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Circadian rhythm disruption is closely related to increased incidence of prostate
cancer. Incorporating circadian rhythms into the study of prostate cancer
pathogenesis can provide a more comprehensive understanding of the causes
of cancer and offer new options for precise treatment. Therefore, this article
comprehensively summarizes the epidemiology of prostate cancer, expounds
the contradictory relationship between circadian rhythm disorders and prostate
cancer risk, and elucidates the relationship between circadian rhythm regulators
and the incidence of prostate cancer. Importantly, this article also focuses on the
correlation between circadian rhythms and androgen receptor signaling
pathways, as well as the applicability of time therapy in prostate cancer. This
may prove significant in enhancing the clinical treatment of prostate cancer.
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1 Introduction

Prostate cancer is the second most common cancer worldwide, and it is expected that two
millionmenwill suffer from prostate cancer by 2040 (Sandhu et al., 2021; Siegel et al., 2022). The
pathogenesis of prostate cancer is currently unclear, but it is closely related to advancing age and
hormone secretion. The standard treatment for clinical prostate cancer is androgen deprivation
therapy (ADT), targeting androgens and androgen receptors, with good initial efficacy and a 5-
year survival rate of 100%. However, drug resistance gradually emerges, and the survival rate of
recurrent ormetastatic prostate cancer hovers around 30% (Ku et al., 2019; Jamroze et al., 2021).
Currently, no better treatment options are available. Therefore, simply targeting androgens and
androgen receptor signaling pathways cannot block tumor development, and it is necessary to
explore other therapeutic directions to enhance clinical treatment efficacy.

Research has shown that the occurrence of prostate cancer is regulated by multiple factors,
including immutable factors (such as race and genetics) and variable factors (such as hormones,
age, and occupational environment) (Gandaglia et al., 2021; Bergengren et al., 2023). Therefore,
identifying modifiable factors that can be used as cancer prevention targets remains a
considerable challenge (Barul et al., 2019). Several decades ago, researchers used light-at-
night simulations to explain, to a certain extent, the high risk of breast and prostate cancer in
industrialized societies (Stevens, 1987; Stevens et al., 1992). However, in 2007, the International
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Agency for Research on Cancer (IARC) classified “work involving day
and night shifts” as a human carcinogenic factor based on adequate
animal experiments and limited population sample analysis (Straif et al.,
2007). Increasing research confirms that circadian rhythm disorders are
closely linked to the development of tumors. Androgens are necessary
for early prostate cancer growth, and their secretion is regulated by the
circadian rhythm, with the highest levels occurring in the morning and
the lowest in the evening; this rhythmicity disappears with age (Cooke
et al., 1993). This indicates that circadian rhythm regulation may be an
effective way to enhance the therapeutic effect of prostate cancer.

This article summarizes research in recent years that has
emphasized the importance of the relationship between the
biological clock and prostate cancer. We searched for keywords
such as “circadian cycle”, “prostate tumor”, “cancer”, “androgen”,
“night work”, “rotation”, “circadian rhythm genes”, “clock genes”,
“circadian rhythm”, and “clock gene polymorphism” in MEDLINE,
Scopus, and PubMed databases, and summarized articles
highlighting the relationship between prostate and circadian
rhythm. We hope to provide a theoretical basis for the treatment
of prostate cancer from an alternative perspective.

2 Circadian rhythms

The circadian rhythm is a natural biological clock system
composed of neurons and genetic networks that control 24-h
cyclical changes in the body to adapt to changes in the

environment (Dollish et al., 2024). Among external
environmental factors, light is the main signal of the circadian
rhythm, and the Suprachiasmatic Nucleus (SCN) in the brain
receives light signals from the optic nerve and adjusts the
biological clock to synchronize with light by releasing
neurotransmitters and conductive cell signals. The circadian
rhythm regulates a variety of physiological functions including
sleep-wake cycles, body temperature, hormone secretion,
cognitive function, and the immune system. It also maximizes
the adaptability of organisms to their external environment in
order to maintain internal stability (Villanueva-Carmona et al.,
2023; Zhang et al., 2023; Kanan et al., 2024).

The circadian rhythm is a complex biological process involving
multidimensional biological mechanisms. In mammalian cells, the
circadian system is composed of core clock genes and proteins that
are regulated by a transcription-translation-feedback loop (TTFL)
network (Reppert and Weaver, 2002) (shown in Figure 1). Basic
helix-loop-helix ARNT-like protein 1 or aryl hydrocarbon receptor
nuclear translocator-like protein 1 (Bmal1/ARNTL), and circadian
locomotor output cycles kaput (CLOCK) form heterodimers that
bind to the target gene promoter E-BOX (CACGTG). This initiates
the transcription of target genes of specific circadian regulators (per1
and per2) and cryptochromes (CRY1 and CRY2) (Tsuchiya et al.,
2020). Per and Cry proteins accumulate and form heterodimers,
which are recruited through casein kinase 1d (CKd) to isolate
BMAL1: CLOCK from E-BOX and inhibit their transcriptional
activity (Battaglin et al., 2021a; Cao et al., 2021). The second

FIGURE 1
Schematic diagram of the mammalian circadian clock transcriptional feedback loop. Bmal1 and CLOCK form a heterodimer that binds to the E-box
in the downstream gene promoter region and activates Per, CRY, RORα, Rev-erbα, and CCGs. CRY and Per constitute the inhibition arm of TTPL; they
dimerize and enter the nucleus to inhibit the activation of Bmal1-CLOCK. This results in oscillating patterns of gene expression. A secondary loop
composed of REV-ERBα and RORα competitively binds to the RRE binding site in the BMAL1 promoter and regulates the transcription level of Bmal1.
Brain and muscle aryl hydrocarbon receptor nuclear transporter-like protein 1 (Bmal1); Circadian locomotor output cycles kaput (CLOCK);
Cryptochrome (Cry); Period (Per); reverse strand of ERB protein alpha (Rev-erbα); Orphan retinoic acid receptor-related α; CCG(clock-controlled gene).
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feedback circuit of the regulatory network involves protein
adjustment of the orphan receptors RORα/β/γ and REV-ERBα/β
(as shown in Figure 1). RORs and REV-ERBs competitively bind to
ROR response elements (RORE) in the Bmal1 promoter region.
RORs activate Bmal1 transcription, while REV-ERBs inhibit Bmal1
transcription with nuclear receptor co-suppressor NcoR. BMAL1:
CLOCK also controls ROR and REV-ERB transcripts through
binding the E-BOX of RORs and REV-ERBs promoter regions
(Hernandez-Rosas et al., 2020; Battaglin et al., 2021; Ruan et al.,
2021). In addition to the above core clock genes, there are also a
number of clock-controlled gene (CCGs) that also contain e-boxes,
which are also directly regulated by the BMAL1:CLOCK dimer and
are involved in the daily rhythm of clock output and various
physiological processes.

However, due to temporal variations, rotation work, abnormal
dietary patterns, and lifestyle changes, circadian rhythms may be
disrupted or disturbed, causing circadian rhythm disruption (CRD).
This is closely associated with a variety of diseases including
cardiovascular disease, autoimmune disease, obesity, and cancer
(Fishbein et al., 2021). In general, the clock rhythm is a timing
system that helps organisms adapt to changes in the environment
and maintain normal rhythms and functions. Its mechanisms of
action involve gene regulation, optical signal transmission, hormone
secretion and a variety of physiological effects.

3 Epidemiological evidence of rhythm
disorders and prostate cancer

In order to further clarify the association between circadian
rhythm disturbance and prostate cancer risk, a number of
epidemiological studies have explored the association between
night work/sleep disorders and prostate cancer. However, the

results are somewhat contradictory (as shown in Table 1). Some
studies have shown that circadian rhythm disturbance caused by
shift work is associated with an increased risk of prostate cancer.
Full-time shifts increased the risk of prostate cancer by 34 percent
(Conlon et al., 2007). Recall studies of pilots in Nordic countries
show that male pilots older than 60 years have a correlated risk of
prostate cancer with flight time (Pukkala et al., 2003). A
retrospective cohort study and prospective studies from Japan
showed that age adjustment significantly increases the risk of
illness for shift workers when compared to daily workers (RR
adjusted for age = 3.0, 95% CI = 1.2, 7.3); an effect un-impacted
by factors such as weight, alcohol consumption, or smoking (Kubo
et al., 2006; Kubo et al., 2011). Moreover, a population case study in
Canada, conducted between 1979 and 1985 that analyzed 3,137 male
cancer patients and 512 counterparts, revealed that nighttime staff
members had a threefold increased prostate cancer risk (RR = 2.77,
95% CI = 1.96, 3.92) (Parent et al., 2012). These studies all suggest
that circadian rhythm disturbance increases the risk of prostate
cancer. On the contrary, some studies suggest that circadian rhythm
disturbance may not be associated with increased cancer risk. A
Canadian population case survey from 2005 to 2012, which included
1904 prostate cancer patients and 1965 healthy controls, showed
that there was no correlation between the risk of disease and working
hours or working years. A workforce analysis of males (N = 1319,
SIR 1.04, 95% CI 0.99–1.10) and females (N = 70 patients, SIR 0.94,
95% CI 0.74–1.18) revealed no associations between shift work and
the risk of developing breast or prostate cancer (Schwartzbaum et al.,
2007). Similarly, population analysis in the U.S. also showed that
rhythm disorders caused by work patterns and sleep time are not
associated with an increased risk of prostate cancer (Gapstur et al.,
2014). However, population analysis in Spain once again revealed
that workers who work night shifts for more than a year have a
significantly increased risk of prostate cancer, and the risk ratio is

TABLE 1 Epidemiologic evidence of rhythm disturbance and prostate cancer.

Countries and
regions

OR/
SIR

95%
CI

Age No. of
control

No. of
cases

Results

Northeastern Ontario Conlon
et al. (2007)

1.34 1.0, 1.8 45–84 1632 760 Starting full-time shift work 37–44 years before diagnosis is
associated with a 34% increase in risk

Northern Europe Pukkala
et al. (2003)

1.56 0.67,3.07 >60 456 366 The risk of prostate cancer is positively correlated with flight time

Japan Kubo et al. (2011) 1.79 0.57,5.68 mean
age 55.5

4168 827 Workers involved in shift work had a significantly increased risk
of illness

Japan Kubo et al. (2006) 3.0 1.2,7.3 45–79 89179 14523 Shift workers had a significantly increased age-adjusted relative
risk compared to day workers

Canada Parent et al. (2012) 2.77 1.96,3.92 mean age:
59–63

512 3137 Night workers have a three-fold increased risk of prostate cancer

Swedish Schwartzbaum et al.
(2007)

1.04 0.99,1.00 All ages 2102126 1319 Shift work did not increase the risk of cancer

Spain Papantoniou et al.
(2015a)

1.14 0.94,1.37 27–85 1388 1095 a significant association between night shift work and prostate
cancer, especially with tumors with a poorer prognosis

America Gapstur et al. (2014) 1.08 0.95,1.22 Mean
age 52

274,702 18,126 Work schedule and insomnia frequency were not associated with
risk of fatal prostate cancer

OR, odds ratio.

SIR, standardized incidence ratio.

95% CI, 95% confidence interval.
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positively correlated with exposure time (Papantoniou et al., 2015a).
A recent meta-analysis of three case-control and five cohort studies
showed a significantly increased risk of prostate cancer in night-time
workers (RR: 1.24, 95% CI: 1.05-1.46; p = 0.011) (DeBono et al.,
2023). Although the available results are inconsistent, due to
differences in data sources and data processing methods, it can
still be noted that there is a certain correlation between altered
circadian rhythm and prostate cancer risk.

4 Circadian rhythm gene and prostate
cancer risk

Epidemiological studies have confirmed a certain correlation
between circadian rhythm disturbance and the risk of prostate
cancer, providing a new option for cancer prevention, diagnosis
and treatment (Sulli et al., 2019). Researchers have explored the
relationship between clock gene polymorphisms and cancer, and
identified an association between rhythm genes and tumor
occurrence and development (Grundy et al., 2013; Zienolddiny
et al., 2013; Benna et al., 2017; Mocellin et al., 2018). However,
there are only seven relevant studies on prostate cancer at present,
and although few, they can still inform the correlation between
rhythm genes and prostate cancer (as show in Table 2).

As the largest circadian rhythm gene,NPAS2 is paralogous to the
CLOCK protein, and can replace the function of CLOCK, forming
heterodimers with BMAL1 to regulate circadian rhythm (Landgraf
et al., 2016). In order to further explore the relationship between
NPAS2 and prostate cancer, a study by Chu et al. compared the

association between 240 circadian rhythm gene single nucleotide
polymorphisms (SNPs) and prostate cancer risk in 450 patients
treated with finasteride (an androgen biological activation inhibitor)
and 422 controls. In the finasteride group, the NPAS2 variant
(rs746924) was associated with an increased associated risk of
prostate cancer (Chu et al., 2018). Two other studies were
evaluated at gene level and pathway analysis confirmed the
correlation between NPAS2 and prostate cancer (Gu et al., 2017;
Mocellin et al., 2018). In addition, experimental research also
confirmed that NPAS2 expression is increased in tissue from
prostate cancer patients when compared to healthy prostate
tissue. NPAS2 increases the expression of hypoxia inducible
factor-1A (HIF-1a), leading to enhanced glycolytic metabolism in
prostate cancer thereby promoting tumor growth (Ma et al., 2023).
This provides a new research direction for exploring the mechanism
of metabolic reprogramming in prostate cancer cells.

A 2008 population-based study analyzed five SNPs of five
Circadian rhythm genes, namely, CRY2 rs1401417:G>C, CSNK1E
rs1005473:C>A, NPAS2 rs2305160:G < A, PER1 rs2585405:G>C
and PER3 54-bp repeat length variants. NPAS2 variant A genes were
associated with a lower risk of prostate cancer (ratio = 0.5, 95% CI,
0.3.0-1.0) in men with mild insulin resistance when compared to
men with the GG genotype. Additionally, these genes significantly
increased the risk of male prostate cancer with CRY2-C variation-
level genes by 1.7 times (95% CI, 1.1-2.7) (Chu et al., 2008a).
Another SNP study in men from the United States of the
Caucasus (including 1,308 cases and 1,266 counterparts) included
nine rhythmic genes. For example, rs885747 and rs2289591 in PER1;
rs7602358 in PER2; rs1012477 in PER3; rs1534891 in CSNK1E;

TABLE 2 Gene single nucleotide polymorphisms (SNP) And Prostate Cancer Risk.

Gene SNP-ID Relationship with PCa risk References

CRY2
CSNK1E
NPAS2
PER1
PER3

rs1401417
rs1005473
rs2305160
rs2585405
54-bp repeated length
variants

NPAS2 variant A genes with a lower risk of prostate cancer;
CRY2 SNP increases the risk of disease by 1.7 times

Chu et al. (2008a)

NPAS2 rs746924 Suggestive association with the risk for prostate cancer Gu et al. (2017), Chu et al. (2018),
Mocellin et al. (2018)

ARNTL, RORA, RORB, NR1D1,
PER3, and CLOCK

_ Are associated with prostate cancer Mocellin et al. (2018)

PER1
PER2
PER3

CSNK1E
CRY1
CRY2
ARNTL
CLOCK
NPAS2

rs885747 and rs2289591;
rs7602358;
rs1012477;
rs1534891;
rs12315175;
rs2292912;
rs7950226;
rs11133373;
rs1369481, rs895521, and
rs17024926

Significantly correlated with prostate cancer susceptibility Zhu et al. (2009)

PER1
PER3
CLOCK

rs885747 and rs2289591;
rs1012477;
rs11133373

Were more prone to tumor invasion Zhu et al. (2009)

CRY1 rs7297614 and rs1921126 Is correlated with prostate cancer risk Markt et al. (2015)

PER1 and NPAS2 _ are related to all prostate cancers Wendeu-Foyet et al. (2019)

RORA _ is significant for invasive tumors Wendeu-Foyet et al. (2019)
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rs12315175 in CRY1; rs2292912 in CRY2; rs7950226 in ARNTL;
rs11133373 in CLOCK; and rs1369481, rs895521, and rs17024926 in
NPAS2 were significantly correlated with prostate cancer
susceptibility, while four SNPs, rs885747 and rs2289591 in PER1;
and rs1012477 in PER3 and rs11133373 in CLOCK, were more
prone to tumor invasion (Zhu et al., 2009). Although the above
statistical analyses yielded different results, they all highlight the
correlation between PER3 and prostate cancer, making it
particularly important to explore its mechanism of action.
Research has shown that PER3 is downregulated in prostate
cancer stem cells (PCSS), which in turn enhances their
tumorigenicity and ability to form spheroids and colonies in the
host body. PER3 is also associated with paclitaxel resistance in
prostate cancer (Li et al., 2021). Clinical case analysis showed that
PER3 expression in the paclitaxel resistant group is lower than that
in the non-resistant group. Moreover, overexpression of PER3 in
resistant cells can lead to a decrease in Notch1 expression, cell cycle
arrest, and weakened resistance of paclitaxel resistant cells (Cai
et al., 2018).

In addition, a study assessed the association of 86 SNPs of
circadian rhythm genes with the risk of fatal prostate cancer.
Findings showed that all core circadian rhythm gene pathways,
except CRY1 (rs7297614 and rs1921126), were not correlated with
prostate cancer risk (Markt et al., 2015). However, in the path
analysis report by Mocellin et al., genes such as ARNTL, RORA,
RORB, NR1D1, PER3, and CLOCK were associated with prostate
cancer (Mocellin et al., 2018). Considering the limited number of
samples and the number of SNPs, the 2019 study included
1515 participants (approximately 89%) from the EPICAP study
population, expanding the list of clock rhythm genes (31 of whom)
and including large numbers of SNPs (872). This study achieved
high coverage of rhythmic genetic variations, maximized the error
classification of genotypes, and combined analysis of genetic
polymorphisms and signaling pathways (Wendeu-Foyet et al.,
2019). Findings confirmed that core clock rhythm pathways were
associated with prostate cancer. PER1 andNPAS2 levels were related
to all prostate cancers, while only RORA was significant for invasive
tumors (Wendeu-Foyet et al., 2019). The above studies provide
evidence for the potential link between genetic variation in clock
rhythm genes and the risk of prostate cancer, but further exploration
of the mechanisms involved in the relationship between these genes
and prostate cancer is still needed.

5 Circadian rhythm and androgen
receptor (AR) signaling pathways

5.1 The role of AR signaling pathways in
prostate cancer

The androgen receptor (AR) is a member of the steroid family of
nuclear transcription factors which comprises adhesive-dependent
transcription factors. The open reading box of the AR gene contains
eight exons that constitute four structural domains: the N-terminal
domain encoding trans-activation function, the DNA binding
domain (DBD), the hinge domain, and the ligand-binding
domain (LBD) (Tan et al., 2015). Under normal conditions, the
AR is present in the cytoplasm in an inactive state. It combines with

heat shock proteins to form a complex. DHT stimulation causes the
complex to dissociate, and the AR enters the nucleus, interacts with
the androgen response element (ARE) in the promoter region of the
target gene, and activates downstream gene transcription (Lallous
et al., 2013; Tan et al., 2015) (as shown in Figure 2).

The role of the androgen receptor signaling pathway in prostate
cancer has been widely proven, and the main mechanisms leading to
tumor progression include mutations in the AR gene, synthesis of
intra-tumoral androgens and abnormal AR proliferation and AR
splicing. Approximately 50% of AR mutations are present in the
LBD region, and studies have shown that AR mutation rates reach
20% in androgen-dependent tumors. For example, up to 50% of AR
mutations in CRPC strains, such as residue 741 (W741C), can
convert the AR antagonist bicalutamide to an activator that
activates the AR and promotes tumor growth (Osguthorpe and
Hagler, 2011). Furthermore, the F876L and H874Y/T877A
mutations are resistant to enzalutamide and abiraterone,
respectively (Yoshida et al., 2005; Azad et al., 2015). Although
ADT therapy reduces testosterone levels in patients, non-
testicular androgen synthesis occurs in CRPC patients. Non-
steroidal generating enzymes such as 17βHSD3, AKR1C3 and
SRD5A1 are involved in the non-classical synthesis of androgens,
promoting tumoral androgen synthesis (Mohler et al., 2004; Chang
et al., 2011). Androgen receptor splicing variants, such as ARV1,
AR-V7/AR3 and AR-12/ARv567es, lead to truncated forms of the AR
that lack ligand binding regions. Further, they do not require ligand
activation and have sustained transcriptional activity (Sun et al.,
2010; Chan et al., 2012). The most widely studied variant, AR-V7,
has its own unique target gene and is also able to interact with the
full-length AR (Antonarakis et al., 2014; Luo, 2016), promoting the
activity of AR-FL and increasing patient resistance to
hormone therapy.

5.2 Circadian rhythm regulator, androgen
and the AR pathway

Several studies have shown that there are associations between
prostate cancer incidence and androgen signaling and between
prostate cancer incidence and circadian rhythm. The
combination of rhythm regulation and AR signal targeting
therapy may be an effective means of treating prostate cancer
in future.

Androgens act mainly by activating androgen receptors to
maintain secondary male characteristics, with 90% of androgens
in the body being synthesized in the testicles and 10% by the adrenal
cortex (Lindzey et al., 1994). Studies have shown that mutations in
clock genes are significantly correlated with changes in serum sex
hormone levels. In addition to their direct tumorigenic effect,
androgens can promote the proliferation of prostate cancer cells
(Chu et al., 2008b; Wittert, 2014). The secretion of androgens is
regulated by the hypothalamus and has a rhythm, reaching a peak at
10 a.m. in the morning; an early morning peak that weakens with
aging (Bremner et al., 1983; Cooke et al., 1993). Animal experiments
have also shown that expression of the clock genes (Bmal1, Per, and
Rev-erb) in older mice (18 months and 24 months) is also decreased
compared to that in young mice (3 months) (Baburski et al., 2016).
Other studies have confirmed that Bmal1, but not Per2 or Rev-erb,
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are downregulated by testosterone deficiency (Kawamura et al.,
2014). This suggests that a decrease in clock genes may lead to
circadian rhythm disorders in older males. According to our
population analysis, peak androgenic hormone levels of night
workers were also delayed compared to those of day workers
(Papantoniou et al., 2015b). This may account for the potentially
increased risk of prostate cancer in night workers. Approximately
1.5%–4.3% of genes in the human body are directly or indirectly
related to androgen regulation. Rhythmic fluctuations in levels of
AR-related mRNAs in prostate tissue (Cao et al., 2009; Wittert,
2014), suggest that ARs may associate the peripheral biological clock
with hormone regulation.

Melatonin (N-acetyl-5-methoxytryptamine) is an endogenous
indolamine that regulates the sleep-wake cycle and is an important
clock rhythm hormone regulator. Its inhibitory effect depends on
the GPCRs, MT1/Mel1A and MT2/Mel1B (Moretti et al., 2000; Xi
et al., 2001). Multiple studies have demonstrated that melatonin
can mediate the nuclear rejection of the AR in prostate cancer cells
without inhibiting the binding capacity of androgens to the AR
(Rimler et al., 2001; Rimler et al., 2002) (as shown in Figure 2).
Follow-up studies further explored the mechanisms by which
melatonin induces AR nuclear rejection, and the results showed
that melatonin can increase cGMP levels in cells, activating PKC

thereby leading to AR excretion. However, the addition of BAPTA,
an intracellular calcium-bonding agent, can block the action of
melatonin, confirming that the effect of melatonin depends on an
increase in intracellular calcium (Lupowitz et al., 2001). Z
Lupowitz et al. studied the members of the protein kinase C
(PKC) subtype involved in AR nuclear rejection; for example,
PKCα is expressed in the cytoplasm and undergoes membrane
binding under the induction of melatonin, indicating that the
activation of PKC is a key step in melatonin-mediated AR nuclear
rejection (Sampson et al., 2006). Subsequent studies confirmed that
melatonin inhibits the proliferation of androgen-sensitive LNCaP
cells through the MT1 receptor both under androgen-free
conditions and in naked mouse models (Xi et al., 2000; Xi
et al., 2001). Moreover, melatonin enhances the effect of ADT
by synergizing with MTI receptors, further blocking the growth of
androgen-sensitive LNCaP tumor models. Interestingly, melatonin
has limited inhibitory effects on androgen-independent prostate
cancer cell lines PC-3 or DU145, possibly because the
antiproliferative ability of MLT/MT1 depends on the activation
of androgen/AR in prostate cancer cells (Siu et al., 2002). Studies
by Liu and others have confirmed that melatonin can delay the
progression of advanced prostate cancer resistance by blocking the
interaction between AR-V7 and NF-κB (Liu et al., 2017). This

FIGURE 2
Regulatory mechanisms between circadian regulators and AR signaling pathways. Androgen receptors are stimulated by androgens into the
nucleus. Melatonin, as a hormonal regulator of clock rhythm, promotes the nucleation process of AR through the cGMP/PKCα signaling pathway. The
rhythm gene PER1 is positively regulated by androgens. When stimulated by DHT, PER1 may interact with the AR signaling pathway by influencing the
expression of AR regulatory genes. At the same time, CRY1, as a target gene of the AR signaling pathway, regulates the temporal expression of DNA
repair factor ATM/CHK2, promoting DNA damage repair and tumor growth. RORγ can recruit cofactors SRC3/SRC1 to directly regulate AR protein
transcription. Androgen receptor (AR); dihydrotestosterone (DHT); Cryptochrome (Cry); Period (Per); orphan retinoic acid receptor-related alpha (RORα).
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suggests that the combination of melatonin and hormone therapy
may be a viable treatment option.

In addition to melatonin, the core biological clock gene is
associated with the AR signaling pathway. One study revealed
rhythmic changes in the expression of the core clock genes Per1,
Cry1, Bmal1 and Rev-erbα in normal prostate tissue (Cao et al.,
2009). However, the expression of Per1 in prostate cancer is
significantly reduced, and overexpression of Per1 can inhibit
cancer cell growth. Furthermore, the expression of Per1 is
positively regulated by androgens. After stimulation by
dihydrotestosterone (DHT), Per1 expression is increased, and the
forced upregulation of Per1 weakens expression of androgen-
sensitive genes. This indicates that Per1 interacts with the AR
signaling pathway and modulates AR-regulated genetic
expression (Cao et al., 2009) (as shown in Figure 2). These
findings reveal an important role of Per1 in the development of
prostate cancer and provide new clues for studying mechanisms
underlying the occurrence and treatment of prostate cancer.

Another study revealed that CRY1, a tumor-specific AR
signaling pathway target gene, is involved in androgen-regulated
DNA repair and plays an important role in the growth of androgen-
resistant prostate cancer (CRPC). By regulating the timing of
expression of DNA repair factors (ATM and CHK2),
CRY1 promotes DNA repair and CRPC growth (Shafi et al.,
2021) (as shown in Figure 2). This study reveals a new
mechanism of action for CRY1 in response to genotoxic damage
and offers potential therapeutic targets to improve patient outcomes.

RAR-related orphan receptor (ROR), a positive regulator of the
clock rhythm regulation loop, has three subtypes, ROR-α, ROR-β
and ROR-γ, and different expression patterns. ROR-α and ROR-β
expression do not noticeably change in prostate cancer, while ROR-
γ expression is closely related to tumor development and is the key
determinant of AR gene expression. ROR-γ directly binds to the
promoter RORE binding site and promotes AR transcription
through the action of the nuclear co-activating factors SRC1 and
SRC3 (as shown in Figure 2). Moreover, a small-molecule antagonist
of ROR-γ can disrupt the interaction between ROR-γ, SRC and AR
to inhibit expression of the AR (Wang et al., 2016). The above results
confirm that ROR-γ can act as a therapeutic target alone or in
combination with other factors in the development of
prostate cancer.

The Simon Linder team at the Netherlands Research Institute
carried out a comprehensive polynomial analysis of tissues isolated
after 3 months of AR-targeted enzalutamide monotherapy in
patients with high-risk prostate cancer (Linder et al., 2022).
Transcription analysis revealed that AR inhibition led to the
development of neurosecretory-like conditions in tumors. In
addition, epigenome analysis revealed reprogramming of a large
number of genes encoding the enzalutamide-induced pioneer factor
FOXA1 from an inactive chromosome site to an active synchronous
regulating element that controls survival signals. Notably,
treatment-induced FOXA1 sites were enriched in ARNTL, the
circadian clock component. ARNTL levels after treatment
correlated with patient clinical outcomes. Knockout of ARNTL
significantly reduced the growth of prostate cancer cells. This
study revealed that ARNTL, a circadian regulator, was an
acquired fragile site after AR inhibition (Linder et al., 2022),
providing new clues for the treatment of prostate cancer resistance.

6 Chronotherapy and prostate cancer

Based on an in-depth understanding of the relationship between
the circadian rhythm and the development of cancer, there is
growing interest in the use of Chronotherapy to improve cancer
treatment. A large number of studies have confirmed that more than
30 chemotherapy drugs can result in a greater than 50% reduction in
efficacy due to differences in the duration of administration. In
ovarian cancer, patients treated with doxorubicin in the evening and
cisplatin in the morning showed more severe complications,
requiring lower drug dosages and delayed treatment, when
compared to those treated with doxorubicin in the morning and
cisplatin in the evening (Hrushesky, 1985; Lévi et al., 1990). The
effectiveness of paclitaxel, a first-line therapeutic drug for treating
tumors, including prostate cancer, has also been shown to be
rhythmic (Tang et al., 2017). Decreased expression of PER3 in
prostate cancer stem cells can increase cancer cell resistance to
paclitaxel (Cai et al., 2018). Restoring BMAL1 expression in tongue
squamous cell carcinoma or administering paclitaxel at the peak of
BMAL1 expression can improve paclitaxel sensitivity and better
inhibit tumor proliferation (Tang et al., 2017). Trastuzumab is the
only approved treatment for HER2-positive gastric cancer (von Arx
et al., 2023), and its resistance is linked to hexokinase 2 (HK2)-
controlled high-glucose enzymatic activity. HK2 has a day and night
rhythm mode (ZT6(Zeitgeber time) has the highest expression,
ZT18 has the lowest expression) and is regulated by a
transcription factor composed of PPARγ and the clock gene,
PER1. Studies have confirmed that combination of metformin
and trastuzumab at ZT6 with an inhibitor of PER1 can
significantly enhance the therapeutic effect of trastuzumab (Wang
et al., 2022). These findings suggest the importance of introducing
clock rhythms into tumor therapy and indicate that a potential time-
course treatment strategy may reverse chemotherapy resistance.

Studies have shown that the circadian rhythm of prostate cancer
patients who have not undergone androgen deprivation therapy
(ADT) may be disrupted, and ADT treatment may restore function
(Bartsch et al., 2009; Hanisch et al., 2011). A hot flash is the most
common adverse reaction after prostate ADT treatment. A study by
Laura J Hanisch et al. involving 47 patients receiving ADT for
prostate cancer, collected data from two 24-h rhythmic cycles to
investigate the relationship between ADT therapy and hot flashes
(Hanisch and Gehrman, 2011). The results showed that after
receiving ADT, the frequency of hot flashes increased, and a
marked circadian rhythm was observed, with peak periods
occurring earlier in the afternoon. In patients not treated with
ADT, there were rhythmic disruptions, so the authors suggested
that the increase in hot flashes may represent the normalization of
circadian rhythms after ADT treatment (Hanisch and Gehrman,
2011). Proton beam therapy (PBT), as an effective treatment for
localized prostate cancer, can cause adverse events such as
worsening of lower urinary tract symptoms (LUTS). Researchers
compared the differences in LUTS among patients receiving PBT
treatment at different times of the day, and the results showed that
morning PBT treatment significantly improved LUTS and quality of
life compared to noon and evening treatments (Negoro et al., 2020).
Another study assessed the impact of high-dose radiation therapy on
disease control and related toxicity in patients with prostate cancer
in a rhythm-changing manner during the day and night. The results
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showed that night-time radiation caused more severe intestinal
complications than day-to-day radiation did, and the effects were
worse in older patients, resulting in poor 5-year biochemical failure-
free survival (Hsu et al., 2016). The above studies indicate that ADT
treatment can restore the circadian rhythm of patients. On this basis,
chemotherapy and radiation therapy at appropriate times may
enhance treatment effects and improve disease management.
Although there is currently a lack of research on circadian
rhythm changes in prostate cancer and timing of drug treatment
strategies, treatment based on the rhythm changes of drug efficacy
may be an ideal form of patient tailored therapy.

7 Conclusion

As one of the major diseases affecting men, the exploration of
the pathogenesis of prostate cancer remains underexplored.
Although some progress has been made in clinical practice,
targeted androgen therapy still cannot block the development
of tumors. Epidemiological studies have shown that disrupted
circadian rhythms lead to the development of prostate cancer, but
the physiological mechanism linking circadian rhythms and
prostate cancer is not clear. Preclinical studies have shown that
changes in circadian rhythm regulatory factors are closely related
to the growth of prostate cancer and can also affect the stemness
and tumorigenicity of prostate cancer stem cells. Androgens and
androgen receptor signaling pathways are involved in regulating
various biological processes, such as the cell cycle, DNA damage
repair, and cell metabolism, which are closely related to circadian
rhythms. Research has confirmed that circadian rhythm genes are
associated with the AR pathway, but the relationship between
circadian rhythm regulatory circuits and AR signaling pathways
has not been fully elucidated. Additionally, laboratory preclinical
research evidence links changes in circadian rhythm regulatory
factors with the growth of prostate cancer, promoting the
development of prostate cancer by affecting processes such as
glycolytic metabolism, the stemness and tumorigenicity of tumor
stem cells, and DNA damage repair. However, the precise
mechanisms by which the body clock influences these
pathways remain to be determined. Some metabolic pathways
also exhibit dynamic circadian rhythms, making the timing of
treatment critical. This provides a theoretical basis for the
application of chronotherapy in prostate cancer. Therefore,
future research is expected to reveal the mechanisms of
circadian rhythm regulatory circuits in prostate cancer,
providing new treatment methods for improving patient

quality of life, enhancing treatment effectiveness, and reducing
treatment side effects.
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