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Prostate cancer (PCa) is the most common malignancy among men worldwide.
Through androgen receptor signaling inhibitor (ARSI) treatment, patients
eventually succumb to castration-resistant prostate cancer (CRPC). For this,
the prostate cancer stem cells (PCSCs), as a minor population of tumor cells
that can promote tumor relapse, ARSI resistance, and disease progression, are
gaining attention. Therefore, specific therapy targeting PCSCs has momentum.
This study reviewed the identification and characterization of PCSCs and PCSC-
based putative biomarkers and summarized their mechanisms of action. We
further discussed clinical trials of novel therapeutic interventions focused on
PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA
therapy, and immunotherapy approaches from a mechanistic standpoint. This
review provides updated insights into PCSC plasticity, identifying new PCSC
biomarkers and optimized treatments for patients with advanced PCa.
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1 Introduction

Prostate cancer (PCa) is the most commonmalignancy amongmen, accounting for 29%
of estimated new cancer cases (2023) and a substantial burden to the public health system
(Porcacchia et al., 2022; Siegel et al., 2023). Worldwide, PCa ranks second in terms of
mortality (400,000 deaths annually), and this rate is expected to be 2-fold higher by 2040
(Sandhu et al., 2021). Even in an East Asian country like China, where the incidence rate of
prostate cancer is generally low, the number of PCa patients is continually on the rise,
making it a front-runner of urinary tumor-related disease (Qiu et al., 2021). As the disease
progresses, PCa might undergo a transition phase from hormone-sensitive prostate cancer
(HSPC) to castration-resistant prostate cancer (CRPC) and from localized disease to
metastatic castration-resistant prostate cancer (mCRPC) (Terrisse et al., 2022; Yehya
et al., 2022). When diagnosed with an advanced stage, men would have a considerably
diminished 5-year overall survival (OS) (30%), making advanced PCa a threat to patients
(Gao et al., 2020).

The onset and progression of PCa are driven by androgen receptor (AR) signaling
(Zheng et al., 2022). However, despite being initially effective and durable for localized and
advanced prostate tumors, androgen deprivation therapy (ADT) and AR-directed strategies
(e.g., enzalutamide) will move to a stage characterized by the inevitable emergence of
resistance (Storck et al., 2022; Zheng et al., 2022; Zhu et al., 2022). At this point, the
heterogeneous progenies containing enriched PCSCs from advanced PCa become the
predominant population and are almost all negative in prostate-specific antigen (PSA) and
AR levels (Zhang et al., 2015).
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How does the unique mechanism contribute to treatment
resistance? The inherent properties of prostate cancer stem cells
(PCSC) may provide new insights into this puzzle. We identified
that AR−/lo cells were linked to increased PCSC populations, which
are proven to promote tumor relapse and disease progression (Tang,
2022). Accordingly, understanding the molecular features of the
PCSCs that drive the phenotypic transition from ADT-sensitivity to
CRPC could help provide more meaningful results for ongoing
research and designing more appropriate treatment strategies in
the clinic.

2 Presence of PCSC

A prerequisite to tracking PCSCs is enumerating normal human
prostate (NHP) cell lineages in full detail. Given their histological
appearance and specific antigen expression, the epithelial cells of
NHP are composed of basal and luminal layers and scarce
neuroendocrine (NE) cells (Tang, 2022). The basal layer contains
a small population of multipotent stem cells (SCs) (<5%), whereas
the number in the luminal layer is less than 1% (Abate-Shen and
Shen, 2000). Investigating the unique properties of layers would be
meaningful for understanding and laying a foundation for novel
therapeutics targeting PCSCs.

2.1 Basal cells

Owing to the relative undifferentiation and survival priority of
AR ablation, the basal population of epithelial cells tends to possess
characterizations of PCSCs (Goldstein et al., 2008). In addition,
basal cells preferentially express cell adhesion/cytoskeleton and
extracellular matrix remodeling-related genes (Zhang D. et al.,
2016). Lineage-tracing studies revealed that PTEN deletion and
deacetylated Klf5 contributed to rapid differentiation of luminal

progeny by controlling basal progenitor cell fate (Zhang J. et al.,
2018; Zhang et al., 2020). Interestingly, acute prostatitis mediated
the differentiation of basal cells into luminal cells via a specific
program in the microenvironment (Toivanen et al., 2016).
Meanwhile, Kwon et al. (2014) described a mouse model where
tissue repair in the prostate epithelium was regulated partly by basal-
to-luminal differentiation. In addition, basal cells functionally
revealing neurogenic properties brought out the underlying
hypothesis of cells-or-origin for neuroendocrine prostate cancer
(NEPC) (Verma et al., 2023). Of clinical relevance, Zhang et al.
revealed the contribution of basal cells to promote castration-
resistant and metastatic PCa (Zhang D. et al., 2016). Multiple
crucial molecules such as CK14, B-cell lymphoma-2 (Bcl-2), and
human telomerase reverse transcriptase (hTERT) have been well
documented to preferentially localize in the basal layer (Wang et al.,
2009; Banerjee et al., 2023). Thus, it is thought that basal cells share
SC characteristics. On the other hand, a growing body of evidence
has increasingly linked SC-like cells to the basal cells due to their co-
expressed markers. In vitro and in vivo prostate assays have
exhibited SC-enhanced global transcription and rRNA
transcription activity in the basal layer (Zhang D. et al., 2016).
Many other protein markers associated with CSC phenotype, such
as spinocerebellar ataxia 1 (Sca-1), CD133, CD44, CD117, CD49f,
α2 integrin, C-X-C motif chemokine receptor type 4 (CXCR4),
epithelial cell adhesion molecule (EpCaM), CD54, and sex-
determining region Y-box 2 (SOX2) et al., have also been
detected in basal cells (details are shown in Table1) (Goldstein
et al., 2008; Wang et al., 2009; Hoogland et al., 2014; Galoczova et al.,
2021; Verma et al., 2023). Tumor samples derived from Sca-1,
CD133, CD44, and CD117-positive cells basal cells possessed the
self-renewal ability and reconstituted the prostatic ducts (Wang
et al., 2009). However, Hoogland et al. (2014) raised doubt about the
reliability of CD117, CD133, and OCT3/4 to label PCSC
characteristics because these markers were not detected in clinical
tissue. For specific treatment, ADT-treated PCa tended to develop
into NEPC, accompanied by high levels of stem- (SOX2) and basal
cell markers (KRT5; TP63) (Verma et al., 2023). This could provide a
novel platform for screening drug candidates in a clinical situation
via monitoring the ADT-resistant stem cell-like population.

2.2 Luminal cells

The findings regarding cells-of-origin for NEPC are intriguing.
Ci et al., 2020. established a patient-derived xenograft (PDX) model
of adenocarcinoma (LTL331)-to-NEPC (LTL331R)
transdifferentiation to support a basal progenitor cell model (Ci
et al., 2020). Dong et al. (2020) employed the single-cell RNA
sequencing detecting transcriptomes of six CRPC needle biopsies,
which provided direct evidence of the cellular states underlying
luminal–neuroendocrine transdifferentiation. Notably, this
transdifferentiation has never been revealed in normal prostate
development. In addition, basal cell marker p63 was considered
indispensable for prostate development (Goldstein et al., 2008). The
next year, explants from p63 null mice could form prostate tissue in
the absence of basal cells, supporting the necessity of luminal
progenitor cells (Wang et al., 2009). Furthermore, a growing
body of evidence indicated that cancers could be driven by
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TABLE 1 List of putative biomarkers for CSCs.

Heterogeneity
markers

Localization Details of stem-like characteristics

CD49f Basal cells (Tang, 2022) The basal stem cells express high levels of CD49f (integrin α6), CD133, and Bcl-2 (Tang, 2022)

CD133

Bcl-2

KRT16/17/6 Basal cells (Hu et al., 2021) Single-cell RNA-seq analysis reveals prostate active stem cells and bipotent progenitor cells,
keratin16/17/6 (KRT16/17/6), are enriched (Hu et al., 2021)

CK14 Basal cells (Tang, 2022) The basal cell layer consists of differentiated CK5+/CK14+/p63+ basal stem cells (Tang, 2022)

p63

hTERT Basal cells (Banerjee et al., 2023) The high hTERT prostate cancer cells exhibit CSC properties (Zhang et al., 2017)

EpCaM Basal cells (Mohtar et al., 2020) EpCaM-specific chimeric antigen receptors enable them to target the CSCmarker EpCaM (CD326)
(Deng et al., 2015)

CXCR4 Basal cells (Darash-Yahana et al.,
2004)

Activated platelets secrete stromal-derived growth factor-1α (SDF-1α) and can mobilize CSCs via
the CXCR4 receptor (Rudzinski et al., 2021)

CD54 Basal cells (Li et al., 2017a) CD54 (ICAM1) could be a novel, reliable prostate CSC marker (Li et al., 2017a)

Trop2 Basal cells (Goldstein et al., 2008) Basal, luminal, and neuroendocrine cells in prostatic tubules are regenerated from trophoblast cell
surface antigen 2 (Trop2) (hi) basal cells (Goldstein et al., 2008)

β-catenin Basal cells (Lu and Chen, 2015) The preferential expression of β-catenin in the CD44+ PCa cells will endow them with certain CSC
properties (Patrawala et al., 2006)

ERα Basal cells (Shen et al., 2019) Estrogen receptor alpha (ERα) has a key role in coordinating CSCs to control prostate organ
development (Shen et al., 2019)

CD44 Basal and luminal cells (Wang et al.,
2009)

CSC markers aldehyde dehydrogenase++high (ALDH++high) and CD44 α2-integrin+high in primary
PCa present a basal cell phenotype while showing a luminal progenitor phenotype after ADT
treatment (Wang et al., 2009)ALDH

α2-integrin

CD117 Basal and luminal cells (Harris et al.,
2021)

CD117 (C-Kit) is a PCSC marker (Leong et al., 2008)

Sca-1 Basal and luminal cells (Xin et al.,
2005)

Sca-1 is enriched in murine prostate cells capable of regenerating tubular structures containing
basal and luminal cell lineages (Xin et al., 2005)

SOX2 Basal and luminal cells (de Wet et al.,
2022)

TMPRSS4 mediates CSC features through the upregulation of SOX2 (Lee et al., 2021)

Nanog Basal and luminal cells (Jeter et al.,
2009)

Nanog protein level is enriched in CSC populations (Jeter et al., 2009)

CK5 Basal and luminal cells (Tang, 2022) The basal and luminal progenitor cells are frequently double-positive for CK5 (KRT5) (Tang, 2022)

CK8 Luminal cells (Tang, 2022) The luminal cell layer contains differentiated CK8+/CK18+/AR+/PSA+/CD26+ luminal cells and the
luminal progenitor cells (CK5+/CK19+) (Tang, 2022)

CK19

CK18

CD26

OCT3/4 Luminal cells (Costa et al., 2019) POU class 5 homeobox 1 (OCT-3/4) is expressed in some stem-like cancer cells (Patrawala et al.,
2006)

DLL4 Luminal cells (Zhang et al., 2016a) DLL4 facilitates stem cell self-renewal and blood vessel formation (Iyer et al., 2013)

Tacstd2 Luminal cell (Guo et al., 2020) The results characterize Dist-Luminal-C cells as Tacstd2, CK4, and PSCA expressions and reveal
their contributions as drivers of distal prostate luminal lineages (Guo et al., 2020)

CK4

PSCA

BMI-1 Luminal cells (Yoo et al., 2016) B-cell-specific Moloney murine leukemia virus insertion region 1 (BMI-1) often overexpresses and
participates in stem cell self-renewal and tumorigenesis of prostate cancer (Li et al., 2017b)

(Continued on following page)
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tumorigenic luminal cells without initiating basal cells, and murine
lineage-tracing experiments also presented luminal-to-basal
differentiation (Karthaus et al., 2014).

The controversies are worth pondering. If basal stem cells
could represent a cell type of origin, one must wonder why basal or
squamous cell carcinomas account for a small proportion of PCa
phenotypes (Ali and Epstein, 2007). Given culture condition
scarcity, prostatic gland architecture could not be realistically
reconstituted. It has remained challenging to determine whether
these transitions apply to humans in the absence of a 3D culture
system. In terms of organoids of luminal and basal cells, Karthaus
et al. (2014) proved that luminal-derived organoids more closely
resemble prostate glands. Tang’s research also confirmed luminal
progenitor cell (LP) as a preferred cell of origin for PCa (Tang,
2022). Furthermore, Gao’s group brought out a novel insight into
tracking of cells-or-origin for mouse prostate. Briefly, they
characterized Dist-Luminal-C cells as tumor-associated calcium
signal transducer 2 (Tacstd2), CK4, and prostate stem cell antigen
(PSCA) expression and revealed its contribution as the driver of
distal prostate luminal lineages (Guo et al., 2020). In addition, not
only basal compartment but also luminal markers such as NKX3.1,
CK18, CK8, CD26, OCT3/4, and delta-like ligand 4 (DLL4) et al.
have been demonstrated to be co-expressed with the CSCs (details
are shown in Table1) (Wang et al., 2009; Zhang D. et al., 2016; Park
et al., 2016; Costa et al., 2019). Most notably, basal stem-like cells
have been suggested to be the cell of origin in primary prostatic
tumors, while only stem-like cells with luminal phenotype
reinitiated CRPC deterioration after androgen ablation (Wang
et al., 2009; Germann et al., 2012). For example, CSC markers
(ALDH++high CD44 α2-integrin+high) in primary PCa presented a
basal cell phenotype while showing a luminal progenitor
phenotype after ADT treatment. One explanation is that
primary treatment-induced lower AR level results in an ARlow

stem-like luminal cell (Zhang B. et al., 2016). Meanwhile,
luminal progenitor cell plays a significant role in treatment
resistance and poor outcomes. Over the course of CRPC
progression, significant increases in PSA−/lo PCa cells with LP
characteristics and human LP markers (i.e., CD38low and
ALDHhi CD44 α2β1) have been demonstrated (Zhang D. et al.,
2018; Verma et al., 2023; Gorodetska et al., 2024). We propose that

low-grade prostate tumors are driven by basal cells, but
tumorigenic luminal and LP cells rapidly expand in CRPC.

2.3 Others

Several studies have shown that PCSCs could originate from
cancerous cells (i.e., inflammatory cells and stromal cells)
(Banerjee et al., 2023). This viewpoint could explain why
PCSCs have the renewal capacity to achieve malignant
transformation where the differentiated cells present
accumulative mutations (Banerjee et al., 2023). Herein,
inflammation-induced alterations not only cause epithelial
lineage differentiation but also promote oncogenic signaling to
induce tumor initiation. Many studies have shown that the stem
phenotype of advanced PCa was intimately associated with
epithelial–mesenchymal transition (EMT), which was derived
from stromal cells in the tumor microenvironment (Chen
et al., 2020). In addition, observations suggested enhancer of
zeste homolog (EZH2)- and cancer-associated fibroblasts (CAF)-
mediated EMT resulted in the enrichment of CSC-like properties
(Giannoni et al., 2010; Yamada and Beltran, 2021). Additionally,
various signaling pathways involved in the progression and
therapy resistance, such as Notch, Wingless (Wnt)/β-Catenin,
Hedgehog, Hippo, Ras/mitogen-activated protein kinase
(MAPK), Janus kinase (JAK)/signal transducer and activator
of transcription (STAT), phosphoinositide 3 kinase (PI3K)/
protein kinase B (AKT)/mammalian target of rapamycin
(mTOR), epidermal growth factor receptor (EGFR), and
hypoxia-inducible factor (HIF), have been reported to drive
CSC emergence (details are shown in Table 2) (Meisel et al.,
2020; Wu et al., 2020; Yang et al., 2020; Ramesh et al., 2023;
Verma et al., 2023).

Isolating cells with tumor-initiating and stem-like properties
like PCSCs presents undeniable challenges. Utilizing specific
markers expressed by PCSCs can offer solutions. Techniques
such as fluorescence-activated cell sorting (FACS) and
magnetic-activated cell sorting (MACS) can effectively isolate
and purify PCSCs based on known surface markers (Banerjee
et al., 2023). For instance, selecting for CD44+α2β1-/lo cells has

TABLE 1 (Continued) List of putative biomarkers for CSCs.

Heterogeneity
markers

Localization Details of stem-like characteristics

NKX3.1 Luminal cells (Banerjee et al., 2023) Castration-resistant Nkx3.1-expressing cells are the cells of origin in some types of prostate cancer
(Banerjee et al., 2023)

EZH2 Luminal cells (Yuan et al., 2020) Enhancer of zeste homolog 2 (EZH2) is a common CSC marker (Verma et al., 2023)

ABCG2 Luminal cell (Sabnis et al., 2017) Inhibiting the adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2)-
mediated androgen efflux forces the PCSCs to undergo an AR-modulated differentiation to an
ADT-sensitive luminal phenotype (Sabnis et al., 2017)

Cripto-1 Secretory (Verma et al., 2023) Prostate tumor cell lines contain a presumptive cancer stem cell population marked by SUZ-12 and
Cripto-1 (TDGF1) (Cocciadiferro et al., 2009)

SUZ12 Intracellular (Verma et al., 2023)

E-cadherin EMT (Wolf et al., 2022) The ability to modulate E-cadherin is the key permissive factor enabling CSC invasion in vitro
(Wolf et al., 2022)

CD51 Cell surface (Sui et al., 2018) CD51 (integrin alpha V) could be a functional surface marker for PCSCs (Sui et al., 2018)
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TABLE 2 List of drugs for CSC targeted therapy under clinical trials.

Drug Target Associated
pathway

Clinical trial
number

Approved
stage

Reference

Exelixis (XL147) PI3K PI3K/AKT/mTOR
pathway

NCT00704392 Phase I Sarker et al. (2009), Chang et al. (2015), Hotte et al.
(2019), Ranjbar et al. (2023)

Pictilisib (GDC-0941) NCT01918306 Phase II

NVP-BEZ235 NCT01717898 Phase II

PX-866 NCT01331083 Phase II

Buparlisib (BKM120) NCT01385293 Phase II

Idelalisib (Zydelig) NCT03878524 Phase I

Everolimus mTOR NCT03014297 Phase I

Temsirolimus NCT02093598 Phase II

Ridaforolimus NCT01380184 Phase I

AZD8186, AZD2014 NCT01884285 Phase I

Perifosine AKT NCT00590954 Phase II

GSK690693 NCT00493818 Phase I

MK2206 NCT01251861 Phase II

CI-1040 MEK RAS/MAPK pathway NCT00034827 Phase II Santarpia et al. (2012)

ARRY-438162 NCT00959127 Phase I

AZD6244/ARRY-142886 NCT01605916 Phase I

Refametinib (BAY 86-
9766)

NCT00785226 Phase II

Trametinib
(GSK1120212)

NCT02881242 Phase II

TAK-733 NCT00948467 Phase I

Cobimetinib (GDC-0973) NCT03878524 Phase I

AZD8330/ARRY-424704 NCT00454090 Phase I

Avutometinib
(RO5126766)

NCT00773526 Phase I

RO4987655 NCT00817518 Phase I

Pimasertib (AS703026) NCT01713036 Phase I

LErafAON RAF NCT00024661 Phase I

Vemurafenib (PLX4032) NCT03878524 Phase I

Raf-265 NCT01352273 Phase I

XL281 (Exelixis) NCT00451880 Phase I

Dabrafenib (GSK2118436) NCT02465060 Phase II

Vismodegib (GDC-0449) SMO Hedgehog pathway NCT01163084 Phase II Karlou et al. (2010), Tong et al. (2018), Saad et al.
(2019)

Sonidegib (LDE-225) NCT02111187 Phase I

Taladegib (LY2940680) NCT01226485 Phase I

TAK-441 NCT01204073 Phase I

Itraconazole Hh pathway NCT01787331 Phase II

Vantictumab (OMP-
18R5)

Fzd7 WNT pathway NCT01345201 Phase I Worthmuller and Ruegg (2020), Verma et al. (2023)

Ipafricept (OMP-54F28) Fzd8 NCT01608867 Phase I

(Continued on following page)
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TABLE 2 (Continued) List of drugs for CSC targeted therapy under clinical trials.

Drug Target Associated
pathway

Clinical trial
number

Approved
stage

Reference

Rosmantuzumab (OMP-
131R10)

R-spondin3 NCT02482441 Phase I

Foxy-5 Wnt-5a NCT03883802 Phase II

PRI-724 β-
catenin-CBP

NCT01302405 Phase I

PRI-724 NCT01764477 Phase I

SM08502 CLK NCT03355066 Phase I

Wnt974 (LGK974) Porcupine NCT01351103 Phase I

ETC-159 NCT02521844 Phase I

RXC004 NCT03447470 Phase I

CGX1321 NCT02675946 Phase I

Aspirin Wnt6 NCT00316927 Phase III

Niclosamide Wnt
Wnt

NCT03123978 Phase I

Celecoxib NCT01220973 Phase II

Capsaicin NCT02037464 Phase II

Verteporfin YAP Hippo pathway NCT03067051 Phase II Coffey (2021)

Statins NCT05586360 Phase II

Dasatinib Tyr NCT00439270 Phase II

Apatorsen HSP27 NCT01120470 Phase II

Crizotinib ALK NCT02207504 Phase I

Alectinib NCT05238831 Early Phase I

Pacritinib (SB1518) JAK2 JAK/STAT pathway NCT04635059 Phase 2 Kroon et al. (2013), Hall et al. (2020), McLornan
et al. (2021), Banerjee et al. (2023)

Fedratinib (SAR302503) NCT01836705 Phase I

Momelotinib (GS-0387,
CYT-387)

JAK1 and
JAK2

NCT02244489 Phase I

Ruxolitinib NCT00638378 Phase II

Tofacitinib JAK3 NCT04034238 Phase I

Itacitinib JAK1 NCT02559492 Phase I

Siltuximab (CNTO 328) IL-6 NCT00433446 Phase II

Tocilizumab NCT03821246 Phase II

RO4929097 γ-secretase Notch pathway NCT01200810 Phase II Groth and Fortini (2012), Kanwal et al. (2020)

MK-0752 NCT01295632 Phase I

PF-03084014 NCT02299635 Phase II

OMP-59R5 Notch2 and 3 NCT01277146 Phase I

Demcizumab (OMP-
21M18)

DLL4 NCT02722954 Phase I

PAN-301-1 ASPH NCT03120832 Phase I

Lapatinib (GW572016) EGFR EGFR pathway NCT00246753 Phase II Sridhar et al. (2010), Ojemuyiwa et al. (2014), Wang
et al. (2018)

Erlotinib NCT00272038 Phase II

Gefitinib NCT00483561 Phase II

(Continued on following page)
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been proposed as a representation of PCSCs (Patrawala et al.,
2007). Additionally, nuclear staining dyes like Hoechst
33,342 and Rhodamine 123 can aid in isolating PCSCs. It is
reported that strategically repeated chemotherapy and
radiotherapy could maintain cell populations of therapy-
resistant phenotypes and provide favorable conditions for
PCSC proliferation. The sphere formation assay has been
suggested as another option. Spheres derived from PCSCs can
be further characterized (Verma et al., 2023). Thus, PCSCs can
be isolated either by selecting marker-based populations or by
inducing cell de-differentiation.

3 Therapeutic strategies targeting
PCSCs

Current treatments for PCa, such as ADT, chemotherapy, and
radiation, are designed to eliminate large numbers of conventional
tumor cells but do not appear to be effective against drug-resistant
PCSCs. Therefore, therapies targeting PCSCs are emerging as
promising approaches. These approaches focus on PCSC-related
pathways, the PCSC microenvironment, miRNA, and

immunotherapy. In this context, several inhibitors have been
reported in clinical trials or are undergoing clinical trial
evaluation (details are shown in Table 2).

3.1 Targeting PCSC-related signaling
pathways

3.1.1 PI3K/AKT/mTOR
PI3K, frequently activated in PCa, stimulates mTOR through

activated AKT. Recent discoveries indicated that the intricate
crosstalk within the PI3K/AKT/mTOR pathway could facilitate
tumor formation, enhance CSC properties, and increase
therapeutic resistance (Verma et al., 2023). To date, several
inhibitors targeting the PI3K/AKT/mTOR pathway have been
evaluated in phase I or II clinical trials (details are shown in
Table 2). These inhibitors could also be used with chemo- or
radiotherapy to restore the sensitivity of CRPC patients to
traditional treatments (Bitting and Armstrong, 2013). In
PTEN-loss models, the inhibition of AR could activate the
PI3K/AKT pathway and vice-versa. To address the problem, a
PI3K inhibitor (such as PX-866) was designed to target CRPC

TABLE 2 (Continued) List of drugs for CSC targeted therapy under clinical trials.

Drug Target Associated
pathway

Clinical trial
number

Approved
stage

Reference

C225-ILS-DOX NCT02833766 Phase II

Imatinib PDGFR NCT00424385 Phase I

Sunitinib (SU11248) VEGFR NCT00299741 Phase II

Cediranib (AZD2171) NCT00436956 Phase II

Sorafenib (BAY 43-9006) Src NCT00090545 Phase II

Dasatinib NCT00439270 Phase II

Cabozantinib VEGFR2 NCT01834651 Phase II

MM-302 HER2 NCT02213744 Phase III

Tasquinimod TSP1 HIF pathway NCT02396368 Phase I Olsson et al. (2010)

Digoxin HIF-α NCT01162135 Phase II Lin et al. (2009)

Celecoxib SOX2 NCT00073970 Phase II Sooriakumaran et al. (2009)

Metformin AMP-Kinase EMT NCT01620593 Phase II Chaves et al. (2021)

Adavosertib WEE 1 NCT03385655 Phase II

Romidepsin HDACs NCT00106418 Phase II

Panobinostat NCT00667862 Phase II

Pracinostat NCT01075308 Phase II

Vorinostat NCT00330161 Phase II

Phenylbutyrate NCT00006019 Phase II

Tazemetostat EZH2 NCT04179864 Phase II

CPI-1205 NCT03480646 Phase II

Azacitidine DNMTs NCT03572387 Phase II

Decitabine NCT02649790 Phase II
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patients, which had a beneficial effect and overcame resistance
(Hotte et al., 2019). However, the dual PI3K and mTOR
inhibition might cause unpredictable toxicity in patients with
mCRPC (Wei et al., 2017).

3.1.2 RAS/MAPK
MAPK signaling is reported to be responsible for stem

characteristics in PCSCs, and phosphorylation events play critical
parts in tumorigenesis (Santarpia et al., 2012). Hindering MAPK via
targeted inhibitors has been an applicable model for cancer
therapeutics. Abnormal activation of the RAS-RAF-MEK-ERK-
MAPK (RAS-MAPK) pathway promotes CSC self-propelling and
poses a second hit to an alteration of the PTEN/PI3K/AKT axis
(Santarpia et al., 2012). MAPK kinase inhibitor PD098059 restored
the growth inhibitory role of TGF-β1 in PCa, which carried an
oncogenic mutation in RAS (Park et al., 2000). Although
PD098059 and PD325901 have been demonstrated to be effective
in mouse studies, they have not been targeted for clinical
development (Mukhopadhyay et al., 2007; Mulholland et al.,
2012). PD184352 (CI-1040) has been evaluated in phase I clinical
trials but not yet verified in phase II trials (Papatsoris et al., 2007). In
addition, drugs that obstruct the RAS/MAPK pathway might exhibit
widespread mechanism-induced toxicities.

3.1.3 Hedgehog
Emerging studies have demonstrated that the abnormal

involvement of Hedgehog signaling was accountable for PCSC
maintenance. Recently, preclinical studies showed that PCSCs
were subjected to Hedgehog-related inhibition (Banerjee et al.,
2023). One such Hedgehog receptor smoothened (SMO)
inhibitor is GDC-0449, which promotes PCSC apoptosis via GLI-
dependent regulation (Tong et al., 2018). A randomized phase I/II
trial study explored antihormone therapy together with GDC-0449
to see how well they work in advanced PCa patients, and the results
were highly anticipated (NCT01163084). Sonidegib, an SMO
inhibitor, underwent a phase I clinical trial in patients with high-
risk localized PCa and caused a 2-fold reduction in GLI1 levels
(Tong et al., 2018). Other inhibitors of GLI1, such as IPI-269609,
GANT61, GANT58, zerumbone, physalin F and physalin B, and
SMO inhibitor CUR61414, have not yet been tested in clinical trials
(Karlou et al., 2010). Identifying the stages of PCa may provide the
most clinical benefit.

3.1.4 Wnt
The Kjd Wnt/β-catenin signaling pathway is one of the vital

mechanisms responsible for PCa self-renewal ability, and
dysregulation of Wnt signaling increases the proportion of
PCSCs (Karlou et al., 2010). An in vitro study suggested that
capsaicin could be a potential chemotherapeutic drug for CRPC via
blocking the Wnt/β-catenin pathway (Ramesh et al., 2023).
Accordingly, a phase II trial was designed to determine the
chemopreventive properties of capsaicin in PCa patients
enrolled in the active surveillance program or patients
scheduled to undergo radical prostatectomy (NCT02037464). In
addition, agents like aspirin, which has been approved by the FDA,
are applied in the clinics (Verma et al., 2023). Consequently, Wnt-
related research has been a significant field for the development
and application of targeted drugs. The inhibitors targeting the

Wnt/β-catenin pathway are classified into non-steroidal anti-
inflammatory drugs (ibuprofen and aspirin) and CBP/β
antagonists (ICG-001 and NSC668036) (Verma et al., 2023).
Meanwhile, Worthmuller and Ruegg (2020) divide Wnt-related
agents into ligand/receptor level (vantictumab, ipafricept, etc.),
transcriptional level (CWP232291, PRI-724, etc.), and Wnt
secretion (WNT974, ETC-15, etc).

3.1.5 Hippo
The Hippo pathway and its core downstream effectors, Yes-

associated protein (YAP) and paralog, a transcriptional coactivator
with the PDZ-binding motif (TAZ), are crucial for tissue
regeneration through the regulation of stem cells (Messina et al.,
2023). Inhibition of Hippo remains challenging owing to its
complicated regulation and crossing with other pathways.
Although the YAP/TAZ targeted therapeutic drug, verteporfin,
has been approved by the FDA, its future use for cancer
treatment appears to be multimodal, relying on the cellular
background (Coffey, 2021). In addition, several FAK inhibitors
have been measured in clinical trials with prospective results in
PCa. One is apatorsen (OGX427), which could induce tumor
regression in preclinical models of metastatic CRPC and has
shown encouraging preliminary results in phase II clinical trials
(Coffey, 2021).

3.1.6 JAK/STAT
Gene expression profiling of CD44+/α2β1hi/CD133+ primary

cancer cells reveals a significant over-representation of the JAK-
STAT signaling pathway, indicating aberrant alterations of this
pathway in CSCs could accelerate the tumor load (Kroon et al.,
2013). Wang et al. (2024) demonstrated that blocking STAT3 via
berbamine resulted in downregulation of CSC level and increased
drug sensitivity to cabazitaxel. However, there are not yet any
clinical trials for berbamine. The blockade of activated STAT3 by
another anti-IL-6 antibody, tocilizumab, suppressed the activity of
the TAM-stimulated CD44+ cells in high-grade diseases (Wan et al.,
2014). A phase I trial was aimed to evaluate the safety and efficacy of
CC-1 (a dual mode of anticancer action) with prophylactic IL-6R
blockade using tocilizumab in CRPC patients after failure of third-
line therapy (NCT04104607). The research would help better define
the action of CC-1 and identify biomarkers for further clinical
development.

3.1.7 Notch
The Notch pathway, which regulates cell fate determination,

metastasis, and chemoresistance, has been found to be dysregulated
in PCa (Banerjee et al., 2023). One approach involves the exploration
of antibodies to obstruct specific Notch receptors, their activating
ligands, or other targets of the Notch signaling in tumors (Han et al.,
2021). Chemotherapy combined with Notch1 inhibitors is proved to
reduce the chemotherapy-enriched CSC population in a
complementary manner (Banerjee et al., 2023). Recently, Cui
et al. (2015) suggested that Notch blocking via a γ-secretase
inhibitor (GSI) named PF-03084014 could slow the growth of
tumor cells and reinforce the anti-metastatic effect of docetaxel
in PCa in vivo and in vitro. In contrast, PF-03084014 failed to
produce a clinical benefit to CRPC patients owing to its systemic
toxicity and off-target effects (Banerjee et al., 2023). Another small-
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molecule inhibitor of aspartate β-hydroxylase (ASPH), PAN-301-
1 vaccine against ASPH has been tested in a phase I clinical trial in
PCa patients, indicating that ASPH is a promising target (Kanwal
et al., 2020).

3.1.8 EGFR
Rybak et al. (2013) have presented evidence that EGFR signaling

promoted maintenance of PCSC-like characteristics, in part by
stimulating the MEK-ERK pathway. Inhibition of ERK activation
by U0126 treatment and ERK1/ERK2 knockdown could account for
a rapid reduction in PCSC propagation (Rybak et al., 2013).
Clinically, modulation of the EGFR pathway is correlated with
therapeutic efficiency. Recently, there has been a trend in
evaluating tyrosine kinase inhibitors (TKIs) that impede
angiogenic growth factor targets. A phase II trial tested sorafenib,
an oral inhibitor of EGFR, in metastatic CRPC patients. This agent
works by blocking radiological progression and, in part, promoting
the regression of bone metastases (Antonarakis et al., 2010).
Erlotinib is also a selective TKI of EGFR and has moderate
activity in chemotherapy-naïve CRPC in combination with
chemotherapy (Nabhan et al., 2009). In addition, PCa has
upregulation of platelet-derived growth factor receptor (PDGFR),
cooperating with the PI3K/AKT pathway. However, the antitumor
effect of PDGFR inhibitor imatinib has been disappointing
(Antonarakis et al., 2010).

3.1.9 HIF
HIF signaling is activated in PCa in response to hypoxic

conditions within the tumor microenvironment. O’Reilly et al.
(2019) demonstrated that HIF-2α interacted with SOX2 under
long-term hypoxia, promoting stem cell renewal and metastasis
of PCSCs. Taken together, these identify HIF and associated
pathways as novel cancer drug targets, as well as inhibitors of the
hypoxia-response pathway, that are being developed. A phase II
clinical trial using oral tasquinimod exhibited moderate activity
against mCRPC via upregulation of TSP1, accounting for the
downregulation of HIF-1α (Olsson et al., 2010). In addition,
camptothecin (CPT), a potent inhibitor of HIF-1α, failed to
produce a clinical benefit owing to significant toxicity. Schmidt
et al. (2020) designed a nanoparticle–drug conjugate (NDC) of CPT
named NLG207 to facilitate drug delivery to tumors. Work on this is
ongoing at the National Cancer Institute.

3.2 Targeting the PCSC microenvironment

Tumor cells undergo EMT, wherein they lose their epithelial
surface markers, most notably E-cadherin, and obtain mesenchymal
markers, including vimentin and N-cadherin (Banerjee et al., 2023).
Drivers (such as Snail, Twist, and STAT3) and abundant signaling
pathways are activated in EMT (Chaves et al., 2021). Given their
vital roles in the EMT process, treatments aimed at suppressing
specific regulations could provide an approach to achieve the
antineoplastic effect. It is already confirmed that miRNAs
affected the proportion of PCSCs indirectly via the EMT process.
Zhang et al. proved that metformin prevented EMT via microRNA-
30a-modulated SOX4 expression (Zhang et al., 2014). However, a
phase II trial named “castration compared to castration plus

metformin as first-line treatment for patients with advanced
PCa” yielded no clinical benefit of adding metformin
(NCT01620593). In addition, the abnormality of miR-205 could
impede CAF-mediated EMT in vitro and in vivo (Ramesh
et al., 2023).

Anticancer strategies have been developed for CAF, varying
from metronomic chemotherapy to immune-based therapies. For
instance, a GPR77-neutralizing antibody is demonstrated to be valid
for restoring tumor sensitivity to chemotherapy in a PDX model
(Fiori et al., 2019). Moreover, tazemetostat (EZH2 inhibitor) hitting
the PRC2-mediated EMT is designed to determine the
recommended dose of tazemetostat in combination with either
enzalutamide or abiraterone/prednisone. This approach is being
evaluated in a phase II clinical trial enrolling advanced PCa patients
(NCT04179864). Presently, efforts to develop therapeutic agents
targeting EMT are in progress, and promising results are
within reach.

3.3 miRNA therapy

Some miRNAs that are related to good prognosis have been
downregulated in CRPC patients. miR-34a, miR-708, miR-143, and
miR-145 are negative regulators of CD44 in PCSCs and thus have
the potential to serve as therapeutic drugs for advanced PCa patients
(Ramesh et al., 2023). In addition, it has been suggested that
overexpression of miR-let-7c, miR-101-3p, and miR-138-5p could
block the stemness of PCSCs by suppressing EZH2 (Kong et al.,
2012; Rizzo, 2021; Ramesh et al., 2023). Subsequently, BR-DIM
(metabolite 3,3′-diindolylmethane) is applied to reduce PCSC
percentages through EZH2 downregulation (Kong et al., 2012).
Mechanistically, miR-7, miR-100, miR-143/miR-145, miR-218,
miR-199a-3p, miR-141, and miR-320 suppress PCSCs by
targeting the KLF4/PI3K/AKT/p21 pathways, oncogene argonaute
2 (AGO2), OCT4, GLI1, EGFR, actin related protein 2/3 complex
subunit 5 (ARPC5), and Wnt/β-catenin, respectively (Rizzo, 2021;
Ramesh et al., 2023). For chemotherapy resistance, the expression of
miR-125a-3p, miR-34a-5p, miR-204, miR-205, and miR-3 could
hamper the enrichment of stem cells and strengthen docetaxel
sensitivity in PCa samples, making them ideal therapeutic targets
(Rizzo, 2021). In particular, miR-205 also increases radiation
sensitivity (El Bezawy et al., 2019). In summary, new therapeutic
approaches based on miRNAs might be a good prospect.

3.4 Immunotherapy

Recently, increasing numbers of clinical trials have addressed
immunotherapy incorporating vaccine-based therapies, immune
checkpoint inhibitors (ICIs), and chimeric antigen receptor
(CAR)-modified T-cell therapy, which targets CSC-associated
tumor antigens. These products are emerging as new therapeutic
approaches for advanced PCa patients (Bansal et al., 2021).

3.4.1 Immune checkpoint inhibitors (ICIs)
ICIs present antitumor activities by targeting the

dysfunctional immune system, where a T-cell antitumor
response is generated (Lentz et al., 2021). Ipilimumab is a
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humanized anti-CTLA-4 antibody that is expressed on the
surface of T lymphocytes (Chen, 2004). Its use to treat PCa is
investigational. An early phase I clinical trial is aimed at studying
the impact of ipilimumab on the immune system of patients
receiving hormone therapy, but subsequent results have not yet
been presented (NCT02113657). Examples of other immune
checkpoint protein PD-1 inhibitors are nivolumab and
pembrolizumab, which restore T cells’ ability to eradicate
cancer cells (Bansal et al., 2021). A recent update on a phase
II clinical trial confirmed the antitumor activity of
pembrolizumab with an acceptable safety and encouraging OS
evaluation (NCT02787005) (Antonarakis et al., 2020).

Anti-PD-L1 immunotherapies, such as avelumab and
atezolizumab, are also being studied (Bansal et al., 2021). In
2021, an ongoing phase II clinical trial of avelumab was designed
to evaluate its effects against PICK-NEPC (NCT03179410).
Evaluations of monotherapy and the strategies cooperating
ICIs with chemotherapy, radiation, PARP inhibitors,
adenosine receptor antagonists, IL-2 agonists, and CD11b
agonists are in progress (Bansal et al., 2021). For instance, an
investigational immunotherapy of nivolumab in combination
with rucaparib, docetaxel, or enzalutamide in mCRPC patients
is ongoing (NCT03338790). Fizazi et al. (2022) reported results
from cohorts A1 and A2 of CheckMate 9KD that nivolumab plus
rucaparib were active in HRD-positive postchemotherapy or
chemotherapy-naïve mCRPC groups. Notably, a further step is
needed to reveal whether nivolumab supplementary
incrementally improves OS versus rucaparib alone (Fizazi
et al., 2022). Additionally, an immunosuppressive TME and
impaired cellular immunity may impede ICI application in
advanced PCa (Bansal et al., 2021).

3.4.2 Vaccine-based therapies
A vaccine based on tumor-associated antigen (TAA) could

activate a particular immune response to cancer cells. PCa could
express substantial TAA involving PSA, prostate-specific
membrane antigen (PSMA), prostatic acid phosphatase (PAP),
and PSCA (Bansal et al., 2021). To target these antigens, different
forms of PCa vaccines have been developed, such as cellular
vaccines, viral vector-based vaccines, polypeptide vaccines,
nucleic acid vaccines, and mRNA-based vaccines (Wang et al.,
2023). Sipuleucel-T, an FDA-approved autologous cell vaccine, is
designed to induce a T-cell-mediated immune response to
recombinant PAP (Cha et al., 2020). Currently, related clinical
trials have been completed. Phase III (NCT00065442,
NCT00005947, and NCT01133704) suggested that sipuleucel-T
treatment induced a 3-fold increase in activated T cells from
prostatectomy specimens (Ju et al., 2022). It is worth
mentioning that the sipuleucel-T treatment can help patients
stay where they are rather than fully recovering works to block
further deterioration of advanced PCa tumors, not subside.

PROSTVAC has undergone tests in numerous clinical trials. In a
phase II clinical trial (TBC-PRO-002), PROSTVAC was associated
with a longer median survival time of 9.9 months in men with
mCRPC (Kantoff et al., 2010). Conversely, in low- or intermediate-
risk PCa, no differences in postvaccination peripheral T-cell
responses were observed (NCT02326805) (Parsons et al., 2023).
For cellular vaccines, Wang et al. developed an immunogenic

peptide-sensitized dendritic cell (DC)-cytokine-induced killer cell
(CIK)-based cell, which manifested an antitumor effect against PCa
xenografts derived from the PCSC-enriched prostatospheroids. This
therapeutic platform is expected to apply to immunotherapy (Wang
et al., 2020).

PCVAC/PCa is another cellular cancer vaccine. Regrettably,
the combination therapy of DCVAC/PCa, docetaxel, and
prednisone was deemed ineffective in extending OS in patients
with mCRPC (NCT02111577) (Vogelzang et al., 2022). In
addition, individualized polypeptide vaccine (PPV) stands out,
bypassing immune diversity and evading immune tolerance
(Wang et al., 2023). Yoshimura et al. (2016) compared clinical
outcomes of the treatment with PPV, adding dexamethasone
versus dexamethasone alone in 2016, where the PPV group
presented longer median OS and progression-free survival
(PFS). Of note, the recruited patients in this study were
diagnosed in the early stage of CRPC (Yoshimura et al., 2016).
Another prostate cancer vaccine, GVAX, has been shown to induce
infiltrating immune cells that may promote PD-L1 upregulation
(Palicelli et al., 2021). However, the exact efficacy remains to
be unveiled.

DNA vaccines could evoke antitumor immune response by
changing the sequence of plasmid DNA (Wang et al., 2023). An
example is the pTVG-HP vaccine, which encodes the human PAP
antigens and is being evaluated in mCRPC trials. Given their
instability and inefficiency, the development of mRNA-based
vaccines is still in slow progress (Bansal et al., 2021).

3.4.3 Chimeric antigen receptor (CAR)-modified
T-cell therapy

CAR-T cell therapy targeting PCSC-associated antigens
emerges as a promising therapeutic approach. Despite no
results, some phase I clinical trials with PSCA are ongoing to
assess the immune activity of PSCA-specific CAR-T cells in
patients with mCRPC (NCT03927573 and NCT03873805).
Subsequently, BPX-601 acted as a PSCA-directed CAR-T cell
and was applied in the clinical trial I/II, in which feasibility,
safety, and clinical activity were measured at the recommended
dose (NCT02744287). Both BPX-601 and 4-1BB are designed to
enhance the immune response of patients with PSCA+ mCRPC
(NCT03873805). By targeting another well-known antigen
(EpCAM), EpCAM-specific CAR-T cell is introduced into
human peripheral blood lymphocytes (PBLs) with the strategy
of substantially preventing PC-3 growth in vitro and in vivo (Deng
et al., 2015).

Owing to PCSC resistance to fractionated irradiation, which
is characterized by high B7-H3 levels, B7-H3 CAR-T cells are
demonstrated to support radiation therapy against PCSCs
(Zhang et al., 2021). In addition, the CAR-T cell strategy
targeting PSMA with lutetium-177 (177Lu-J591) has proven a
clinical benefit in phase II clinical trial testing (Tagawa et al.,
2013). The results from Frieling et al. (2023) revealed that γδ
CAR-T cells targeting PSCA caused a robust regression of
established tumors in a preclinical murine model of bone
mCRPC. Another novel cell therapy, the tumor-infiltrating
lymphocytes (TILs) strategy, has gained striking momentum.
Recently, Gao’s group overcame sorafenib resistance to liver
cancer by targeting stem-like CCR4+ regulatory T cells and
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inhibiting the maintenance of the TIL-Treg pool (Gao et al.,
2022). However, obtaining TILs from PCa patients with poor
immunogenicity remains challenging. In 2019, Yunger et al.
(2019) managed to expand TILs from eight PCa patients
under ADT treatment, supporting the development of
prostate-TIL therapy. Experiments based on PC3-bearing
humanized immunodeficiency IL2Rγ null (hNSG) mice with
an intravenous injection of human CD34+ hematopoietic stem
cells indicated that the N-cadherin antagonist ADH-1 promoted
TIL antitumor responses (Sun et al., 2021). Elevated density of
CD8+ TILs was demonstrated to improve clinical outcomes from
PCa patients undergoing radical prostatectomy (Yang et al.,

2021). Although no phase III data have been reported for
prostate-TIL products, some clinical trials are recruiting
patients. Collectively, CAR-T cells targeting PCSCs and TILs
represent promising therapeutic options in the future.

4 Conclusion

PCSCs are the cancer-initiating cells that play a pivotal role in
tumor relapse and therapy resistance. Identifying the characteristics
and presence of PCSCs is important to reveal their mechanism and
develop targeted therapies against CSC. The establishment of a 3D

FIGURE 1
(A) List of putative biomarkers for CSCs based on basal and luminal layers and (B) CSC-related pathway targeted agents in PCa.
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culture system provides general support for the point that basal
stem-like cells are suggested to be the cells of origin in primary
prostatic tumors, while stem-like cells with luminal phenotypes
reinitiate CRPC relapse after ADT. Additionally, PCSCs could
also exist in reprogrammed non-epithelial cancerous cells
(i.e., inflammatory and stromal cells). As Figure 1A shows,
putative biomarkers for PCSCs from basal (KRT16/17/6, Bcl-2,
CK5, CK14, p63, hTERT, Trop2, β-catenin, ERα, ALDH, Sca-1,
CD133, CD44, CD117, CD49f, Nanog, α2 integrin, CXCR4, EpCaM,
CD54, and SOX2) and luminal (Tacstd2, NKX3-1, CK18, CK19,
CK8, CK4, CD26, OCT3/4, DLL4, PSCA, BMI-1, EZH2, ABCG2,
etc.) are listed. Of note, PCSC-related therapies concentrating on
PCSC-related pathways, the PCSC microenvironment, miRNA, and
immunotherapy (see Figure 1B) are valid goals to aim for and also
have massive hurdles to overcome. Collectively, based on this review
of PCSC characteristics and accessible clinical trials, it is clear that a
great need exists for further testing of these targeted therapies.

4.1 Limitation

The work has several critical limitations:

1. The description of the isolation and enrichment of PCSCs is
limited and warrants a more thorough examination to provide
greater insights.

2. Apart from PCSCs, drug resistance in PCa involves factors
such as hypoxia, oxidative regulation, EMT, and autophagy. A
more extensive discussion is needed.

3. Although numerous clinical studies are underway, their
outcomes remain inconclusive. Further monitoring and
statistical analysis are warranted.

4. While this work predominantly focuses on the role of signaling
pathways in PCSC development, the significance of PCa-
related metabolism should also be explored.
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