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Primary cilia, serving as the central hub for cellular signal transduction, possess
the remarkable ability to translate diverse extracellular signals, both chemical and
mechanical, into intracellular responses. Their ubiquitous presence in the
reproductive system underscores their pivotal roles in various cellular
processes including development, differentiation, and migration. Emerging
evidence suggests primary cilia as key players in reproductive physiology and
associated pathologies. Notably, primary cilia have been identified in granulosa
cells within mouse ovaries and uterine stromal cells, and perturbations in their
structure and function have been implicated in a spectrum of reproductive
dysfunctions and ciliary-related diseases. Furthermore, disruptions in primary
cilia-mediated signal transduction pathways under pathological conditions
exacerbate the onset and progression of reproductive disorders. This review
provides a comprehensive overview of current research progress on primary cilia
and their associated signaling pathways in reproductive physiology and diseases,
with the aim of furnishing theoretical groundwork for the prevention and
management of primary cilia-related structural and functional abnormalities
contributing to reproductive system pathologies.
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1 Introduction

Primary cilia, resembling hair-like structures situated on the cell membrane surface and
originating from the centrosome, possess the capacity to detect diverse extracellular stimuli.
Recent investigations have revealed the intimate association between primary cilia and
diverse intracellular signal transduction mechanisms, often likened to “cellular antennas”
and “signal amplification receptors” (Patnaik et al., 2020). Despite being stationary, primary
cilia possess a ciliary membrane capable of sensing chemical and mechanical signals from
the surrounding environment (Barnes et al., 2021). This membrane harbors a plethora of
signal receptors and ion channels, facilitating the conversion of extracellular signals into
intracellular signals for cascading, a process critical for intercellular signal transduction.
Numerous signaling pathways are mediated by primary cilia, encompassing Hedgehog,
Wnt, mTOR, GPCR, Notch, Hippo, and TGF-beta signaling pathways (Pala et al., 2017;
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Anvarian et al., 2019). Structural and functional aberrations in
primary cilia can detrimentally affect the functionality of
associated signaling pathways, precipitating a spectrum of ciliary-
related disorders (Ng et al., 2021), including recurrent implantation
failure (RIF), epithelial ovarian cancer (EOC), breast cancer,
prostate cancer (PCa), as well as autosomal recessive genetic
disorders such as Bardet-Biedl syndrome and Joubert syndrome.

Research indicates that the growth and development of the
mammalian reproductive system are governed by a multitude of
signaling pathways, including Hedgehog, Wnt, and mTOR.
Dysregulated signal transduction may result in developmental
anomalies of embryonic organs, including ovarian development
and uterine decidualization (Anvarian et al., 2019). This paper
presents a comprehensive review of pertinent primary cilia and
their correlated signaling pathways within the reproductive system,
with the goal of furnishing theoretical insights for the prevention
and treatment of reproductive system disorders stemming from
primary ciliary dysfunctions.

2 Structure and function of primary cilia

Cilia are ubiquitous organelles in mammalian cells, being
present in nearly all cell types. Previous research has delineated
several types of cilia, encompassing motile cilia, primary cilia, and
nodal cilia (Satir and Christensen, 2008) (Figure 1). Motile cilia
consist of 9 doublet microtubules encircling a pair of central single
microtubules, thereby constructing a 9 + 2 axoneme (Hua and
Ferland, 2018). These organelles are restricted to specific cell types
and exhibit motility. Conversely, primary cilia are generally found

on various cell types, typically manifesting as solitary structures
protruding from the cell surface, where they serve as pivotal “signal
enhancers” in intercellular signal transduction. (Berbari et al., 2009).
In contrast to motile cilia, primary cilia possess a 9 + 0 axoneme
structure, devoid of the central microtubule pair and dynein arms
characteristic of motile cilia (Li, 2022). Nonetheless, there are
exceptions to this classification, exemplified by olfactory cilia,
categorized as primary cilia despite featuring a 9 + 2 axoneme
configuration devoid of dynein arms (Perry et al., 2009). Nodal cilia
emerge during embryonic development, exhibiting a primary cilia
9 + 0 axoneme structure alongside the dynein arms configuration
characteristic of motile cilia (Hua and Ferland, 2018).

Primary cilia consist of microtubule axonemes, basal bodies,
transition zones, and transition fibers. They exhibit diminutive
dimensions, boasting a diameter of approximately 0.2 μm and a
length spanning from 3 to 10 μm. Primary cilia, microstructures
anchored by the centrosome, conspicuously extend from the surface
of the majority of eukaryotic cells. The formation of primary cilia is
intricately linked to the centrosome. Serving as the microtubule
organizing center, the centrosome assumes a pivotal role in
orchestrating microtubule dynamics and cell division (Plessner
et al., 2019). Primary cilia formation is accomplished through the
centrosome’s specific functions during distinct stages of the cell cycle
(Luan et al., 2021). Throughout mitosis, cilia undergo disassembly to
permit centrosomal assembly of the spindle apparatus (Jeffries et al.,
2019). Upon completion of mitosis and subsequent re-entry into the
G0 or G1 phase, centrosomal microtubules extend towards the tip,
giving rise to the axoneme, the primary structural feature of cilia
(Maskey et al., 2015; Miyamoto and Matsuura, 2015). At this
juncture, the centrosome persists in its attachment to the cell

FIGURE 1
Three types of ciliated structures. Cilia, resembling hair-like protrusions, emerge from the cell membrane, originating from the centrosome. Motile
cilia exhibit a 9 + 2 architecture, comprising nine doublets of microtubules alongside a central pair, complemented by dynein arms. Primary cilia feature a
9 + 0 arrangement, characterized by solely nine peripheral microtubule doublets, devoid of central microtubules and dynein arms. Nodal cilia display a 9
+ 0 configuration, showcasing nine pairs of peripheral microtubules, devoid of a central pair yet equipped with dynein arms. BBSome is a
multisubunit protein complex that is not necessary for the maintenance of ciliary integrity, but is an important determinant of ciliary protein composition.
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membrane at the basal body, undergoing transition into the basal
body, and initiating the assembly of nascent cilia (Abreu and Dantas,
2021). Upon re-entry into the cell cycle, the ciliary axoneme
undergoes reabsorption, and the basal body ceases to furnish
structural support for the cilia (Ford et al., 2018). The transition
zone and transition fibers serve as barriers, impeding the free
diffusion of large proteins into and out of the primary cilium
(Wachten and Mick, 2021). The BBSome, a multi-subunit protein
complex, serves as a central mediator facilitating transport across the
transition zone (Goetz et al., 2017). Although not indispensable for
the maintenance of ciliary integrity, the BBSome plays a pivotal role
in determining the composition of ciliary proteins (Wachten and
Mick, 2021). Furthermore, primary cilia membranes are adorned
with myriad signaling pathway receptors, adept at sensing stimuli
from the extracellular milieu (Ortizcruz et al., 2021). Disruptions in
the signaling pathways of primary cilia may result in developmental
and physiological deficiencies within the organism (Ma et al., 2022).

Primary cilia, serving as antennae, have the capability to sense
the cellular microenvironment and play a pivotal role in mediating
the signal transduction of diverse signaling pathways (Zhang et al.,
2023). Within primary cilia resides a highly conserved bidirectional
transport system known as the Intra-Flagellar Transport (IFT)
system, initially identified in Chlamydomonas (Prevo et al.,
2017). The IFT system, functioning as an intracellular transport
system, is propelled by kinesin-2 and cytoplasmic dynein-2 (24)
(Figure 2). This system operates bidirectionally, employing motor
and driving proteins for anterograde and retrograde transport,
correspondingly (Seeley et al., 2009).

The anterograde system (IFT-B) comprises 16 proteins (IFT20,
IFT22, IFT25, IFT27, IFT38, IFT46, IFT52, IFT54, IFT56, IFT57,
IFT70, IFT74, IFT80, IFT81, IFT88, IFT172), facilitating the
transportation of proteins to the cilium’s distal tip (Lacey et al.,
2023). The retrograde system (IFT-A) shuttles proteins back to the
cilium’s base and primarily comprises six proteins (IFT43, IFT121,

IFT122, IFT139, IFT144, IFT140) (Li, 2022; Lian et al., 2022). This
bidirectional transport mechanism facilitates the regulated growth,
maintenance, and disassembly of cilia (Wang et al., 2021; Shi et al.,
2023). ADP-ribosylation factor-like protein 13B Arl13b and
Intraflagellar Transport protein IFT88 are pivotal components in
cilium assembly and play indispensable roles in Hedgehog (Hh)
signal transduction (He et al., 2018; Shi et al., 2023; Fitzsimons et al.,
2024). Moreover, histone deacetylase HDAC6 and Aurora kinase A
are essential for the disassembly of cilia (Xiang et al., 2017; Rowson
et al., 2018; Zhang et al., 2021). Previous experimental findings have
demonstrated that inhibiting IFT-A proteins markedly shortens
primary cilia (Piperno et al., 1998; Iomini et al., 2009), whereas
inhibition of IFT-B proteins impedes primary cilia formation
(Brazelton et al., 2001; Hou et al., 2007).

The intraflagellar transport (IFT) complex, primarily
constituted by IFT-A and IFT-B subcomplexes, assumes a pivotal
role in the assembly and upkeep of cilia. The IFT complex
encompasses no fewer than 20 varieties of IFT proteins, where
IFT-A predominantly encompasses core subunits (IFT122, IFT140,
IFT144) alongside peripheral subunits (IFT43, IFT121, IFT139).
IFT122 assumes a crucial role within the IFT-A complex, fostering
connections between the IFT-A core and peripheral subcomplexes
via interactions with IFT43-IFT121 dimers (Takahara et al., 2018).
Mutations leading to malfunctioning IFT122 are linked to
cranioectodermal dysplasia diseases, which hinder ciliary protein
transport but not ciliogenesis (Takahara et al., 2018). IFT43 emerges
as the smallest protein within the IFT-A assembly, whereas other
constituents of the IFT-A complex, except for IFT43, manifest as
sizable proteins with molecular weights surpassing 120 kDa
(Taschner et al., 2012). Core constituents of the IFT-B complex,
such as IFT88, IFT81, IFT74, IFT52, IFT46, IFT27, IFT70, IFT25,
and IFT22, engage in interactions with peripheral proteins (IFT172,
IFT80, IFT57, IFT54, IFT20). Among the IFT proteins,
IFT172 emerges as the largest (Wang et al., 2018), juxtaposed

FIGURE 2
Visually represents the intricate architecture of the intraflagellar transport (IFT) systemwithin cilia. The intraflagellar transport (IFT) system of primary
cilia comprises two distinct components: IFT-A and IFT-B. Initially, IFT is recruited to assemble protein complexes at the base of the cilium. IFT-B
constitutes a chiefly anterograde system, powered by kinesin-2, facilitating the transportation of cargo synthesized at the ciliary base (basal body) across
the transition zone to the tip; conversely, IFT-A operates as a primarily retrograde system propelled by dynein-2, whereupon they reassemble into
retrograde trains, conveying their cargos back to the basal body for recycling.
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with IFT20, which represents the smallest counterpart (Yuan et al.,
2014). Functioning as a core constituent of the IFT-B complex,
IFT52 assumes a pivotal responsibility in upholding the structural
integrity of the entire assembly and expediting cargo movement
along the ciliary axoneme, thereby implicating its involvement in a
spectrum of ciliopathies (Udupa and Ghosh, 2024). Peripheral
protein assemblies of IFT-B exert pivotal functions in regulating
IFT processes and orchestrating targeted vesicle trafficking from the
Golgi network to the ciliary pocket (Lee et al., 2018). Sustained
interactions between the IFT-A and IFT-B complexes stand as
indispensable for facilitating GPCR-mediated retrograde transport
of ciliary proteins (Lee et al., 2018; Kobayashi et al., 2021). Besides
the IFT complex, the BBS multi-subunit complex also participates in
the transportation of membrane proteins to cilia (Jin et al., 2010),
whereby the IFT-A and -B subcomplexes coalesce through the
BBSome multi-subunit complex (Nachury et al., 2007).

Research has demonstrated that deficiencies in IFT20, IFT52,
IFT80, and IFT88 during mouse limb development can result in
skeletal abnormalities (Kitami et al., 2019; Chinipardaz et al., 2022;
Guleria et al., 2022; Yamaguchi et al., 2022; Chen and He, 2023).
Moreover, mutations in IFT25, IFT27 interfere with the Hedgehog
signaling pathway (Keady et al., 2012; Eguether et al., 2014; Yang
et al., 2015; Ge et al., 2021), while silencing of IFT80 diminishes
Hedgehog signaling but enhances Wnt signaling, underscoring the
ability of primary cilia to modulate Hedgehog andWnt signaling for
the regulation of cartilage development (Yang and Wang, 2012;
Wang et al., 2013). IFT122 is capable of governing mouse embryo
palatal mesenchymal cells (mEPMCs) through the Sonic Hedgehog
(SHH) signaling pathway mediated by primary cilia, with silencing
of IFT122 leading to impairments in primary cilia growth in
mEPMCs (Guo, 2020). Mutations in TALPID3 result in the loss
of primary cilia and hinder Hedgehog signal transduction (Yin et al.,
2009; Ben et al., 2011; Liu et al., 2021). Therefore, deficiencies in any
IFT proteins may lead to structural and functional abnormalities in
primary cilia and associated signaling pathways, culminating in the
onset of cilia-related diseases.

3 Related signaling pathways

3.1 Hedgehog signaling pathway

The Hedgehog (Hh) signaling pathway stands as the most
thoroughly investigated signaling cascade associated with primary
cilia. This pathway is essential not only for embryonic development
and organogenesis but also for the maintenance and repair of adult
tissue homeostasis (Chen et al., 2023). Anomalous activation of the
Hh pathway is pivotal for the pathogenesis of various cancers,
encompassing medulloblastoma, basal cell carcinoma, breast
cancer, prostate cancer, melanoma, lung cancer, and pancreatic
cancer (Ross et al., 2005; Luu et al., 2009; Seeley et al., 2009;
Yuan et al., 2010; Kim et al., 2011; Basten and Giles, 2013;
Gradilone et al., 2013; Hassounah et al., 2013; Wang, 2021;
Giammona et al., 2023). In mammals, Hh signal transduction is
orchestrated through primary cilia located on cells (Li et al., 2022).
Recognized Hh signaling pathways comprise Indian Hedgehog
(Ihh), Desert Hedgehog (Dhh), and Sonic Hedgehog (Shh)
(Lienkamp et al., 2012; Feltran et al., 2024). Ihh is the main

mediator of progesterone signaling in the mouse uterus and is
essential for mediating the interaction between the uterine
epithelium and stroma required for embryo implantation
(Matsumoto et al., 2002; Lee et al., 2006). Dhh is primarily
expressed in the reproductive glands. The Shh signaling pathway
serves as a pivotal regulator of early embryonic development, albeit
its regulatory mechanisms remain incompletely elucidated (Wang
et al., 2016a).

The Hedgehog (Hh) signaling pathway encompasses secreted
glycoprotein ligands (Hh), two principal membrane protein
receptors (Ptch and Smo), fusion inhibitory protein (Su Fu),
transcription factor glioma-associated oncogene homolog (Gli),
and downstream target genes (Xia et al., 2016). Gli stands as the
central element of the Hh signaling pathway, comprising three GLI
family members: Gli1, Gli2, and Gli3. Moreover, Ptch, Smo, SuFu,
and Gli proteins are localized within primary cilia (Chen et al.,
2009). Ptch1 has the ability to impede the accumulation of
transmembrane protein Smo within primary cilia (Weiss et al.,
2019). At this juncture, the transcription factor Gli resides at the
cilium’s distal end, remaining inactive, thereby closing off the
Hedgehog signaling pathway. Studies have demonstrated that the
secreted glycoprotein ligand Hh interacts with the transmembrane
protein receptor Ptch1 on the ciliummembrane, prompting Ptch1 to
exit the cilium and translocate into the cytoplasm. Consequently,
Smo accumulates within the cilium, prompting the transcription
factor Gli to translocate from the cilium’s distal tip to the nucleus,
thereby initiating the activation of the Hedgehog pathway (Figure 3).

Research has demonstrated that disrupting the IFT25 gene in mice
leads to diminished IFT function or disruption of Hedgehog (Hh)
signaling pathway transduction ((Ge et al., 2021; Werner et al.,
2015)). Mutations in the DHH gene have been linked to male
gonadal dysgenesis and the development of spermatocytic tumors
(Werner et al., 2015; Sato et al., 2017). In vertebrates, primary cilia
serve a crucial function in preserving the integrity of Hedgehog signaling
pathways, and alterations in their structure and function can impede the
signal transduction process of the Hedgehog pathway (Higgins et al.,
2019). The Hedgehog signaling pathway represents a pivotal signaling
cascade that governs the development of the male reproductive system
(including testicular development, steroidogenesis, and spermatogenesis)
(Wang, 2009; O Hara et al., 2011).

Primary cilia act as central hubs for signal transduction,
orchestrating the transmission of molecular signals, although the
precise molecular regulatory mechanisms remain incompletely
elucidated. Mounting evidence indicates that dysregulated
activation of the Hedgehog pathway correlates with the onset of
diverse tumor types and fosters cancer cell proliferation, metastasis,
and the preservation of cancer stem cells. Furthermore,
investigations have revealed that Hedgehog signaling crosstalks
with other signaling pathways, including Wnt, mTOR, and
Notch, albeit the precise regulatory mechanisms remain elusive.

3.2 Wnt signaling pathway

The Wnt signaling pathway serves as a primary regulator of cell
polarity, cell development, and the preservation of cellular
homeostasis. Thus far, Wnt proteins and 10 Frizzled (FZD)
receptors have been identified in mammals (Lee, 2020).
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Depending on the participation of β-catenin, Wnt signaling
transduction can be categorized into two branches: the canonical
and non-canonical Wnt signaling pathways. Relevant research
findings have elucidated an intimate association between primary
cilia and the classical Wnt/β-catenin signaling pathway transduction
(Zhang et al., 2015). Glycogen synthase kinase-3β (GSK-3β) and
Adenomatous polyposis coli (APC), crucial components of theWnt/
β-catenin signaling pathway, are both localized on primary cilia
(Wilson and Lefebvre, 2004; Corbit et al., 2008). The canonical Wnt
signaling pathway is associated with cell proliferation and
differentiation (Moon et al., 2018). In the presence of β-catenin,
the Wnt signaling pathway engages Wnt protein with the Frizzled
(FZD) receptor and low-density lipoprotein receptor-related protein
5/6 (LRP5/6) (Ma et al., 2022). The scaffold protein Disheveled (Dvl)
is recruited to phosphorylated LRP6 on the plasma membrane. Early
studies have demonstrated that primary cilia constrain canonical
Wnt signaling transduction (Kawata et al., 2021). The presence of
primary cilia markedly restricts canonical Wnt signaling
transduction in mouse embryo fibroblasts (MEF) and embryonic
stem cells cultured in vitro (Corbit et al., 2008; Lian et al., 2022).

The Wnt/PCP pathway represents a non-canonical branch of
Wnt signaling intimately associated with the regulation of cell
polarity, alternatively referred to as the planar cell polarity (PCP)
signaling pathway (Zhang et al., 2019; Lee, 2020). Primary cilia are
regarded as switches between the canonical and non-canonical
branches of the Wnt signaling pathways. The PCP pathway
operates independently of β-catenin but relies on Disheveled
(Dvl), with ciliogenesis regulated by this pathway (Pruller et al.,
2022). Research has identified PCP pathway-associated proteins,
including Inversin (NPHP2), Diversin, Vangl-2, and Fat4, which are
localized on primary cilia or basal bodies (Morgan et al., 2002; Ross

et al., 2005; Saburi et al., 2008; Yasunaga et al., 2011). The association
between primary cilia and Wnt signaling transduction has been
postulated following the identification of Inversin (Corbit et al.,
2008). Inversin interacts with the central molecule of Wnt/PCP
signaling transduction, Disheveled (Dvl). Reduction in the
expression of the primary cilia protein Kif3a can result in
phosphorylation of Dvl (Corbit et al., 2008; Jiang et al., 2016).
Moreover, the deficiency of various primary cilia-associated genes
(BBS, IFT88, Kif3a, Ofd1) can result in aberrant activation of the
canonical Wnt signaling pathway (Chang and Serra, 2013; Liu et al.,
2014; Wang et al., 2016b; Yuan et al., 2017) (Figure 4).

Nonetheless, research has indicated that dysfunctional primary
cilia do not impact Wnt signaling transduction in cell cultures, fish,
or mice. Consequently, the involvement of primary cilia in Wnt
signaling transduction remains ambiguous and necessitates
additional investigation and clarification.

4 Primary cilia and reproductive
system-related disorders

Primary cilia, resembling hair-like protrusions on the cell
membrane, have emerged as focal points in recent investigations
concerning tumorigenesis. Recent studies have elucidated that
primary cilia serve as tumor suppressors in the majority of
tumors, yet are diminished in tumor cells under specific
pathological circumstances (Peixoto et al., 2020). Impairment of
primary cilia structure and function under specific pathological
conditions can precipitate a spectrum of ciliopathy-related
disorders (Wiegering et al., 2021), encompassing Recurrent
Implantation Failure (RIF), Epithelial Ovarian Cancer (EOC),

FIGURE 3
Visually portrays the Hedgehog (Hh) signaling pathway mediated by primary cilia. Ptch1 plays a pivotal role in the primary cilium Hh signaling
pathway, exerting its ability to suppress the accumulation of the transmembrane protein Smo within the primary cilium. At this juncture, the transcription
factor Gli resides at the cilium’s tip, rendered inactive, while the Hh signaling pathway remains dormant. The interaction between the Hh ligand and
Ptch1 triggers Ptch1 to exit the cilium and accumulates in non-ciliary membrane (vesicles or plasma membrane), resulting in the accumulation of
Smowithin the cilium and the translocation of the transcription factor Gli from the cilium’s tip to the cell nucleus, consequently activating theHh pathway.
Abbreviations: Hh, Hedgehog; SMO, Smoothened; PTCH1, Patched 1; Kif7, kinesin family member 7; SUFU, suppressor of fused; Gli3, Glioma-associated
oncogene 3.
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Prostate Cancer (PCa), Breast Cancer, Bardet-Biedl Syndrome, and
Joubert Syndrome.

4.1 Recurrent implantation failure (RIF)

Research has demonstrated the presence of primary cilia in
human endometrial stromal cells. Within stromal cells, Sonic
Hedgehog (SHH) stimulates the canonical Hedgehog (Hh)
signaling pathway via primary cilia and facilitates decidualization
through mechanisms implicating interleukin-11 (IL-11) and
primary cilia (Li et al., 2023). Mounting evidence suggests that
impaired decidualization is closely associated with Recurrent
Implantation Failure (RIF). Aberrant primary cilia in the
endometrium of patients with Recurrent Implantation Failure
(RIF) play a pivotal role in human decidualization and can be
modulated via the PTEN-PI3K-AKT-FOXO1 signaling pathway
(Li et al., 2022).

4.2 Epithelial ovarian cancer (EOC)

Epithelial Ovarian Cancer (EOC) represents a
heterogeneous neoplasm characterized by a high mortality
rate attributed to challenges in early detection, constituting
more than 90% of all ovarian malignancies (Zhang and
Zhang, 2020; Pang and Chang, 2021). Studies suggest an
association between Epithelial Ovarian Cancer (EOC) and

aberrations in primary cilia formation. In ovarian cancer, the
intraflagellar transport protein IFT20 is upregulated and
modulates associated signaling pathways such as Hedgehog
(Hh) and Platelet-Derived Growth Factor Receptor Alpha
(PDGFRα) signaling (Egeberg et al., 2012; Deng et al., 2014).
Hedgehog (Hh) signaling orchestrates cell proliferation and
differentiation in numerous tissues during embryonic and
fetal development. Numerous studies have recognized
elevated Aurora A kinase activity and/or protein levels as
prevalent characteristics of ovarian cancer (Egeberg et al., 2012).

4.3 Breast cancer

Breast cancer represents a prevalent endocrine disorder
distinguished by elevated incidence and mortality rates. Research
has revealed that genes associated with the formation and
localization of primary cilia are downregulated in breast cancer
cells, whereas oncogenes NEK2 and microtubule-depolymerizing
kinase KIF24 are upregulated. Inhibition of these proteins can
restore cilia formation and attenuate tumor cell proliferation
((Man et al., 2022)). Furthermore, transcription factors such as
PTCH, SMO, and Gli, integral to the Hedgehog (Hh) pathway,
modulate tumorigenesis. Nonetheless, breast cancer cells fail to
activate downstream target genes of the Hedgehog (Hh) pathway
via this pathway. In murine models of breast cancer, suppression of
primary cilia exacerbates cancer cell invasion (Yang et al., 2020).
Inhibition of primary cilia formation markedly upregulates the

FIGURE 4
Primary cilia-mediated Wnt signaling pathway. Extracellular Wnt signals engage with the cell surface co-receptors FZD and LRP5/6. Subsequently,
the phosphorylation of LRP5/6 and the subsequent signal transduction resulting fromDVL and AXIN recruitment to theWnt-binding receptor collectively
contribute to the inhibition of GSK3β activity. This inhibitory process prevents the phosphorylation and degradation of β-catenin, resulting in its
cytoplasmic accumulation and subsequent translocation to the cell nucleus. Within the nucleus, β-catenin interacts with TCF/LEF transcription
factors, thereby activating Wnt target genes. Conversely, the hallmark of the Wnt/PCP signaling pathway lies in the binding of Wnt ligands to Frizzled
receptors, which subsequently activate Disheveled (Dvl) and downstream effectors (such as RhoA and Rac). Abbreviations: FZD, Frizzled; APC,
adenomatous polyposis coli; DVL, Dishevelled; AXIN, axis inhibition protein; GSK3β, glycogen synthase kinase three beta; CK1α, casein kinase one alpha;
LRP5/6, low-density lipoprotein receptor–related protein 5/6; LEF, lymphoid enhancer-binding factor; TCF, T cell factor; RhoA, Ras homolog family
member A; ROCK, Rho-associated protein kinase; JNK1, c-jun N-terminal kinase 1; AP-1, Activator protein-1; Rac, Rac Family Small GTPase.
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expression of downstream target genes of the Hedgehog (Hh)
pathway in human breast cancer (Hassounah et al., 2017).

4.4 Prostate cancer (PCa)

Prostate cancer (PCa) stands as a prominent contributor to male
cancer-related mortality on a global scale. Research has indicated the
presence of primary cilia in stromal cells of the prostate, with a
notable decrease observed in primary cilia abundance in prostate
cancer tissue specimens relative to normal prostate tissue ((Mul
et al., 2022)). Utilizing Wang Lin’s (Wang, 2021) gene knockout
technique, it was demonstrated that depletion of TACC3 in prostate
cancer cells elicits primary cilia formation, thereby partially
reinstating ciliary abundance. TACC3 impedes primary cilia
formation in prostate cancer (Wang, 2021). Primary cilia
function to inhibit the Wnt signaling pathway in epithelial cells,
and aberrations in ciliary structure may trigger activation of theWnt
signaling pathway in specific instances of prostate cancer
(Hassounah et al., 2013). These findings imply that primary cilia
dysfunction and heightened Wnt signaling are evident in certain
types of human prostate cancer.

Despite their diminutive size, cilia intricately regulate a myriad
of factors including Intraflagellar Transport (IFT) and signaling
pathways, facilitating substantial information exchange within the
cytoplasm. Hence, unraveling the molecular intricacies and
regulatory dynamics underlying primary cilia formation and their
repercussions on reproductive function holds the promise of not
only deepening our comprehension of reproductive physiology but
also opening novel vistas for mitigating andmanaging ciliopathies in
clinical settings, thereby fostering greater protection of human
health and wellbeing.

5 The role of primary cilia in
reproductive physiology

A burgeoning corpus of research underscores the diverse
functionalities of cilia across different segments of the
reproductive tract, with profound impacts on the transport and
fertilization processes of reproductive cells therein. Numerous
reproductive tract disorders have been linked to aberrations in
primary cilia, encompassing conditions such as ovarian cancer,
breast cancer, prostate cancer, and cervical cancer (Legare et al.,
2017). Concurrently, an intimate interconnection exists between
primary cilia and reproductive physiology, with the Intraflagellar
Transport (IFT) protein family, serving as pivotal constituents of
primary cilia, being imperative for the preservation of
reproductive wellbeing.

5.1 The male reproductive system

Within the male reproductive system, the epididymis, mirroring
the structural composition of the fallopian tube with segments
including the initial segment, head, body, and tail, possesses the
capacity for sperm transportation (Girardet et al., 2019; Huang et al.,
2022). Research findings have underscored the aggregation of

primary cilia within the testes, epididymis, and prostate of mice,
where they exert a pivotal role in sperm transport (Zhang et al., 2009;
Ou et al., 2014; Bernet et al., 2018). Reports have indicated a
potential association between primary cilia and male infertility
(Ni et al., 2020). Database inquiries disclose predominant
expression of the IFT20 gene in the testes, with
IFT20 orchestrating the length regulation of primary cilia
through its involvement in the Golgi apparatus. To substantiate
the significance of IFT20 in preserving the normative functionality
of cilia, Zhang Zhengang (Zhang et al., 2016) conducted a gene
knockout experiment targeting the IFT20 gene in the reproductive
cells of male mice, culminating in male infertility. To probe into the
etiology of infertility, they conducted a comparative analysis of
sperm morphology, quantity, and vitality between wild-type mice
and IFT20 mutant mice. Their findings revealed a stark contrast
wherein mutant mice exhibited significantly diminished sperm
count, aberrant morphology, and compromised vitality in
comparison to their wild-type counterparts, alongside a notable
reduction in sperm count within the epididymis. Recent
investigations have elucidated the role of COP9 signalosome
subunit 5 (COPS5) as a prominent interacting partner of IFT20,
jointly governing sperm development alongside IFT20 (122).

Moreover, deficiency of IFT25 in murine male germ cells
precipitates a reduction in sperm count and impairs sperm
morphology, characterized by rounded heads and truncated,
curved tails (Huang et al., 2020). Primary cilia possess the
capability to perceive and modulate the surrounding sperm
environment and sperm functionality across various
developmental stages of the male reproductive system via
specialized mechanisms (diversified extension) (Huang et al.,
2022). Literature documentation has elucidated that primary cilia
located in immature testicular cells facilitate the formation of
testicular tubules via the Hedgehog (Hh) signaling pathway
(Dores et al., 2017; Sakib et al., 2019). Primary cilia within the
epididymis are linked with undifferentiated columnar cells during
the prepubertal phase and basal cells within the adult murine
epididymal epithelium (Bernet et al., 2018). Basal cells within the
epididymis contribute to epithelial regeneration via signaling
mediated by primary cilia. Subsequent investigations have
revealed that primary cilia located in mammary basal cells
modulate the onset and progression of breast cancer through
mediation of the Hedgehog (Hh) signaling pathway (Hassounah
et al., 2017). Furthermore, absence of primary cilia was noted in
principal cells within the epididymis, however, using transmission
electron microscopy (TEM) and scanning electron microscopy
(SEM), primary cilia were observed to protrude and elongate on
the surface of castrated epididymal principal cells (Murakami et al.,
1976). Hence, further exploration is warranted to elucidate the
involvement of primary cilia in the development and
maintenance of the epididymis.

5.2 The female reproductive system

It is widely acknowledged that decidualization of the
endometrium holds pivotal significance in the onset of early
pregnancy in females. Li Bo (Li et al., 2022) provided evidence
for the presence of primary cilia on human endometrial stromal cells
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and their involvement in regulating decidualization via the PTEN-
PI3K-AKT-FOXO1 signaling pathway. Recent investigations have
uncovered the presence of primary cilia on trophoblast cells and
early human placental tissues, which hold significant implications
for human embryo implantation and placental development (Wang
et al., 2017; Wang et al., 2019). Throughout embryo implantation,
trophoblast cells originating from the blastocyst adhere to uterine
wall stromal cells, subsequently undergoing differentiation to
establish the placenta (Amack, 2022). Prior investigations have
revealed that disruption of IFT88 results in ciliary loss. In order
to assess the role of primary cilia in trophoblast cells, Wang (Wang
et al., 2017) employed siRNA to suppress the expression of the IFT
protein IFT88, leading to a reduction in both the number and length
of cilia in cultured cells. Moreover, dysfunction of primary cilia in
human placental mesenchymal stromal cells may precipitate
threatened miscarriage (Romberg et al., 2022). McDermott
(Mcdermott et al., 2010) further demonstrated the direct impact
of primary cilia on the development of mammary gland branches.
To validate the putative role of primary cilia in ovarian development,
Johnson (Johnson et al., 2008) employed gene knockout technology
to ablate the IFT88 gene in ovarian cells, resulting in ovarian
dysfunction; findings suggested a potential involvement of
IFT88 in modulating granulosa cell estrogen synthesis or
secretion, consequently influencing ovarian function.
Furthermore, additional studies have suggested a potential role
for IFT88 in mammary stromal development, potentially
impacting mammary gland development. Further investigation
into the conditional loss of IFT88 in specific mammary gland cell
types will aid in elucidating the precise mechanisms underlying the
impact of IFT88 and cilia on ovarian function and mammary gland
development.

Furthermore, Johnson (Johnson et al., 2008) employed a cell line
expressing prx1-Cre (commonly utilized for gene deletion from
early limb mesenchyme and cranial mesoderm) to target the
disruption of IFT88. They observed Cre activity in cuboidal
epithelial cells of immature ovarian follicles in newborn mice,
which subsequently differentiated into granulosa cells during
ovarian development. However, no cilia were detected, suggesting
probable disruption of IFT88 in these newborn mice prior to
puberty. Subsequent investigations revealed that prx1-Cre mutant
mice displayed disruptions in the estrous cycle, abnormalities in
ovulation, and delayed mammary gland development. Given the
infertility observed in the mutant mice, histological techniques were
employed to assess ovulation. Comparison of ovarian tissue sections
from wild-type and mutant mice revealed the absence of corpora
lutea in the ovaries of mutants, while numerous corpora lutea were
observed in wild-type mice. These findings further substantiated the
notion of impaired ovarian function in IFT88 mutant mice. In an
attempt to stimulate corpus luteum formation, researchers induced
superovulation in IFT88 mutant mice via exogenous hormone
administration. However, mature oocytes were not observed,
suggesting that oocyte maturation is predominantly reliant on the
presence of primary cilia. Moreover, IFT88 mutant mice manifested
delayed mammary gland development attributable to the absence of
terminal bud formation, a process regulated by estrogen (Tasouri
and Tucker, 2011). Future research endeavors may concentrate on
investigating the impact of IFT88 deficiency on ovarian function and
hormone regulatory mechanisms in murine models. Johnson

(Johnson et al., 2008) further sought to investigate whether
exogenous estradiol injection could rescue terminal bud
development in IFT88 mutant mice. The findings demonstrated
that estradiol injection facilitated the restoration of terminal bud
development in mutant mouse mammary glands, suggesting that
ovarian estrogen production is modulated by granulosa cell primary
cilia; however, the precise regulatory mechanism remains elusive.

In conclusion, investigations into primary cilia in reproductive
processes offer valuable insights for the diagnosis and management
of reproductive disorders. The presence of primary cilia is
paramount in both female and male reproductive processes.
Primary cilia serve pivotal functions in sperm and epididymal
development, oocyte viability, ovarian hormone secretion, and
other physiological processes, thus contributing to the etiology
and progression of reproductive disorders. Nonetheless,
investigations into primary cilia predominantly concentrate on
small animal models, particularly mice, and are primarily
conducted at the cellular level, with limited research in large
livestock species. A thorough and comprehensive exploration of
the mechanisms underlying primary cilia function is anticipated to
offer novel insights for enhancing animal reproductive efficiency
and ameliorating human reproductive disorders.

6 Conclusion

Primary cilia, serving as pivotal organelles for intercellular signal
transduction, exert indispensable roles in preserving normal
physiological functions and modulating the onset and
progression of reproductive system disorders. Primary cilia are
intricately linked to a myriad of signaling pathways governing
intercellular signal transduction, exerting significant influence on
embryonic development, cellular polarization, and proliferation.
Despite some advancements in recent research endeavors,
investigations into primary cilia within the reproductive system
remain relatively sparse. Consequently, numerous inquiries remain
to be elucidated in the exploration of primary cilia’s role in
reproductive physiology and pathogenesis. For instance, certain
investigations have revealed that specific concentrations of
estrogen possess the capability to elongate primary cilia. This
observation prompts inquiries into the potential significant
relationship between primary cilia and diverse sex hormones.
Can their effects be mediated through the hypothalamic-
pituitary-gonadal axis (HPG)? Furthermore, the presence of
primary cilia in granulosa cells of murine ovaries has been
validated. Is there a potential interaction between these entities?
Do alterations occur in the quantity, length, and spatial arrangement
of primary cilia in the uterus and ovaries under pathological
conditions? Do the diverse signaling pathways modulated by
primary cilia intricately influence the maintenance of normal
physiological functions and the pathogenesis of reproductive
system disorders? Which signaling cascade serves as the
predominant regulatory mechanism? What are the specific
mechanisms through which it mediates its effects? Could primary
cilia potentially serve as novel targets for diagnosing or treating
reproductive system tumors in the future? In conclusion, thorough
investigations into the formation of primary cilia and their assorted
signaling pathways in the reproductive system hold profound
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significance in elucidating the impact of primary cilia and their
signaling cascades on reproductive physiology and in devising
strategies for the prevention and management of associated
reproductive disorders.

Amidst the burgeoning exploration of theHedgehog (Hh) andWnt
signaling pathways, the intricate architecture and functionality of
primary cilia, along with their pivotal roles in mammalian
reproductive development, have emerged as focal points of inquiry
on a global scale. While certain investigations have indicated the pivotal
involvement of the Hh and non-canonical Wnt signaling pathways in
governing the development of the female reproductive system, lingering
debates persist regarding their interplay, alongside the elusive
elucidation of the functions and mechanisms underpinning each
stage of female reproductive development. Furthermore, the intricate
interconnections between signals governing cell proliferation, polarity,
reproductive development, and primary cilia, mediated by pathways
such as Notch and TGF-β, remain incompletely delineated, while the
intricate interplay between the Hh signaling pathway and other
signaling cascades continues to evade full comprehension. Hence,
there arises a pressing need for further inquiry to unravel the
intricate mechanisms governing primary cilia and associated
signaling pathways in reproductive development, thereby paving the
way for a more profound comprehension of the underlying
mechanisms implicated in reproductive system disorders stemming
from primary cilia aberrations.
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