
Noncoding RNAs: the crucial role
of programmed cell death in
osteoporosis

Juanjuan Han1†, Yuqing Zhu1†, Jiale Zhang1, Leonid Kapilevich2

and Xin-an Zhang1*
1College of Exercise and Health, Shenyang Sport University, Shenyang, China, 2Faculty of Physical
Education, Tomsk State University, Tomsk, Russia

Osteoporosis is the most common skeletal disease characterized by an
imbalance between bone resorption and bone remodeling. Osteoporosis can
lead to bone loss and bone microstructural deterioration. This increases the risk
of bone fragility and fracture, severely reducing patients’ mobility and quality of
life. However, the specificmolecular mechanisms involved in the development of
osteoporosis remain unclear. Increasing evidence suggests that multiple
noncoding RNAs show differential expression in the osteoporosis state.
Meanwhile, noncoding RNAs have been associated with an increased risk of
osteoporosis and fracture. Noncoding RNAs are an important class of factors at
the level of gene regulation and are mainly involved in cell proliferation, cell
differentiation, and cell death. Programmed cell death is a genetically-regulated
form of cell death involved in regulating the homeostasis of the internal
environment. Noncoding RNA plays an important role in the programmed cell
death process. The exploration of the noncoding RNA-programmed cell death
axis has become an interesting area of research and has been shown to play a role
in many diseases such as osteoporosis. In this review, we summarize the latest
findings on themechanism of noncoding RNA-mediated programmed cell death
on bone homeostasis imbalance leading to osteoporosis. And we provide a
deeper understanding of the role played by the noncoding RNA-programmed
cell death axis at the gene regulatory level of osteoporosis. We hope to provide a
unique opportunity to develop novel diagnostic and therapeutic approaches for
osteoporosis.
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1 Introduction

Osteoporosis (OP) is a progressive bone disease characterized by bone mass loss and
microstructure deterioration, increasing the risk of fragility fractures (Akkus and Gulsen-
Atalay, 2020). Factors like genetics, environment, estrogen deficiency, and medication
contribute to OP. It results from osteoclast-mediated bone resorption exceeding osteoblast-
mediated bone formation (Dell’Aquila et al., 2020). OP is becoming increasingly common
in women after the age of 55 and in men after the age of 65, resulting in a high number of
fractures and bone-related complications, increased mortality, and healthcare costs.
Currently, the test for OP is the bone mineral density (BMD) score, but this lacks
sensitivity making early diagnosis difficult. Meanwhile, the available treatments are
imperfect. Understanding OP pathophysiology is crucial for early diagnosis and treatment.
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Noncoding RNAs (ncRNAs) are a class of RNA molecules that
cannot code for proteins. This type of RNA mainly includes
microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and
circular RNAs (circRNAs). NcRNAs are crucial contributors to
diseases related to cell proliferation, cell differentiation, and cell
death (Slack and Chinnaiyan, 2019). It can affect the occurrence and
development of OP by regulating the expression of target genes and
epigenetics (Terashima et al., 2017). Recent studies have also found
that some ncRNAs can be translated to generate peptides or small
proteins. Some ncRNAs can encode functional peptides through
their small open reading frames, which are involved in cellular
signaling, regulation of gene expression, and other biological
processes, and thus affect bone cell Functions of osteoblasts
(Guan et al., 2022). Programmed cell death (PCD) is vital for
tissue development and homeostasis, but its imbalance leads to
diseases. Recent studies have shown that ncRNAs are widely
associated with the regulation of PCD, and the association of the
ncRNAs-PCD axis with cancer has become one of the hottest topics
in biomedical sciences. In recent years, numerous studies have found
that the ncRNAs-PCD axis is closely related to OP (Behera et al.,
2022; Zhao et al., 2024). OP can be viewed as an imbalance of PCD in
osteocytes, and similarly, the ncRNAs-PCD axis plays a role in bone
metabolism and bone formation. In this paper, we review and
explore the role of ncRNAs in OP, focusing on their interplay
with PCD, aiming to identify new treatment targets and guide
clinical interventions for OP.

2 Noncoding RNAs and osteoporosis

2.1 Noncoding RNAs

NcRNAs are RNA molecules produced during genome
transcription that do not encode proteins. They include small
molecules like miRNA, small interference RNA (siRNA),
circRNA, small non-coding RNAs (sncRNA), and larger
molecular weight ones like lncRNA (St Laurent et al., 2015).
These RNAs regulate cell processes such as proliferation,
differentiation, and death (Slack and Chinnaiyan, 2019).
LncRNAs, over 200 nt, regulate gene expression and cellular
processes, impacting protein translation and stability (Zhang
et al., 2017b). They can also act as decoys, scaffolds, competing
endogenous RNAs (ceRNAs), etc., leading to disease ultimately
(Thomson and Dinger, 2016). MiRNAs, 18-25 nucleotides long,
regulate post-transcriptional gene expression (Lu and Rothenberg,
2018). MiRNAs in their most primitive form are primary miRNAs
(pri-miRNAs). Pri-miRNAs are processed by RNA endonuclease III
(Drosha) and DGCR8/Pasha to become pre-miRNAs, a microRNA
precursor. The pre-miRNA is then cleaved by the enzyme Dicer and
becomes a mature miRNA. MiRNAs control almost all pathways
and directly control cell proliferation, differentiation,
morphogenesis, and apoptosis. Therefore, they are essential for
maintaining or determining cell survival (Cai et al., 2009).
CircRNAs are ncRNAs with a covalent closed-loop structure,
ranging from about one hundred to several thousand nucleotides,
and are produced by 3′ to 5′ end-joining events (reverse splicing)
(Ebbesen et al., 2017). CircRNAs not only act as miRNA sponges or
ceRNAs (Tay et al., 2014), which compete with other RNAs for

miRNA pairing, but regulate transcription in the nucleus and bind to
protein factors (Ashwal-Fluss et al., 2014) (as shown in Figure 1).
SncRNAs consist of various RNA types, including tRNA-derived
small RNAs, small nucleolar RNAs (snoRNAs), small nuclear
RNAs (snRNAs), PIWI-interacting RNAs, etc (Xiao et al., 2022).
At present, studies on snRNA and snoRNA mainly focus on tumors
rather than osteoporosis, presenting a potential new research avenue.

2.2 The regulation of noncoding RNAs in
osteoporosis

Osteoblasts are involved in bone formation through a variety of
pathways, including the synthesis and secretion of bone matrix,
promotion of mineral deposition, repair of bone and formation of
new bone, and secretion of growth factors and cytokines for the
maintenance of bone mass and density. Osteoclasts and osteoblasts
have opposite functions, including resorption or dissolution of bone
tissue, inhibition of mineral deposition, removal of old bone and
damage to bone tissue (Kim et al., 2020). Their balance ensures
proper repair and renewal of bone tissue, keeping bone mass and
BMDwithin normal limits. However, when osteoblasts are inhibited
or osteoclasts are over-activated, the balance of bone resorption and
bone formation is disrupted, leading to OP (as shown in Figure 2).

NcRNAs play a key role in bone metabolism, and OP leads to
abnormal expression of certain ncRNAs in vivo. Not only that, gene
regulation and gene modification related to bone metabolism also
affect ncRNA expression. OP also leads to abnormalities in some
signaling pathways, resulting in activation or inhibition of ncRNA
expression (Terashima et al., 2017). LncRNAs improve OP by
promoting the osteogenic differentiation of bone marrow
mesenchymal stem cells (BMSCs) and adipose mesenchymal
stem cells and inhibiting their adipogenic differentiation (Liu
et al., 2021b). They participate in OP by promoting osteoblast
differentiation, inhibiting osteoclast proliferation, and altering the
expression of target genes (Zhang et al., 2019). MiRNAs can likewise
be involved in the regulation of bone metabolism, by regulating
osteogenic and osteoclastic differentiation. MiRNAs target
transcription factors and signaling molecules of osteoblast
production and osteogenic function pathway and affect other
substances related to osteoclastic differentiation (Kobayashi et al.,
2016). Several miRNAs (miR-124, miR-193-3p) regulate osteoclast
differentiation by targeting osteoclast-associated mRNAs (Li et al.,
2019; Ohnuma et al., 2019). Dysfunction of miRNAs disrupts bone
remodeling by reducing bone anabolic function in osteoblasts (Lei
et al., 2011). In bone metabolism, on the one hand, circRNA
regulates stem cell osteogenic differentiation and monocyte
macrophage osteoclast differentiation. On the other hand,
circRNA regulates various osteoblast signaling pathways, such as
Wnt and RANKL-RANK pathway. It can also serve as a biomarker
for OP, acting as a ceRNA for miRNAs involved in bone
metabolism. Nowadays, existing studies have found that snRNA
and snoRNA have important roles in cancer, immunity,
amyotrophy, and osteoarthritis (Bisht et al., 2020). SnoRNA
affects chondrogenic and hypertrophic gene expression when its
expression is altered (Peffers et al., 2020). However, the role of
snRNA and snoRNA in OP has not been reported, so they may be a
promising research direction.
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3 Programmed cell death and
osteoporosis

3.1 Programmed cell death

PCD, a genetically controlled cell death process, is crucial for
maintaining internal balance and can lead to various diseases if

imbalanced (Tsuda et al., 2012). PCD has several manifestations
(as shown in Figure 3). Apoptosis is characterized by membrane
blister, apoptotic body production, nuclear condensation and
organelle/DNA fragmentation. These alterations ultimately lead to
cellular disintegration, which is phagocytosed by phagocytic
housekeepers from innate immunity without releasing pro-
inflammatory cellular contents into the extracellular milieu (Liu

FIGURE 1
The morphology and formation of ncRNAs. (A) Morphology of main ncRNAs: MiRNAs are 18–25 nt. CircRNAs are 100–10,000 nt with a closed
loop. LncRNAs are over 200 nt. SncRNAs consist of various small RNAs. (B) Major ncRNA formation and function. Pri-miRNAs are converted to pre-
miRNAs by Drosha and DGCR8/Pasha, thenmatured by Dicer. LncRNAs result from the linkage ofmultiple small RNAs. CircRNAs are generated through a
back-splicing of 3′ and 5′ RNA ends.

FIGURE 2
Bone homeostasis and osteoporosis. In normal bones, bone formation by osteoblasts and bone resorption by osteoclasts are in balance.When there
is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, osteoporosis results.
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et al., 2022a). Apoptosis is involved in many physiological
mechanisms such as maintenance of tissue differentiation, organ
development, and aging, damaging and eliminating body
hemostasis in mutated cells (Miura et al., 1993). Necroptosis was
described as a novel, TNF-α-triggered form of non-apoptotic cell
death that occurs in the absence of caspase-8 (Degterev et al., 2005).
Necroptosis has long been recognized as a passive and unregulated
process in response to severe pathological stress, characterized by
cellular swelling, destruction of cell membranes and organelles, and
cell lysis (Edinger and Thompson, 2004). It is a cellular response to
environmental stress, which may be induced by chemical and
mechanical injury, inflammation, or infection (Khoury et al.,
2020). Ferroptosis results from iron-dependent lipid peroxidation
(Hu et al., 2022). The cells typically exhibit necrotic-like morphologic
transformations, including rupture of cellular membranes,
cytoplasmic swelling, and as well as mitochondrial atrophy, and
lipid reactive oxygen species (ROS) (Tang et al., 2021). It has two
main pathways, the extrinsic or transporter protein-dependent
pathway and the intrinsic or enzyme-regulated pathway.
Pyroptosis is an active and organized inflammatory form (Li et al.,
2021). It is usually caused by microbial infection, accompanied by
activation of the inflammatory vesicles and maturation of the pro-
inflammatory cytokines IL-1β and IL-18 (Tan et al., 2021b). It has two
signaling pathways: a canonical pathwaymediated by cysteine-1 and a

non-canonical pathway mediated by cysteine-11 (Rühl et al., 2018). It
is characterized by the activation of inflammatory cysteine-1 enzymes
and cleavage of various members of the gasdermin family to form
membrane-perforating, leading to cell membrane rupture, the release
of inflammatorymediators and cell death ultimately (Wei et al., 2022).
Autophagy refers to the catabolic process by which a cell turns over its
own components (Yang and Klionsky, 2010). It is an important
fundamental metabolic mechanism that affects cell survival by
maintaining cellular bioenergy and removing protein aggregates
and damaged organelles (Doherty and Baehrecke, 2018). During
autophagy, cytoplasmic materials and organelles are segregated and
phagocytized by double-membrane structures called autophagosomes
and transported to lysosomes for degradation and recycling (Ichimiya
et al., 2020). PANoptosis combines features of pyroptosis, apoptosis,
and necroptosis in a coordinated pathway, triggered by various factors
like infection or injury, with critical PAN photoreceptor assembly and
activation (Pandian and Kanneganti, 2022).

3.2 The regulation of programmed cell death
in osteoporosis

Adult bone mass is regulated by the balance between osteoclast
and osteoblast production and their apoptosis (Weinstein and

FIGURE 3
The process of PCD: Apoptosis is characterized by cell shrinkage, membrane blebbing, and the formation of apoptotic bodies. Necroptosis is
marked by cell swelling, rupture of the cell membrane, and cell lysis. Ferroptosis features the rupture of the cell membrane, cytoplasmic swelling,
mitochondrial atrophy, and the alteration of lipid reactive oxygen species. Pyroptosis is identified by the rupture of the cell membrane and the release of
inflammatorymediators. Autophagy is characterized by the fusion of autophagosomeswith lysosomes. PANoptosis is distinguished by the release of
inflammatory mediators and the rupture of the cell membrane.
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Manolagas, 2000). Approximately 60%–80% of osteoblasts die from
apoptosis (Jilka et al., 2007), a process influenced by factors like
aging, sex steroid deficiency, and glucocorticoid(GC) overload,
leading to bone loss and OP. GC-induced OP is due to the
activation of cysteinyl asparaginase 3, a general downstream
effector of the apoptosis signaling pathway, which induces
apoptosis in osteoblasts (Li et al., 2012). Estrogen can attenuate
OP by attenuating apoptosis in osteoblasts through Fas gene
expression. Thus, pharmacologic inhibition of osteoclast
apoptosis may prevent the activation of bone resorption and
bone loss. And it could be further explored as a direction for
clinical research. Studies have shown that inhibition of
necroptosis always contributes to bone formation. Necroptosis
inhibitor (Nec-1) can regulate RIPK1/RIPK3/MLKL axis, leading
to osteoblast necroptosis decrease, and amelioration of OP (Feng
et al., 2014; Han et al., 2018). Subsequently, Guo et al. showed that
excessive ethanol intake in mice can result in increased osteoblast
necroptosis and decreased bone formation (Guo et al., 2021). In
addition, in ovariectomized (OVX) rats, when E2 is deficient, there is
an increase in necroptosis of osteoblasts (Cui et al., 2016).
Ferroptosis is an iron-dependent form, and the amount of iron
in the body’s environment can influence the expression of bone cell
ferroptosis. Large accumulations of ROS in the skeleton trigger lipid
peroxidation leading to bone cell ferroptosis (Stockwell et al., 2017).
There is a positive correlation between the OP and the severity of
iron overload (Tsay et al., 2010). Inhibiting osteoblast ferroptosis
can enhance osteoblast differentiation and mineralization capacity.
For instance, hepcidin increases can reduce ROS-induced lipid
peroxidation and activate the BMP-2/Smad pathway, leading to a
decrease in osteoblast ferroptosis and promoting osteogenic
differentiation of BMSC (Lu et al., 2015; Jiang et al., 2019). The
promotion of osteoclast ferroptosis is beneficial for OP. Osteoclasts
are abundant in mitochondria, so when the iron transfer protein
receptor TfR1 increases and the iron supply to mitochondrial
respiratory protein increases, it activates osteoclast ferroptosis
and relieves OP (Ishii et al., 2009). Pyroptosis may lead to
functional inhibition of osteoblasts, and activation of osteoclasts
(Wang et al., 2022b). It leads to death or functional inhibition of
osteoblasts, as well as excessive proliferation and activation of
osteoclasts. Oxidative stress induced by hypoxia, hyperglycemia,
lipopolysaccharide and ATP stimulation can increase osteoblast
pyroptosis (Liu et al., 2020a). Inflammatory vesicles such as IL-1β,
TNF-α, and NLRP3 can trigger osteoclast pyroptosis, further
contributing to bone resorption and OP improvement (Dai et al.,
2004; Qu et al., 2015). Autophagy imbalance can result in bone loss. It
is essential for the biological functions of BMSCs, osteoblasts, and
osteoclasts. Activation of autophagy enables BMSCs to survive under
stressful conditions such as nutrient deficiency, oxidative stress, and
inflammation (Yang et al., 2016). It provides the energy for osteogenic
differentiation and bone metabolism remodeling, protecting
osteoblasts from death when exposed to oxidative stress,
inflammation, and GCs (Zheng et al., 2020b). The differentiation,
survival, migration, and bone resorption of osteoclasts also rely on
autophagy. Disruption of autophagy leads to changes in osteoclast
function, increased bone loss, and ultimately contributes to the
development of OP. PANoptosis, a combined form of pyroptosis,
apoptosis, and necroptosis (Zhu et al., 2023), is less studied in relation
to OP but may offer new insights in future research.

4 The interaction between noncoding
RNAs and programmed cell death

4.1 Noncoding RNAs and apoptosis

The regulation of apoptosis by ncRNAs, particularly lncRNAs, is
crucial for disease prevention. LncRNAs influence apoptosis
through p53-dependent pathways, mitochondrial dynamics, and
the EGFR/PI3K/PTEN/AKT/mTORC1 signaling cascade. The
interaction between lncRNAs and p53-dependent apoptosis was
affected by caspases and pro/antiapoptotic proteins. Caspase is
divided into two groups named initiator and executioner
caspases. When cells receive proapoptotic signals, initiator
caspases are activated, triggering executor procaspases to cleave
specific cytoplasmic and nuclear proteins as apoptosis markers.
DNA enzymes are activated, genomic DNA is fragmented, and
apoptosis occurs (Boatright and Salvesen, 2003). Apoptosis is also
regulated by the BCL-2 family of proteins. They act as anti-apoptotic
proteins that inhibit the activity of proapoptotic effectors (BAK and
BAX), leading to the disruption of the outer mitochondrial
membrane. Upon damage to the mitochondrial outer membrane,
cytochrome c and ATF endonuclease are released. Cytochrome c
binds to apoptosis protease activating factor-1 and forms apoptotic
bodies, which activate caspase-9. Caspase-9 then activates caspase-3,
caspase-6, and caspase-7, which contribute to the cleavage of other
proteins and ultimately lead to apoptosis (Wolf et al., 2022).
Mitochondrial dynamics play a crucial role in apoptosis, with
abnormal dynamics contributing to disease pathogenesis (Scott
and Youle, 2010). Abnormal mitochondrial dynamics impair
apoptosis and contribute to a variety of diseases. Inhibition of
the mitochondrial fission machinery prevents apoptosis. Different
lncRNAs have different roles in mitochondrial fission. MDRL
inhibits mitochondrial fission by miR484 induction and fission
1(Fis1) inhibition. CARL also induces mitochondrial fission
inhibition by inhibiting miR593 and then activating Prohibitin-2.
However, inhibiting the MPRL of miR483 guides mitochondrial
fission by Fis1 upregulation (Asl et al., 2022). In addition,
mitochondrial fusion was inhibited during apoptosis (Suen et al.,
2008). Outer membrane fusion is mediated by OPA1, while inner
membrane fusion is regulated bymitochondrial fusion protein (MFN)
1 and two proteins. Pro-apoptotic proteins inhibit mitochondrial
fusion by forming complexes with MFN1 and two proteins,
leading to apoptosis induction (Suen et al., 2008). The EGFR/
PI3K/PTEN/AKT/mTORC1 pathway, an important signaling
pathway involved in mammalian metabolism, regulates lncRNAs.
Various extracellular ligands such as epithelial growth factor (EGF)
can bind to receptor tyrosine kinases (RTKs) cell surface receptor
families, such as EGFR. It initiates the process of autophosphorylation
in RTK, resulting in phosphoinositide 3-kinase (PI3K) activation. The
PI3K enzyme converts the cell membrane protein called
phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol
(3,4,5) -trisphosphate, thereby activating protein kinase B (AKT),
which is necessary in cell metabolism (Noorolyai et al., 2019). AKT
initiates protein synthesis, which leads to apoptosis inhibition (Zhang
et al., 2017a). Dysregulation of this pathway can lead to disease due to
abnormal cell cycle activity (As shown in Figure 4).

MiRNAs primarily function as inhibitors of apoptosis,
modulating this process through p53 and TGF-β signaling
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(Babashah and Soleimani, 2011). MiR-21 associates with p53 which
can inhibit apoptosis. It is manifested by miR-21 targeting the
p53 network, TGF-β and mitochondrial apoptosis inhibitory
genes in transformed cells (Papagiannakopoulos et al., 2008).
Chen et al. found that lowering miR-21 triggered the activation
of cysteine asparaginase and led to increased apoptosis (Chan et al.,
2005). Similarly, de-repression of the p53 pathway by miR-21
downregulation may contribute to the inhibition of the cytostatic
response to TGF-β signaling, leading to increased apoptosis. The
miR-34 family, a p53 effector, regulates the reprogramming involved
in p53-mediated apoptosis (Mayr et al., 2007), thereby allowing
p53 to maintain tissue homeostasis by promoting cell cycle arrest
and apoptosis in response to stress signals (Fridman and Lowe,
2003). Additionally, miRNAs like MiR-15a and MiR-16-1 interact
with the anti-apoptotic BCL2, leading to cleavage of procaspase
9 and poly ADP-ribose polymerase, which results in activation of the
intrinsic apoptosis pathway and promotes apoptosis (Lynam-
Lennon et al., 2009). Mcl-1 is a member of the Bcl-2 family of
potent multidomain anti-apoptotic proteins that can bind to the
pro-apoptotic members Bim and Bid (Chen et al., 2005). MiR-29
expression enhancement can reduceMcl-1 protein levels to promote
apoptosis (Mott et al., 2007).

CircRNA regulate apoptosis through circRNA-miRNA-mRNA
networks. CircANRIL triggers apoptosis by directly activating

p53 and by impairing rRNA biogenesis (Holdt et al., 2016). In
contrast, circ_0005105 and circRNA.33186 promotes chondrocyte
apoptosis by activating the miR-26a/NAMP axis and negatively
regulating miR-127-5p (Zhou et al., 2019). CircRNA_Atp9b
facilitates apoptosis in osteoarthritis mouse models by negatively
regulating miR-138-5p (Zhou et al., 2018a).

4.2 Noncoding RNAs and ferroptosis

Ferroptosis is regulated by ncRNAs, which modulate
mitochondrial proteins, iron metabolism, glutathione (GSH), and
lipid peroxidation (Wang et al., 2020b). MiRNAs targeting iron
metabolism are categorized into ferritin-resistant and ferritin-
promoting types. When the levels of miRNAs are altered, the
organism may undergo iron deficiency, leading to cellular failure,
and iron overload, resulting in increased cellular oxidative stress and
increased ferroptosis. Ferritin-resistant type miRNA, such as miR-7-
5p, reduces iron uptake, targets transferrin, and indirectly reduces
unstable iron pools and Fenton response. Ferritin-promoting type
miRNA can either directly target the SLC7A11/GPX4 system to
promote lipid peroxidation or, like miR-214, be regulated by the
ATF4 target gene HSPA5, which indirectly leads to ferroptosis
(Fuhrmann and Brüne, 2022). MiRNAs affect antioxidant

FIGURE 4
Mechanism of ncRNA regulation of apoptosis. The mechanisms by which ncRNAs regulate apoptosis include the p53-dependent pathway,
mitochondrial dynamics, and the EGFR/PI3K/PTEN/AKT/mTORC1 signaling pathway. NcRNAs with the p53-dependent apoptotic pathway are affected
by caspases and BCL-2 family proteins. Caspases activate upon receipt of apoptotic signals, leading to cytoplasmic and nuclear protein cleavage,
triggering DNA enzyme activation and DNA fragmentation. BCL-2 proteins inhibit pro-apoptotic proteins and maintain mitochondrial
membrane integrity.
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metabolism by targeting the SLC7A11/GPX4 system. MiRNAs
inhibit GPX4 activity by inhibiting SLC7A11, preventing cystine
from entering the cell, and reducing the supply of GSH. Impairment
of the antioxidant system of the cell leads to the inability to remove
lipid peroxides in time and ferroptosis occurs (Dai et al., 2022). For
instance, miR-5096, by inhibiting the activity of SLC7A11, leads to
an increase in iron content, ROS, hydroxyl radicals, lipid peroxides,
and a decrease in GSH, and ultimately induces ferroptosis in breast
cancer cells (Yadav et al., 2021). MiR-15a-3p directly binds to the 3′-
UTR of GPX4 and inhibits its activity, leading to an increase in
intracellular ROS, Fe2+ levels, and ultimately to ferroptosis in
colorectal cancer cells (Liu et al., 2022b). MiRNAs also regulate
ferroptosis by affecting lipid metabolism. During ferroptosis,
arachidonic acid is the target of intracellular ROS attack, and its
diallyl C-H is susceptible, leading to lipid peroxidation and PCD
(Yin et al., 2011). MiR-522 prevents cellular lipid peroxidation by
inhibiting arachidonic acid lipoxygenase 15 activity to prevent lipid
peroxidation in cells, thereby inhibiting ferroptosis (Zhang
et al., 2020a).

LncRNAs serve as miRNA sponges to modulate ferroptosis. For
example, MT1DP in NSCLC cells enhances ferroptosis by stabilizing
miR-365a-3p and reducing NRF2 (Gai et al., 2020). RP11-89
sponges miR-129-5p, promoting PROM2-mediated ferritin-
containing multivesicular bodies formation and iron release,
which enhances ferroptosis resistance (Luo et al., 2021). LncRNA
OIP5-AS1 plays a role in inhibiting prostate cancer cells ferroptosis
by regulating the miR-128-3p/SLC7A11 axis (Zhang et al., 2021c).
LncRNA can act alone to regulate ferroptosis. High expression of
LINC00336 inhibits ferroptosis by decreasing intracellular iron and
lipid ROS levels (Wang and Tontonoz, 2019). LINC00618 inhibits
SLC7A11 expression by directly interacting with lymphoid-specific
helicase, resulting in increased ferroptosis (Wang et al., 2021f).
CircRNAs are involved in ferroptosis in a manner similar to
lncRNAs. Some circRNAs can act as miRNA sponges targeting
SLC7A11 as well as other ligands to inhibit ferroptosis (Xian et al.,
2020; Wu et al., 2021). There are also circRNAs that act individually
such as CIARS, which regulate ferroptosis by interacting with
formed proteins (Liu et al., 2020b).

4.3 Noncoding RNAs and autophagy

Autophagy plays a crucial role in disease development and drug
resistance by targeting autophagy-related proteins and forming
competitive networks. Autophagy-related lncRNAs can either
activate or inhibit autophagy by interacting with DNA, RNA, or
proteins (Cech and Steitz, 2014), or by regulating ATG expression
and acting as ceRNAs for miRNAs. The lncRNA NBR2 facilitates
autophagy initiation under energetic stress by directly activating
AMPK, which is beneficial for ameliorating disease (Liu et al., 2016).
However, activation of autophagy may also impair cell viability.
Activation of ERK1/2, a protein kinase phosphatase for autophagy
initiation, triggers autophagy. LncRNA H19 activates autophagy by
inhibiting DUSP5, which diminishes the inhibitory effect of
DUSP5 on ERK1/2, induces cerebral ischemia reperfusion injury
(Wang et al., 2017). Sometimes, lncRNAs can act together with
miRNAs to regulate autophagy. Overexpression of maternally
expressed gene 3 (MEG 3), a lncRNA with tumor-suppressor

function, inhibits the development of epithelial ovarian cancer by
inducing the autophagy pathway through upregulation of
Atg3 activity and protection of its mRNA from degradation (Xiu
et al., 2017). In addition, GAS5 is highly expressed lncRNA in OA
and promotes the pathogenesis of OA by acting as a negative
regulator of miR-21, which may inhibit autophagy by down-
regulating Beclin 1, ATG3, ATG5, ATG12, and LC3B expression
(Song et al., 2014). MiRNAs also play a significant role in autophagy
regulation by targeting autophagy-related proteins or signaling
pathways. MiR-30a inhibits autophagy in chronic myeloid
leukemia and hepatocellular carcinoma (HCC) cells by selectively
blocking BECN1 and ATG5, which are needed for autophagy
nucleation and elongation stages respectively (Yu et al., 2012; Fu
et al., 2018b). MiR-101 could act as an inhibitor of autophagy in
HCC through RAB5A, ATG4D and Stathmin1 targeting (Xu et al.,
2013). Meanwhile, miRNAs also target signaling pathways to
regulate autophagy. MiR-22 reduces chemoresistance in
osteosarcoma cells by inhibiting autophagy through inactivation
of the PI3K/Akt/mTOR pathway (Meng et al., 2020). In melanoma
cells, miR-23a overexpression inhibits autophagy by targeting
ATG12 via the AMPK-RhoA pathway (Guo et al., 2017).
CircRNAs regulate autophagy by acting as miRNA sponges or
binding to RNA binding proteins (Zhou et al., 2022a). Binding of
circRNAs to specific miRNAs is a key pathway that affects the
autophagy process, such as CircEEF2 and miR-6881-3p (Yong et al.,
2020), circCDYL and miR-1275 (Liang et al., 2020), circMTO1 and
miR-6893 (Chen et al., 2019). The circRNA-miRNA networks
mentioned above can all promote autophagy. However, some
networks inhibit autophagy. Zhou et al. demonstrated that
circRNA.2837 can inhibit autophagy by acting as a sponge for
miR-34a (Zhou et al., 2018b). CircRNAs bind to relatively key
proteins to directly regulate autophagy. Both circMUC16 (Gan
et al., 2020), and circDNMT1, which binds to TP53 proteins (Du
et al., 2018), promote autophagy. CiRS-7 promotes autophagy by
increasing the expression of BECN1 and LC3-II (Cai et al., 2020).

4.4 Noncoding RNAs and necroptosis

NcRNAs play crucial roles in regulating necroptosis by targeting
specific proteins and forming competitive networks. While miRNAs
and circRNAs have been less studied in this context, early research
has provided valuable insights for future investigations. LncRNAs
can modulate necroptosis through signaling pathways or act as
ceRNAs to indirectly regulate necroptosis. TRINGS, a p53-inducible
lncRNA, can interact with STRAP to block the STRAP-GSK3 β-NF-
κB pathway and protect tumor cells from necroptosis when its level
rises (Khan et al., 2017). The involvement of lncRNAs as ceRNAs in
necroptosis is much more common. For example, lncRNA
Linc00176 induces necroptosis in HCCs by forming a
competitive network with genes such as miR-9 and miR-185,
affecting the cell cycle and HCC survival (Tran et al., 2018).
LncRNA H19-derived miR-675, promoted HCC necroptosis by
targeting Fas-linked proteins with death structural domains,
leading to elevated levels of p-MLKL and RIP3 as well as reduced
expression of FAD (Harari-Steinfeld et al., 2021). LncRNA-NRF
inhibits cardiomyocyte necroptosis by targeting miR-873 (Wang
et al., 2016). The way miRNAs are involved in necroptosis is mainly
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by targeting associated proteins. For example, knockdown of miR-21
prevented the activation of hepatocyte necroptosis in mice by
negatively regulating CDK2AP1 and could partially attenuate
liver injury in cholestasis (Afonso et al., 2018). Upregulation of
miRNA-223-3p reduced RIP3-mediated necroptosis by targeting
RIP3 after spinal cord injury, thereby significantly alleviating spinal
cord neuronal injury (Wang et al., 2019). MiRNA-223-3p plays a
role in spinal cord injury, and is involved in ischemia/reperfusion (I/
R). MiR-223-3p directly inhibits the expression of NLRP3 and IκB
kinase α, two important mediators that can be involved in
I/R-induced necroptosis. Whereas miR-223-5p can synergize with
miR-223-3p, to ultimately inhibit cardiomyocyte necroptosis by
targeting TNFR1 and DR6 (Qin et al., 2016). It has been
demonstrated that in Parkinson’s disease (PD), miR-425
deficiency triggers necroptosis in dopaminergic neurons, and
targeting miR-425 in 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-treated mice restored dysfunctional
dopaminergic neurodegeneration and ameliorated behavioral
deficits (Hu et al., 2019). However, its specific mechanism is still
not elucidated and needs to be studied in depth. Although there is
less research on the topic of circRNAs and necroptosis, some
preliminary findings have laid the groundwork for the
development of this field. Gao et al. (Gao et al., 2022) found that
circRNA CNEACR could directly bind to histone deacetylase
(HDAC7) and interfere with its nuclear entry, which led to the
attenuation of HDAC7-dependent repression of forkhead box
protein A2 (Foxa2) transcription, which could repress the
Ripk3 gene by binding to its promoter region. Ultimately, the
inhibition of necroptosis in mouse cardiomyocytes significantly
reduced myocardial infarct size and improved cardiac function.

4.5 Noncoding RNAs and pyroptosis

NcRNAs play a crucial role in regulating cellular pyroptosis,
impacting disease pathophysiology. LncRNAs modulate pyroptosis
by fine-tuning miRNA function and influencing inflammatory
vesicle formation. The crosstalk between lncRNAs, miRNAs, and
mRNAs forms a ceRNA network that regulates specific pyroptosis
signaling cascades. LncRNA ADAMTS9-AS2 activates
NLRP3 inflammatory vesicles and triggers cisplatin-treated
cisplatin-resistant GC cells pyroptosis by targeting miR-223-3p
(Ren et al., 2020). Similarly, lnc00958 was shown to promote
cancer cell survival by downregulating miR-4306 levels to activate
the absence in melanoma 2/Gasdermin D(GSDMD)-mediated
pyroptosis pathway (Jiang et al., 2021). LncRNA
NEAT1 regulated Ionizing radiation (IR)-triggered pyroptosis in
colorectal cancer cells by affecting the miR-448/gasdermin E
network (Su et al., 2021). The pathway by which lncRNAs
regulate pyroptosis is manifested in the suppression of
inflammatory vesicle expression. For instance, knockdown of
lncRNA XIST increased the expression levels of NLRP3, cysteinyl
asparagin-1, IL-1β, IL-18, and GSDMD-N and activated NSCLC
cells to undergo pyroptosis (Xu et al., 2020). In ovarian cancer, it is
manifested that knockdown of lncRNA GAS5 activates pyroptosis
by suppressing the expression of apoptosis-associated speck (ASC),
cysteine asparaginase-1, IL-1β and IL-18 (Li et al., 2018). MiRNAs is
necessary in participating in pyroptosis as a member of the ncRNA

family. MiRNAs can regulate pyroptosis both through specific
signaling cascades and by mediating inflammatory vesicles or
GSDM family proteins. MiR-181 induces pyroptosis by affecting
the SIRT1/PGC-1a/Nrf2 signaling cascade reaction, which increases
the levels of pyroptosis-associated proteins, such as NLRP3,
cysteinyl asparagin-1, IL-1β and IL-18 (Zhao et al., 2019). Gu, Y.
et al. found that both overexpression of miR-200b and reduction of
JAZF1 can lead to activation of the NF-κB signaling pathway, which
is a key player in coordinating pyroptosis (Gu et al., 2022). Thus,
miR-200b can induce pyroptosis in breast cancer cells by regulating
the JAZF1/NF-κB axis. MiRNAs also play a crucial role in the
regulation of pyroptosis-related proteins as well as inflammatory
vesicles. Elevated MiR-145 elevates the expression of GSDMD, IL-β,
and IL-18, activates cysteinyl asparaginase-1-mediated pyroptosis,
and may be useful in the treatment of cervical cancer (Yu et al.,
2020). Cetuximab is commonly used in the treatment of triple-
negative breast cancer (TNBC). Xu, W. et al. found that Cetuximab
combined with the miR-155-5p antagomir could enhance the
expression of GSDME-N and caspase-1, promoting pyroptosis in
TNBC cells andmaking the organism less resistant to cetuximab (Xu
et al., 2021b). Existing studies have shown that the mechanism by
which circRNA regulates pyroptosis is the initiation of pyroptosis-
related genes (Gao et al., 2021). On the one hand, circRNA initiates
DNA methylation of pyroptosis-related genes. circRNA-0001836 is
the activation of pyroptosis by promoting the expression of
NLRP1 through DNA demethylation (Tan et al., 2021a). On the
other hand, circRNA releases the inhibitory effect of miRNAs on
downstream targets that act as miRNA sponges. For example, in
lung adenocarcinoma, circNEIL3 achieves the effect of activating
pyroptosis by directly binding to miR-1184 (Zhang et al., 2022).
While ncRNAs’ role in PCD has been extensively studied, research
on ncRNAs and PANoptosis is still in its early stages, requiring
further exploration and attention from researchers.

5 Regulatory roles of noncoding RNAs-
PCD axis in osteoporosis

Recent research focuses on the ncRNAs-PCD axis and its role in
disease regulation. Understanding its regulatory mechanisms is
crucial for targeted therapy. Studies have highlighted its
involvement in osteoporosis, particularly in regulating osteoblast
and osteoclast functions (as shown in Figure 5).

Research on the role of lncRNAs in OP has shown that they can
act as both promoters and inhibitors of osteogenic apoptosis.
Elevated levels of certain lncRNAs accelerate OP progression,
while others can be targeted for OP therapy to inhibit
osteogenesis and alleviate the condition. LncRNA PTCSC3 has
been verified to be significantly upregulated in patients with OP,
and its upregulated level is positively correlated with the disease
stage of OP. Overexpression of PTCSC3 promotes osteoblast
apoptosis, whereas PTCSC3 silencing inhibits osteoblast apoptosis
(Liu et al., 2022c). SNHG5 exerts its function in hBMSC osteogenesis
and apoptosis by targeting the miR-582-5p/RUNX3 axis. Silencing
of SNHG5 inhibited osteogenic differentiation and induced
apoptosis in hBMSCs (Zheng et al., 2020a). TNF-α can inhibit
the proliferation, ALP activity and mineralized nodule formation
of mouse embryo osteoblast precursor cells (MC3T3-E1) cells,
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downregulate the expression of lncRNA TUG1 in MC1T3-E3, and
promote apoptosis. And EGCG and TNF-α act antagonistically to
each other, which can attenuate the inhibition of MC3T3-E1 cells by
TNF-α, inhibit osteoblast apoptosis, and promote the progression of
OP (Han et al., 2022). In the rat model, CCAT1 downregulated the
expression of miR-34a-5p, which aggravated the pathological
changes of the bone tissue of OP OVX rats and promoted
osteoblast apoptosis. In OP cell models, lncRNA colon cancer-
associated transcript-1 (CCAT1) was found to inhibit miR-34a-
5p expression to inhibit differentiation, mineralization capacity, and
proliferation, and to promote apoptosis of OVX rat osteoblasts
in vitro. The relationship between CCAT1 and osteoblast
apoptosis and OP was further verified (Hu et al., 2021).
Experiments have shown that iron accumulation (IA) can lead to
high expression of lncRNA XIST and promote osteoblast apoptosis
through miR-758-3p/caspase 3, which in turn leads to OP (Liu et al.,
2021a). The above are some promoters of osteogenic apoptosis, and
the following are some inhibitors of osteogenic apoptosis, whose
elevated levels are beneficial to bone formation. In vitro experiments
showed that lncRNA ODSM inhibited osteoblast apoptosis (Wang
et al., 2018a). Wang, Y. et al. conducted in vivo experiments in mice
and found that lncRNA ODSM, which may be regulated in the MG
unloading environment, partially reduced apoptosis and promoted
the differentiation of MC3T3-E1 cells by interacting with miR-139-
3p (Wang et al., 2020a). LncRNA RAD51-AS1 increases viability
and osteogenic differentiation but decreases apoptosis of hBMSCs, a
mechanism that may shed light on the treatment and prevention of

OP (Li et al., 2023a). LncRNA MIAT regulates the proliferation,
apoptosis, and osteogenic differentiation of BMSCs by targeting
miR-150-5p. When MIAT was downregulated, the osteogenic
differentiation of BMSCs was promoted, and apoptosis was
inhibited, suggesting a potential role of MIAT in OP treatment
(Wang et al., 2022a). LncRNA TUG1 interacted with miR-34a as
ceRNA and upregulated FGFR1 protein expression. LncRNA
TUG1 was upregulated in FSS-cultured osteoblasts, which
promoted osteoblast proliferation and inhibited apoptosis (Wang
et al., 2021d). Some LncRNAs have been shown to affect bone
composition through autophagy and are associated with the
progression of OP. The expression of lncRNA NEAT1 was
upregulated in OP bone tissues and osteoblasts. Zhao, X. et al.
found through bioinformatics analysis and diluciferase reporter
gene assay that NEAT1 knockdown significantly inhibits
autophagy in osteoblasts both in vitro and in vivo. Meanwhile,
knockdown lncRNA NEAT1 inhibits osteoblast autophagy
through the miR-466f-3p/HK2 signaling pathway to regulate
autophagy and bone metabolism in OP (Zhao et al., 2022).
LncRNA can also participate in pyroptosis and regulate OP.
Zhang, L.et al. found that lncRNA ORLNC1 was associated with
the progression of OP (Zhang et al., 2021b). As a ceRNA of miR-
200b-3p, lncRNA ORLNC1 affected BMSCs through the miR-200b-
3p/Foxo3 pathway to pyroptosis and promoted the development of
OP (as shown in Table 1).

Increasing high-throughput RNA sequencing and circRNAs
microarray studies indicated that circRNAs are differentially

FIGURE 5
LncRNAs-PCD Axis in OP. It summarizes that lncRNAs regulate PCD in bone cells.
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expressed in OP (Chen et al., 2021c). The current study found that
circRNAs can participate in the occurrence of OP by regulating
apoptosis and autophagy in osteocytes. Zhou, R. et al. found that
Circ_0000020 was upregulated during the osteogenic differentiation
of BMSCs and regulated the BMP2/Smad pathway by sponging
miR-142-5p as ceRNA to regulate the osteogenic differentiation of
BMSCs (Zhou et al., 2021). Silencing Circ_0000020 can inhibit
osteogenic differentiation, promote osteoblast apoptosis, and
inhibit ALP activity and mineralization capacity. CircRNA can
not only function individually, but also act as ceRNA of miRNA,
jointly regulating bone metabolism.

The involvement of miRNAs in apoptosis has been most studied
in bone formation and bone resorption. MiRNAs not only promote
osteoblast apoptosis but also inhibit it. MiRNAs that promote
osteoblast apoptosis, and their inhibitors may shed light on
future studies of drugs for the treatment of OP. However,
elevated levels of miRNAs that inhibit osteoblast apoptosis
ameliorate OP and are equally important to study. Zhou, B. et al.
found that miR-483-3p expression was reduced in bone tissue
samples from OP patients (Zhou et al., 2020). However, in miR-
483-3p overexpressed human osteoblasts, cell viability, DNA
synthesis ability and osteogenic capacity were promoted, and
apoptosis was inhibited. The target of miR-483-3p is expected to
provide ideas for the treatment of OP. Zhang, B. et al. found that
miR-181a regulates DUSP6 expression during osteoclast
differentiation, which modulates ERK and SMAD2 signaling
pathways (Zhang et al., 2021a). MiR-181a positively induces
differentiation and inhibits apoptosis of osteoclasts through
DUSP6, leading to the development of OP. MiRNA can function
alone or form a competitive network, which together regulate PCD
in osteoblasts, affect the expression of bone density, and promote or

inhibit the development of OP. Lnc_000052 and PIK3R1 share a
miRNA target, miR-96-5p, which is downregulated in OP BMSCs.
The downregulation of miR-96-5p can inhibit the effect of LNC_
000052 knockdown, whereas miR-96-5p upregulation and LNC_
000052 knockdown improves therapeutic outcomes in BMSC (Li
et al., 2020b). CircRNAs and miRNA networks have been shown to
induce or inhibit OP by regulating apoptosis and affecting
homeostasis of osteoblasts and osteoclasts. They may affect
osteoporosis through the Wnt signaling pathway or the
RANKL-RANK pathway. It may also indirectly improve OP by
regulating factors like GCs and PTH (Huang et al., 2022).
CircRNAs act as miRNA sponges by competing with mRNAs
for miRNA response elements. In an experiment to investigate
whether circ-Rtn4-modified BMSCs (Rtn4-Exos) could regulate
osteoblast apoptosis by affecting TNF-α, the miR-146a/Rtn4-Exos
network was found to inhibit TNF-α-induced cytotoxicity and
apoptosis of mouse MC3T1-E1 cells, suggesting that Rtn4-Exos
could serve as a novel drug for the treatment of OP (Cao
et al., 2020).

MiRNA also regulates autophagy in osteoblasts. The lack of
autophagy in osteoblasts leads to the accumulation of harmful
substances within the cell, which eventually leads to apoptosis
and disease progression. However, overactivation of autophagy
can also lead to PCD, called “autophagy-dependent cell death” or
autophagy (Samara et al., 2008). Therefore, understanding the
mechanisms of autophagy is essential for regulating its activity.
Certain miRNAs can promote autophagy in osteoblasts. Currently,
miR-199a-3p was found to induce autophagy by targeting IGF-1 and
mTOR, which exacerbates OP under estrogen-deficient conditions
(Fu et al., 2018a). MiR-1252-5p promotes OP by activating
autophagy and inhibiting osteoclastogenic viability, reversing it

TABLE 1 LncRNAs-PCD axis in OP.

LncRNAs Function Mechanism References

lnc-XIST Promotes osteoblasts apoptosis miR-758-3p/caspase 3 Liu et al. (2021a)

lnc-SNHG5 Promotes osteoblasts apoptosis miR-582-5p Zheng et al. (2020a)

lnc-000052 Promotes osteoblasts apoptosis miR-96-5p-PIK3R1 Li et al. (2020b)

lnc-CCAT1 Promotes osteoblasts apoptosis miR-34a-5p Hu et al. (2021)

lnc-PVT1 Promotes osteoblasts apoptosis miR-497-5p/HMGA2 Ji et al. (2021)

lnc-HOTAIR Promotes osteoblasts apoptosis miRNA-138 Xu et al. (2021a)

lnc-MALAT1 Inhibits osteoblastic apoptosis miR-485-5p/WNT7B Zhou et al. (2022b)

lnc-KCNQ1OT1 Inhibits osteoblastic apoptosis miR-141-5p Wang et al. (2021c)

lnc-AK077216 Inhibits osteoclast apoptosis NIP1/RANKL/NFATc45 Liu et al. (2019)

lnc-TUG1 Inhibits osteoblastic apoptosis TNF-α/MC3T3-E1 Han et al. (2022)

lnc-ODSM Inhibits osteoblastic apoptosis miR-139-3p Wang et al. (2018b)

lnc-MIAT Inhibits osteoblastic apoptosis miR-150-5p Wang et al. (2022a)

lnc-TUG1 Inhibits osteoblastic apoptosis miR-34a/FGFR1 Wang et al. (2021d)

lnc-GAS5 Inhibits osteoclasts apoptosis miR-21 Cong et al. (2020)

lnc-NEAT1 Promotes osteoblasts autophagy miR-466f-3p/HK2 Zhao et al. (2022)

lnc-ORLNC1 Promotes BMSCs pyroptosis miR-200b-3p/Foxo3 Zhang et al. (2021b)
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through the miR-1252-5p/GNB1 axis may be a potential therapeutic
strategy for OP (Huang et al., 2021a). Lu et al. observed that miR-15b
modulates KDM7B by targeting USP6, ultimately inhibiting
osteoblast autophagy and aggravating OP (Lu et al., 2021). MiR-
152-5p regulates osteogenic differentiation through ATG14-
mediated autophagy, reducing endogenous ROS accumulation
and maintaining cellular redox homeostasis, so regulating
oxidative stress and therapeutic inhibition of miR-152-5p may be
an effective anabolic strategy for OP (Li et al., 2022). Overall, even
autophagy, which is often considered “protective,” inhibits
osteoblast survival and negatively affects osteogenic
differentiation. Therefore, modulating intracellular miRNAs to
maintain appropriate levels of autophagy may be an ideal
therapeutic strategy for the treatment of OP (As shown in Table 2).

Understanding the pathways through which miRNAs regulate
osteoblast pyroptosis is essential for OP research. MiR-200b-3p
forms a competitive network with lncRNA ORLNC1, Foxo3 is
the target of miR-200b-3p, and ORLNC1 promotes CML-induced
pyroptosis of BMSCs by targeting the miR-200b-3p/Foxo3 pathway.
Therefore, miR-200b-3p can inhibit the pyroptosis of BMSCs to
inhibit the progression of OP (Zhang et al., 2021b).

6 Clinical applications of noncoding
RNAs-mediated programmed
cell death

Numerous studies are exploring the role of ncRNA-PCD in
diseases like cancer and cardiovascular disorders, with potential
applications in diagnosis and treatment. Ye, et al. summarize that
curcumin treatment of autophagy and miRNA may be a promising
mechanism and target for lung cancer treatment strategies (Ye et al.,
2012). Zhang et al. identified miRNAs by high-throughput
microarrays as a response to curcumin in human lung cancer
(Zhang et al., 2010). Han et al. noted that lung cancer cells
undergoing autophagy were resistant to EGFR-TKI and suggested
that enhanced autophagy in the role in the poor performance of
EGFR-TKI (Han et al., 2011). Although there is no evidence that
curcumin works on both autophagy and miRNA, it can be
understood as a new research direction to inform the study of
drug mechanisms and targeted drug development. Sorafenib is a
drug used to treat inoperable or distantly metastasis HCC, and Li
et al. found that continuous sorafenib treatment reduced the
expression level of circITCH in sorafenib-resistant HCC cells (Li

TABLE 2 The regulatory effect of miRNAs on apoptosis and autophagy in osteoclast.

MiRNAs Function Mechanism References

miR-133a Promotes osteoblasts apoptosis MAPK/ERK Wang et al. (2021b)

miR-139-3p Promotes osteoblasts apoptosis lncRNA ODSM Wang et al. (2020a)

miR-140-3p Promotes osteoblasts apoptosis PTEN/PI3K/AKT Yin et al. (2020)

miR-223-3p Promotes osteoblasts apoptosis FGFR2 Wang et al. (2021a)

miR-425-5p Promotes osteoblasts apoptosis Annexin A2 Chen et al. (2021a)

miR-4739 Promotes osteoblasts apoptosis ITGA10/PI3K Song et al. (2022)

miR-26a Inhibits osteoblastic apoptosis EZH2 Li et al. (2020a)

miR-27a-3p Inhibits osteoblastic apoptosis CRY2/ERK1/2 Ren et al. (2021)

miR-96-5p Inhibits osteoblastic apoptosis Abca1 Wang et al. (2022c)

miR-107 Inhibits osteoblastic apoptosis AMPK-Nrf2 Zhuang et al. (2020)

miR-150-3p Inhibits osteoblastic apoptosis Runx2/Ostrix Qiu et al. (2021)

miR-206 Inhibits osteoblastic apoptosis Elf3/ALP Huang et al. (2021b)

miR-214 Inhibits osteoblastic apoptosis circ_0001843/HNGF6A Zhu et al. (2020)

miR-708 Inhibits osteoblastic apoptosis MC3T3-E1/H2O2/PTEN Zhang et al. (2020b)

miR-758-3p Inhibits osteoblastic apoptosis lncRNA XIST/caspase 3 Liu et al. (2021a)

miR-3175 Inhibits osteoblastic apoptosis Nrf2/DDB1/DCAF1 Chen et al. (2021b)

miR-4523 Inhibits osteoblastic apoptosis Nrf2/PGK1 Liang et al. (2021)

miR-497 Inhibits osteoblastic apoptosis TGF-β1/Smads Gu et al. (2020)

miR-199a-3p Promotes osteoblastic autophagy IGF-1/mTOR Fu et al. (2018a)

miR-1252-5p Promotes osteoblastic autophagy GNB1 Huang et al. (2021a)

miR-15b Inhibits osteoblastic autophagy USP7/KDM6B Lu et al. (2021)

miR-152-5p Inhibits osteoblastic autophagy ATG14/ROS Li et al. (2022)

miR-466f-3p Inhibits osteoblastic autophagy lncRNA NEAT1/HK2 Zhao et al. (2022)
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et al., 2023b). The overexpression of circITCH is mediated by the
regulation of miR-20b-5p/PTEN/PI3K/Akt signaling cascade
response, increased sorafenib sensitivity, promoted apoptosis and
decreased cell migration in sorafenib-resistant HCC cells.
Resveratrol is a non-flavonoidal polyphenolic organic compound,
and it has been demonstrated that resveratrol can be used to
ameliorate PD symptoms by modulating the MALAT1/miR-129/
SNCA pathway, which is involved in mitochondria-mediated
apoptosis (Xia et al., 2019).

However, only a few studies have mentioned the clinical
application of ncRNA-mediated PCD in orthopedic diseases.
For example, artemisinin (ARS) inhibited osteoclast
differentiation by down-regulating the RANKL-induced
osteoclast formation pathway, which led to osteoclast
ferroptosis, inhibited bone resorption, and improved OP
(Zhang, 2020). However, ARS may lead to side effects such as
hypocalcemia, so further studies are needed to evaluate the
efficacy and safety of ARS for OP. Despite these advances,
their application to clinical treatment remains an open
question. However, as biomarkers of OP, changes in ncRNA
expression may be detected in the early stages of the disease,
which could help physicians to diagnose and intervene in a timely
manner. In the development of OP drugs, certain specific
ncRNAs and the peptides they encode may also be utilized as
potential targets for intervention in OP, leading to the
development of new therapeutic approaches. For example,
precision gene therapy utilizing functional elements of
lncRNA Nron can effectively inhibit the development of OP
(Jin et al., 2021). Recently it has also been discovered that
lipid nanoparticle and engineered extracellular vesicles-based
RNA therapy can be used to treat OP. Liu et al. utilized bone-
targeted lipid nanoparticle delivery of m7G-methylated
Runx2 mRNA to promote bone formation in osteoblasts (Liu
et al., 2024). Delivery of siRNA by engineered small extracellular
vesicles can also be used to improve OP (Liu et al., 2023). In
addition, doctors can monitor changes in ncRNA expression to
assess the progression of patients’ diseases, providing more
possibilities for precision medicine in OP.

7 Conclusion

OP presents a significant global health challenge, and insights
into bone metabolism are crucial for developing OP treatments.
While the ncRNA-PCD axis has been studied in various diseases,
including cancer and cardiovascular diseases, further research is
needed to delve deeper into the mechanistic pathways and
specific factors involved. The discovery of how ncRNAs and
PCD regulate bone metabolism represents a major
advancement in OP research. PCD plays a pivotal role in bone
remodeling under both physiological and pathological
conditions, with ncRNAs influencing OP development by
regulating different types of PCD.

Some ncRNAs can either promote or inhibit osteoblast PCD,
impacting bone formation and resorption, thus affecting OP
progression. Targeting the ncRNA-PCD interaction could offer a

promising avenue for novel OP treatments, potentially through the
development of ncRNA-PCD mimics or inhibitors to prevent bone
loss. By shedding light on the role of ncRNAs in interacting with
PCD and their implications for OP, this study aims to inspire further
research in the bone field to uncover deeper molecular mechanisms
and potential treatment strategies for OP. However, more research is
needed to explore the cellular and organismal effects of ncRNA-
PCD interactions, including specific pathways in osteoblasts and
osteoclasts, as well as potential side effects on these cells.
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