac neural crest, a heterogeneous cell population
originating from the dorsal neural tube, has been reported to provide
a small proportion of fibroblasts to the atria and ventricles (Ali et al.,
2014). Hence, in mammalian heart, most fibroblasts are of epicardial
origin, but smaller subsets are derived from endocardium and neural
crest. Similarly, genetic lineage tracing in zebrafish also showed that
fibroblasts are essentially of epicardial origin (Sánchez-Iranzo et al.,
2018). Fibrosis, the excessive accumulation of fibroblasts, results
from the activation and proliferation of these resident fibroblast
lineages (Moore-Morris et al., 2014; Ruiz-Villalba et al., 2015).

3 Fibrosis in HF models

HF is defined as a clinical syndrome resulting from structural
and/or functional changes resulting in cardiac dysfunction, that can
be associated with preserved (HFpEF) or reduced (HFrEF) ejection
fraction (EF) (Ponikowski et al., 2016). Multiple disorders and
diseases affecting heart development and physiology lead to HF,
which is invariably associated with fibrosis of the perivascular and
interstitial areas of the myocardium. Murine HF models have been
extensively used to explore the cellular and molecular mechanisms
driving fibrosis.

3.1 Myocardial infarction

Coronary artery ligation is used to induce acute ischemic injury
or chronic myocardial infarction (MI) by temporarily or
permanently occluding the left anterior descending (LAD)
coronary artery (Xu et al., 2014). This results in myocardial
ischemia and the gradual replacement of dead myocardial tissue
by an infarct scar. The fibroblasts that form the infarct scar have
been shown to derive from resident fibroblasts (Ruiz-Villalba et al.,
2015; Moore-Morris et al., 2018), as well as de novo epicardial-EMT
(Zhou et al., 2011). Collagen-GFP+;CD45+ fibrocytes, circulating
cells of hematopoietic origin, have also been observed at the
epicardial surface of the heart as a result of the surgical
procedure (Moore-Morris et al., 2018). During the infarction
process, fibroblasts transition between different states. Notably,
scar formation results from fibroblast proliferation and α-SMA+

myofibroblast transition during the first week after infarction.

Following this, α-SMA expression and collagen production is
reduced, as the scar matures (Fu et al., 2018). Importantly,
increased left ventricular wall rupture has been linked to reduced
cardiac fibroblast activity (Ruiz-Villalba et al., 2020; Murtha
et al., 2023).

3.2 Transverse aortic constriction

Transverse aortic constriction (TAC) is the most common
experimental model used to achieve pressure overload-induced
cardiac hypertrophy and HF (Rockman et al., 1991). During the
surgical procedure, surgical suture is tied around the transverse
aortic arch, resulting in left-sided HF through pressure overload.
Initially, depending on the tightness of the aortic ligation, the
heart undergoes a hypertrophic compensatory response, that can
be associated with a conserved or slightly improved ejection
fraction, but ultimately develops signs of HF (Richards et al.,
2019). As in the MI model, resident fibroblast populations
undergo a proliferative response, expanding in perivascular and
interstitial areas (Moore-Morris et al., 2014). Interestingly,
resident fibroblasts of endocardial origin have recently
been shown to be highly responsive to pressure overload
compared with epicardium-derived fibroblasts, and specifically
targeting endocardium-derived fibroblasts alleviates pathological
remodeling (Han et al., 2023).

4 Fibrosis in regeneration models

Regeneration refers to the restoration of normal organ
architecture and function following injury. In many organs,
such as the liver or skin, fibrosis is a transient process that
naturally recedes during healing. The adult mammalian heart
has a very limited regenerative capacity, and most of our
understanding of cardiac regenerative biology has come from
animal models such as the zebrafish (Hortells et al., 2019).
Characterizing the fibrotic process in these models is currently
an intense area of research.

4.1 Adult teleost fish heart regeneration

The adult zebrafish heart has remarkable regenerative
competence, being able to fully regenerate after enduring up to
20% ventricular amputation, a feat in which the adult mammalian
heart cannot compare (Poss et al., 2002). Upon cardiac injury, rather
than regenerating, mammalian hearts develops chronic fibrosis, a
response which is unfortunately maladaptive as it results in
permanently altered cardiac form and function, and ultimately,
HF (Talman and Ruskoaho, 2016). Conversely, in the zebrafish,
fibrosis represents an integrative part of the regenerative response.
In zebrafish cardiac regeneration, it is well accepted that new
cardiomyocytes derive from pre-existing cardiomyocytes that
undergo dedifferentiation, proliferation and redifferentiation
(Jopling et al., 2010). Recently, genetic deletion experiments of
collagen-producing cells revealed that fibroblast-mediated fibrosis
was essential for cardiac regeneration in this model (Sánchez-Iranzo
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et al., 2018). It is currently unclear to what extent fibroblasts
themselves determine the hearts capacity to regenerate,
i.e., whether CFs in myocardium with regenerative capacity
possess specific properties as compared to CFs in non-
regenerative contexts. Interestingly, analysis of the regenerative
response in two populations of Astyanax mexicanus fish has
provided novel insight into this question. Indeed, following apical
resection, myocyte proliferation was equivalent in both the non-
regenerative cave-dwelling and regenerative surface populations.
However, the former presented heightened immune and fibrotic
responses, suggesting that modulating non-myocyte behavior will be
equally as important as promoting myocyte proliferation to achieve
regeneration in HF patients (Stockdale et al., 2018). In zebrafish,
single cell RNA-sequencing (scRNA-seq) analysis revealed that
ɑSMA was not significantly upregulated in CFs during the
regenerative response, in contrast to CFs following myocardial
infarction (Rolland et al., 2023). Hence, comparative analyses
between models may reveal specific features of fibroblasts that
are essential for the regenerative response.

4.2 Neonatal mouse heart regeneration

Cardiac regeneration following apical resection has been
reported to occur un neonatal mice (1 day postnatal), with
resected animals displaying normal structure and function by 3-
week of age (Porrello et al., 2011). This recovery has been associated
with cardiomyocyte proliferation, as well as a transient fibrotic
response (Porrello et al., 2011), similar to what is observed in
adult zebrafish (Poss et al., 2002). In a neonatal MI model, a
more robust fibrotic response was observed when MI was
induced at a non-regenerative stage (P7) compared to the 1 day
time point, notably including increased fibroblast proliferation
(Wang Z. et al., 2020).

Fibrotic responses occur in all of these models, but are different
in nature. In summary, depending on the context, fibrosis is an
essential part of response to insult, as for zebrafish heart
regeneration, or a maladaptive process, as in non-ischemic HF
patients. Regeneration appears to be dependent on cardiomyocyte
proliferation, but also on specific properties of cardiac fibroblasts
that support the formation of newmyocardium (Figure 1). A better
understanding of the signaling regulating fibrosis would likely be
beneficial for novel therapeutic approaches aimed at
alleviating HF.

5 Signaling regulating cardiac fibrosis

Amyriad of cell-signaling pathways have been implicated in the
activation of fibroblasts. Activated fibroblasts, or myofibroblasts, are
known to secrete large amounts of ECM components, including
collagens and proteoglycans, that accumulate in interstitial and
perivascular areas (Souders et al., 2009). Novel therapeutic
targeting of these processes is of intense clinical interest due to
the paucity of current treatments available to combat
cardiac fibrosis.

Traditional pathways mediating CF activation include
transforming growth factor-β (TGF-β), renin-angiotensin-

aldosterone system (RAAS), tumour necrosis factor-α (TNFα),
and Wnt (Prabhu and Frangogiannis, 2016; Khalil et al., 2017;
Schumacher and Naga Prasad, 2018; Działo et al., 2021), whereas
more recently studied mediators include endothelin-1, galectin-3,
and interleukin 11 (Ho et al., 2012; Wang et al., 2015; Schafer
et al., 2017).

Transforming growth factor-beta (TGF-β) proteins bind to cell-
surface receptors and regulate key cellular processes, notably by
activating Smad proteins that translocate to the nucleus and regulate
transcription (Derynck and Zhang, 2003). TGF-β signaling is known
to promote ECM deposition and fibrosis (Border and Noble, 1994),
and TGF-β neutralization has been shown to prevent CF activation
and reduce fibrosis (Kuwahara et al., 2002). More recently,
conditional deletion of TGF-β receptors and Smads in CFs
markedly reduced fibrosis in a pressure overload model (Khalil
et al., 2017). However, TGF-β signaling has also been shown to
be essential for cardiac regeneration in zebrafish, as chemical
inhibition inhibited recovery from cryoinjury (Chablais and
Jazwinska, 2012). Furthermore, TGF-β signaling has been shown
to drive zebrafish valve regeneration, notably by promoting
mesenchymal progenitor proliferation and differentiation
(Bensimon-Brito et al., 2020). Hence, studies focusing on this
pathway have revealed that TGF-β signaling is responsible for
promoting excessive fibroblast activation in the context of heart
disease, but is essential for the fibrotic response required in the
context of cardiac regeneration.

Wingless/Int (WNT) signaling plays a key role during
development, and involves β-catenin dependent and independent,
non-canonical, pathways (Logan and Nusse, 2004). Wnt signaling is
notably known to regulate cellular polarity andmotility. Conditional
deletion of β-catenin in CFs lead to reduced matrix deposition by
fibroblasts following pressure overload in mice (Xiang et al., 2017).
Canonical WNT signaling has been shown to be required for
zebrafish heart regeneration by promoting cardiomyocyte
proliferation (Bertozzi et al., 2022). Whether Wnt signaling in
fibroblasts is required for scar absorption in this context is
currently unclear.

Of late, the little studied interleukin (IL)-11 has captured great
interest, being proposed as a newer mediator in the pathogenesis of
fibrotic diseases (Fung et al., 2022). IL-11 is a multifunctional
member of the IL-6 cytokine family and is known to play a
pivotal pro-fibrotic role in various inflammatory diseases (Fung
et al., 2022). It was demonstrated in primary human fibroblasts that
TGF-β1 is a potent stimulator of IL-11 gene transcription, and
inhibiting IL-11 signaling in fibroblasts in vivo lead to reduced
fibrosis (Schafer et al., 2017). In zebrafish, IL-11/STAT3 signaling
has been shown to limit fibrosis and promote cardiac regeneration
(Allanki et al., 2021).

Fibroblasts are highly sensitive to mechanical and bio molecular
cues, and have been referred to as “sentinel cells” (Smith et al., 1997).
Notably, increased stiffness leads to fibroblast-to-myofibroblast
transition (van Putten et al., 2016). Knockdown of
mechanosensitive channel TRPV4 in CFs has been shown to
impair TGF-β1 mediated myofibroblast transition (Adapala et al.,
2013). Furthermore, Piezo1 signaling in CFs has been shown to be
upstream of pro-inflammatory IL6 secretion (Blythe et al., 2019).
Hence, transitions between different fibroblast states are highly
dependent on mechanosensing, and further characterizing
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mechanoreceptor functions in regenerative and non-regenerative
contexts may reveal novel therapeutic targets.

6 Conclusion/perspectives

Fibrosis has long been considered a pathologic process, and the
roles of fibroblasts in disease and regeneration contexts were largely
unknown. The identification of specific fibroblast markers, the
generation of genetic tools and the development of single cell/
nuclei-sequencing have enabled tremendous progress in the
characterization of CFs. Moreover, through studies using multiple
models of HF and regeneration, it transpires that cardiac fibrosis is a
multi-phased process: required in the initial response to insult, but
often detrimental in its chronic form. Hence, in the future,
regulating rather than inhibiting cardiac fibroblast activity may
well be decisive for improving HF patient treatment.
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FIGURE 1
Regeneration versus heart failure. Equivalent inflammatory and proliferative phases occur in adult mouse and zebrafish hearts following injury. Lack
of myocyte proliferation in mouse heart is associated with the persistence of fibrosis, leading to tissue stiffening, ischemia and, ultimately, heart failure.
Regeneration is zebrafish results from myocyte proliferation and gradual resorption of fibrosis.
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