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Lung cancer is a prevalent malignancy and the leading cause of cancer-related
deaths, posing a significant threat to human health. Despite advancements in
treatment, the prognosis for lung cancer patients remains poor due to late
diagnosis, cancer recurrence, and drug resistance. Epigenetic research,
particularly in microRNAs, has introduced a new avenue for cancer prevention
and treatment. MicroRNAs, including miR-137, play a vital role in tumor
development by regulating various cellular processes. MiR-137 has garnered
attention for its tumor-suppressive properties, with studies showing its
potential in inhibiting cancer progression. In lung cancer, miR-137 is of
particular interest, with numerous reports exploring its role and mechanisms.
A comprehensive review is necessary to consolidate current evidence. This
review highlights recent studies on miR-137 in lung cancer, covering cell
proliferation, migration, apoptosis, drug resistance, and therapy, emphasizing
its potential as a biomarker and therapeutic target for lung cancer treatment and
prognosis.

KEYWORDS

miR-137, lung cancer, therapeutic target, biomarker, MicroRNAs

Introduction

Lung cancer is the most prevalent malignant tumor globally, responsible for the highest
number of cancer-related deaths. According to the GLOBOCAN 2020 database, there are
over 2.2 million new cases of lung cancer annually, comprising 11.4 percent of all malignant
tumors. This places lung cancer as the secondmost common cancer type after breast cancer.
Additionally, there are more than 1.8 million deaths attributed to lung cancer each year,
accounting for 18 percent of all malignant tumor-related deaths, making it the leading cause
of such fatalities (Sung et al., 2021). The incidence and mortality rates of lung cancer have
surpassed the figures reported in the GLOBOCAN 2018 database for 2020, and these rates
continue to rise due to population growth and aging. This poses a significant threat to global
public health and underscores the urgent need for effective prevention and treatment
strategies (Bray et al., 2018).

Histologically, lung cancer is categorized into small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC), with SCLC being more aggressive and NSCLC being more
prevalent, accounting for approximately 80% of cases (Howlader et al., 2020). NSCLC is
further subtyped into adenocarcinoma (40%), squamous cell carcinoma (25%), and large
cell carcinoma (10%) (Iqbal et al., 2019). Surgical resection is an effective treatment for
early-stage lung cancer, but due to nonspecific symptoms, most cases are diagnosed at
advanced stages (Stage III or IV) (Morgensztern et al., 2010). Screening with low-dose
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computed tomography can aid in early detection and reduce
mortality, but the high false-positive rate poses challenges such as
overdiagnosis, financial burden, radiation exposure, and patient
distress (Goulart and Ramsey, 2013). Therefore, there is a critical
need for more sensitive and accurate diagnostic methods for early
detection of lung cancer. For advanced metastatic lung cancer,
radiotherapy and chemotherapy are the mainstays for slowing
down disease progression. While there have been advancements
in targeted therapy and immunotherapy for lung cancer in recent
years, challenges persist due to issues such as drug resistance post
radiotherapy and chemotherapy, mutations in drug-resistant genes
from targeted therapy, and immune-related adverse reactions from
immunotherapy (Bagchi et al., 2021). The 5-year survival rate and
prognosis for lung cancer remain bleak, with median survival rates
for patients with advanced NSCLC improving only slightly
worldwide (Ma et al., 2021; He et al., 2022; Jeon et al., 2023).
Hence, there is an urgent need for the development of new
therapeutic strategies to address lung cancer, necessitating a
comprehensive understanding of its pathogenesis.

In the past 20 years, the exploration of microRNAs has sparked a
molecular revolution, with numerous studies demonstrating their
pivotal role in cancer. MicroRNAs, or miRNAs, are a type of short
non-coding RNAs present in eukaryotes. These single-stranded
RNAs typically consist of 19–25 nucleotides and have the ability
to directly bind to the 3′untranslated region (3′UTR) of target
mRNA. This binding can lead to either degradation or
translational repression of the target gene, thereby enabling post-
transcriptional regulation (Bartel, 2009; Krol et al., 2010; Pasquinelli,
2012).Evolutionarily conserved, miRNAs make up approximately
1% of human genes (Bayraktar and Van Roosbroeck, 2018), with
about one-third of genes being regulated by them (Bentwich et al.,
2005; Yang et al., 2015a). Due to their extensive influence on gene
expression, miRNAs are integral to various cellular functions such as
cell proliferation, differentiation, apoptosis, and angiogenesis, all of
which are closely linked to cancer. Consequently, miRNAs are
intricately associated with cancer development and have garnered
significant attention in the realms of cancer diagnosis, prognosis,
and treatment.

Cancer-associated miRNAs can be categorized as oncogenic
miRNAs or tumor-suppressive miRNAs, based on their specific
target genes within tissues (Mollaei et al., 2019). When a miRNA
targets a tumor suppressor gene in a particular tissue, it is considered
an oncogenic miRNA; conversely, if it targets an oncogene, it is
classified as a tumor-suppressive miRNA (Ali et al., 2020). It is
important to note that a single miRNA can target multiple genes,
including both oncogenes and tumor suppressors, leading to a dual
effect in cancer that can be either oncogenic or tumor-suppressive,
depending on the specific cancer type and the combined impact of
all its targets (Shen et al., 2024). miR-137 is a significant tumor-
suppressive miRNA known to be involved in various types of cancer
such as breast cancer (Han et al., 2016), cervical cancer (Chen et al.,
2021a), endometrial cancer (Zhang et al., 2018), ovarian cancer
(Dong et al., 2016; Sun et al., 2019), gastric cancer (Chen et al.,
2021b), oesophageal cancer (Xu et al., 2021), colon cancer (Xu et al.,
2020; Ding et al., 2021) prostate cancer (Wang et al., 2022), renal
cancer (Wang et al., 2018a), lung cancer (Nuzzo et al., 2019),
pancreatic cancer (Ding et al., 2018), hepatocellular carcinoma
(Lu et al., 2017), osteosarcoma (Yan et al., 2023) and glioma

(Li et al., 2022). It is generally found to have low expression in
malignant tumors and functions as a tumor suppressor. miR-137
targets and suppresses the expression of multiple genes like SLC1A5,
TCF4, EZH2, EGFR, MRGBP, impacting essential cellular processes
such as cell death, immune response, inflammation, DNA damage,
oxidative stress, and tumorigenesis (Bi et al., 2018; Luo et al., 2018;
Wei et al., 2021; Weng and Wang, 2022). Despite numerous studies
on the role of miR-137 in lung cancer, there is currently no
comprehensive literature review on this subject. Therefore, this
review aims to explore the crucial role of miR-137 in the
development of lung cancer and discuss potential therapeutic
strategies involving miRNA-based treatments to enhance our
understanding of lung cancer pathogenesis.

Biogenesis, function and expression
regulation of miR-137

miR-137 is situated on chromosome 1p21.3 among non-coding
protein genes (Yin et al., 2014). The production of miR-137 is a
complex process (Figure 1), miR-137 is initially transcribed in the
nucleus by RNA polymerase II to create a primary miRNA with a
5′cap and 3′poly tail (pri-miRNA). Pri-miRNAs display a double-
stranded stem-loop structure, which is then cleaved and processed
into the primary miRNA by the endonuclease activity of Drosha and
its cofactor DGCR8. The primary miRNA is further cleaved and
processed into precursor miRNA (pre-miRNA) of 60–70
nucleotides (Lee et al., 2002; Lee et al., 2003; Chen et al., 2004;
Han et al., 2004). The pre-miRNA is transported to the cytoplasm
via the Exportin-5 complex (Yi et al., 2003; Denli et al., 2004), where
Dicer and TRBP cleave it into a double-stranded RNA molecule of
18–25 nucleotides (Hammond et al., 2001; Saito et al., 2005)., after
which the double-stranded RNA unwinds to form two single-
stranded miRNAs, which are processed from the 5′end arm
named miR-137-5p and the 3′end arm named miR-137-3p (the
sequences of these two mature single-stranded miRNAs in humans
are: hsa-miR-137-3p: 59 - UUAUUGCUUAAGAAUACGCGUAG
– 81, hsa-miR-137-5p: 23 - ACGGGUAUUCUUGGGUGGAUA
AU - 45). Subsequently, The mature miRNA is then incorporated
into the RNA-induced silencing complex (RISC) with the AGO2
protein (Catto et al., 2011). The ‘seed’ sequences of the miRNAs
(second to 7th nucleotide sequences) guide AGO2 to bind to the
3′UTR of the target mRNA (Gorski et al., 2017). Complete
complementarity leads to degradation of the target mRNA
(Johnston et al., 2010), while partial complementarity inhibits
target mRNA translation (Filipowicz et al., 2008). A single
miRNA can regulate multiple target genes, while a single target
gene may be regulated by multiple miRNAs. The interactions
between miRNAs and their target genes form a complex network
system that is crucial for maintaining organismal homeostasis.
Dysregulation of miRNA expression is closely linked to the
development of various diseases.

The discovery of miR-137 dates back to 2002 when Lagos-
Quintana and colleagues identified 34 novel miRNAs, including
miR-137, in mouse tissues (Lagos-Quintana et al., 2002). Since then,
extensive research has been conducted on the functions of miR-137.
This microRNA is found in various tissues and is involved in a wide
array of biological processes (Mahmoudi and Cairns, 2017).
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Particularly enriched in the brain, miR-137 has been shown to
regulate cell proliferation and differentiation in both embryonic
and brain tissues (Tarantino et al., 2010; Willemsen et al., 2011;
Jiang et al., 2013). Furthermore, miR-137 plays crucial roles in
synaptic vesicle cytosol (Siegert et al., 2015), regulation of energy
metabolism (Kozlowska et al., 2013), sphingolipid biosynthesis
(Geekiyanage and Chan, 2011), Na+/K + -ATPase regulation (Li

et al., 2016), embryonic development and wound healing (Chen
et al., 2011; Luo et al., 2013). In the context of cancer, miR-137
functions as a tumor suppressor gene, impacting transcription and
translation processes, cell cycle regulation, proliferation,
differentiation, invasion, migration, angiogenesis restriction, and
apoptosis induction. Its multifaceted roles make miR-137 a key
player in cancer progression.

FIGURE 1
Biogenesis, function, and regulation of miR-137 expression: miR-137 is initially transcribed in the nucleus as Pri-miR137, which undergoes
processing by different enzymes to generate mature miR-137. The mature miR-137 then binds to target mRNAs, forming the RISC complex that
modulates the expression of target genes. The expression of miR-137 is regulated by various transcription factors and DNA methylation mechanisms,
while its function can be inhibited by competing endogenous RNAs (ceRNAs).
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The expression of miR-137 is regulated by various
mechanisms, including transcription factors, epigenetic
modifications, long chain non-coding RNAs (lncRNAs), and
circular RNAs (circRNAs) (Wang et al., 2020). miR-137 is
regulated by a variety of transcription factors. For instance,
Chang (Chang et al., 2017) et al. found that the transcription
factor Slug activates miR-137 transcription in lung cancer cells by

binding to its promoter at the E-box-2. Conversely, the silent
transcriptional deterrent protein (REST) negatively regulates
miR-137 (Soldati et al., 2013; Warburton et al., 2015).
Epigenetic regulation, specifically through methylation, plays a
crucial role in controlling miR-137 expression. The genomic
region encoding miR-137 contains CpG islands that are
subject to methylation (Whitfield et al., 2002; Silber et al.,

TABLE 1 Targets and functions of miR-137 in lung cancer.

Expression The institute uses
cell lines

Upstream
targets

Downstream
targets

Major functions References

NA A549 and H1299 LncRNA LASTR TGFA Inhibition of lung cancer cell
proliferation, migration and invasion

Xia et al. (2022)

Down A549 and H1299 NA COX-2 Inhibition of cell migration and invasion Luo et al. (2022)

Down H1299 and Calu-1 circSNX6 CXCL12 Promoting oxidative stress and reversing
drug resistance

Zhu et al. (2021)

Down A549 and NCIH838 NA SRC3 Induces cell cycle arrest and inhibits cell
proliferation

Chen et al. (2017)

Down H446 and H446/CDDP NA KIT Increased sensitivity to cisplatin Li et al. (2014)

Down H129 NA TGFA Inhibition of cell proliferation Liu et al. (2017a)

Down A549,NCI-H460 and NCI-
H520

NA Cdc42 and Cdk6 Induces cell cycle arrest and inhibits cell
proliferation

Zhu et al. (2013)

Down SK-MES-1 and H1299 LncRNA NCK1-AS1 NA Inhibited NSCLC cell proliferation,
migration and invasion and promoted

apoptosis

Li et al. (2020)

Down A549/PTX and A549/CDDP NA NUCKS1 Inhibition of cell growth, migration, cell
survival and cell cycle G1/S transition
increases chemosensitivity to paclitaxel

and cisplatin in lung cancer

Shen et al. (2016)

Down A549 NA paxillin Inhibits proliferation, migration and
invasion, induces apoptosis

Bi et al. (2014)

Down A549 and H1299 circ-LDLRAD3 SLC1A5 Regulates NSCLC apoptosis,
proliferation and epithelial-

mesenchymal transition (EMT)

Xue et al. (2020)

Down A549 and H520 NA AKT2 Induction of apoptosis, cell cycle
inhibition, and increased sensitivity to

cisplatin in lung cancer

Lu et al. (2018)

NA H1650、H1437 and H1975 NA caspase-3 Inhibition of apoptosis thereby
conferring cisplatin resistance

Su et al. (2016)

NA HCC827、H1299 Slug TFAP2C Promote lung cancer cell invasion and
metastasis

Chang et al. (2017)

Down A549,SK-MES-1,H129 and
H520

NA BMP7 inhibited the proliferation, migration and
invasion of NSCLC cells

Yang et al. (2015b)

Down A549 and H1299 LncRNA-XIST Notch-1 Inhibition of cell proliferation and TGF-
β1-induced EMT

Wang et al.
(2018b)

Down H522 and H23 NA SLC22A18 Significantly inhibited the proliferation,
invasion and migration of NSCLC cells

Zhang et al. (2015)

Down A549 and H460 NA LSD1 Inhibition of cell proliferation and
migration

Zhang et al. (2017)

NA A549 and SPCA-1 NA IBTK and ULK2 Induction of apoptosis, blockage of cell
cycle progression, restriction of

angiogenesis, and inhibition of invasion
and metastasis

Zhang et al. (2016)

Down A549 and H522 LncRNA LASTR paxillin Inhibition of NSCLC cell viability and
invasion

Jiang et al. (2018)
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2008; Balaguer et al., 2010; Jones, 2012),. with increased
methylation levels reported in various solid tumors
(Steponaitiene et al., 2016; Qin et al., 2017; Guan et al., 2019),
including lung cancer. (Kang et al., 2015; Heller et al., 2018),
leading to reduced miR-137 function. Additionally, Sun et al.
(2011) showed that the nuclear receptor TLX inhibits miR-137
expression by recruiting histone lysine-specific demethylase 1
(LSD1) to the miR-137 genomic region and that LSD1 is also a
downstream target of miR-137 in NSCLC, where its expression is
negatively correlated with that of miR-137 (Zhang et al., 2017),
suggesting that miR-137 and LSD1 to form a feedback regulatory
loop. Furthermore, Long non-coding RNAs and circular RNAs,
including LncRNA LASTR (Xia et al., 2022), LncRNA NCK1-AS1
(Li et al., 2020), LncRNA XIST (Wang et al., 2018b; Jiang et al.,
2018), circSNX6 (Zhu et al., 2021), circ-LDLRAD3 (Xue et al.,
2020), function as competitive endogenous RNAs (ceRNAs)
for miR-137 in lung cancer. By acting as miR-137 sponges,
these molecules compete with its expression and function,
ultimately reducing the effectiveness of miR-137 and
alleviating its inhibition of downstream targets. This
phenomenon contributes to the progression and development
of treatment resistance in cancer. In addition, the study found
that these ceRNAs are often upregulated in lung cancer.
Knocking down these ceRNAs was shown to greatly reduce
the proliferation, invasion, and metastatic potential of lung
cancer cells (Xia et al., 2022) 83] (Xue et al., 2020). This
indicates that miR-137-related ceRNAs could be promising
targets for lung cancer therapy.

The role of miR-137 in lung cancer

There is an increasing amount of evidence suggesting that miR-
137 is commonly downregulated in lung cancer, and its changed
expression is strongly associated with the onset of lung cancer.
Reinstating miR-137 expression has been demonstrated to hinder
the advancement of lung cancer by targeting and inhibiting specific
proteins and signaling pathways, although in some cases it may also
promote it (Table 1). The fundamental characteristics of cancer,
such as uncontrolled proliferation, invasion, metastasis, resistance to
apoptosis, and angiogenesis (Hanahan and Weinberg, 2000;
Hanahan and Weinberg, 2011), are inhibited by miR-137 in lung
cancer, thus slowing down cancer progression (Figure 2). It is worth
noting that whenmiR-137 targets a specific downstreammolecule, it
often simultaneously hinders various aspects of cancer cell
proliferation, migration, and apoptosis.

miR-137 regulates cell cycle and inhibits
proliferation of lung cancer cells

The rate of cell proliferation is closely linked to the duration of
the cell cycle, encompassing the entire process from the completion
of one division to the commencement of the next. This
cycle comprises distinct phases: G1 (pre-DNA synthesis), S
(DNA synthesis), G2 (late DNA synthesis), and M (mitosis),
with particular emphasis on the G1 phase as a pivotal stage. Zhu
et al. (2013) were the first to highlight the significance of miR-137 in

FIGURE 2
miR-137 plays a crucial role in regulating various aspects of lung cancer cell behavior such as proliferation, metastasis, invasion, apoptosis, and
chemotherapy resistance through the inhibition of target gene expression. Additionally, the expression and activity of miR-137 can be modulated by
ceRNAs, further influencing lung cancer progression.
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non-small cell lung cancer (NSCLC), revealing its downregulation in
NSCLC cell lines. Overexpression of miR-137 in A549 and
H460 cells notably decreased proliferation capacity, reduced cells
in the S phase, and increased those in the G0/G1 phase, inducing
G1 phase arrest and subsequent cell death. Mechanistic
investigations unveiled miR-137s targeting of cell division cycle
42 (Cdc42) and cyclin-dependent kinase 6 (Cdk6), pivotal
regulators of proliferative signaling in G1 cell cycle control.
These proteins, belonging to the Rho GTPase and CDK families,
respectively, play critical roles in various aspects of cancer cell
behavior and are often overexpressed in multiple cancer types
(Hua et al., 2011; Zhang et al., 2013). Elevated expression of
Cdc42 and Cdk6 accelerates G1/S phase transition, fostering
increased proliferation and diminished DNA repair (Hanahan
and Weinberg, 2000). By suppressing Cdc42 and
Cdk6 expression and their downstream effectors, miR-137
effectively hampers NSCLC cell proliferation and impedes tumor
growth in xenograft models. (Zhu et al., 2013). Liu et al., (2017a)
found that upregulation of miR-137 targeted TGFA, leading to
G1 phase arrest in cancer cells, ultimately inhibiting NSCLC cell
proliferation. Conversely, silencing miR-137 decreased cells in the
G0/G1 phase and increased cells in the S phase, promoting NSCLC
proliferation. Xia et al. (2022) demonstrated that TGFA acts through
the PI3K/AKT pathway, with miR-137 targeting TGFA to suppress
this pathway, consequently enhancing lung cancer cell proliferation
and metastasis. Additionally, Steroid receptor coactivator-3 (SRC3),
an oncogene in lung cancer, is negatively regulated by miR-137 (Xu
and O’Malley, 2002). Overexpression of miR-137 in A549 and NCI-
H838 cells reduced SRC3 protein expression, leading to G1 phase
arrest and downregulation of key cell cycle proteins like PCNA,
cyclin E, A1, and A2, thereby inhibiting NSCLC cell proliferation
(Chen et al., 2017). Moreover, miR-137 targets Notch-1 in A549 and
H1299 cells, inhibiting the Notch signaling pathway and Cyclin
D1 expression, ultimately suppressing cell proliferation (Wang et al.,
2018b). Other proteins such as BMP7 (Yang et al., 2015b),
SLC22A18 (Zhang et al., 2015) and SLC1A5 (Xue et al., 2020)
have also been identified as targets of miR-137. The inhibition of
miR-137 on lung cancer cell proliferation was attributed to the
suppression of their expression. In summary, miR-137 inhibits lung
cancer cell proliferation and suppresses lung cancer progression by
regulating proliferation and cell cycle-related genes.

miR-137 inhibits invasion and metastasis of
lung cancer cells

Lung cancer is characterized by its highly invasive nature and
high lethality, primarily due to its ability to infiltrate nearby tissues
andmetastasize. This leads to rapid progression and recurrence after
incomplete postoperative resection. The invasion and metastasis of
cancer often involve epithelial-mesenchymal transition (EMT), a
process where epithelial cells acquire characteristics of mesenchymal
cells, increasing their migratory ability. EMT is triggered by specific
stimuli that activate intracellular transcription factors, leading to the
expression of EMT-associated proteins through specific signaling
pathways. This results in the downregulation of E-cadherin and
other epithelial markers, while upregulating vimentin and other
mesenchymal markers. Studies have shown that miR-137 plays a

role in inhibiting these processes. Luo et al. (2022) found that miR-
137 mimics significantly reduced the migration and invasion of
A549 and H1299 cells, while miR-137 inhibitors had the opposite
effect. Their mechanistic studies revealed that miR-137 targeted
COX-2, leading to decreased COX-2 expression, upregulation of
E-cadherin, and downregulation of vimentin. These changes
regulated the epithelial-mesenchymal transition (EMT) process,
ultimately inhibiting cancer cell migration and invasion.
Additionally, paxillin was identified as a direct target of miR-137,
with overexpression in non-small cell lung cancer (NSCLC).
Overexpression of miR-137 targeted paxillin, resulting in
inhibition of proliferation, migration, and invasion of A549 cells
(Bi et al., 2014; Jiang et al., 2018). Zhang et al. demonstrated that
miR-137 directly targeted SLC22A18 in NSCLC cells, leading to
reduced proliferation, invasion, and migration (Zhang et al., 2015).
Furthermore, miR-137 inhibited the Notch-1 pathway, preventing
TGF-β1-induced EMT in NSCLC and suppressing cancer
progression (Wang et al., 2018b). Finally, miR-137 targeted bone
morphogenetic protein-7 (BMP7) in NSCLC cells, inhibiting cell
migration and invasion (Yang et al., 2015b). Collectively, these
studies highlight the role of miR-137 in inhibiting lung cancer
cell invasion and metastasis, ultimately impeding lung cancer
progression.

On the contrary, some research has shown that miR-137 can act
as an oncogene in lung cancer by promoting invasion and metastasis
of cancer cells. Slug, also known as Snail2, is an EMT transcriptional
regulator that competes for binding to the E-box sequence near the
E-cadherin gene promoter, leading to the suppression of E-cadherin
expression and the induction of EMT. High levels of Slug have been
observed in lung cancer, contributing to invasion and metastasis of
cancer cells. Knocking down miR-137 has been found to reverse
Slug-induced invasion and metastasis, indicating that miR-137
functions downstream of Slug. Mechanistic studies have revealed
that Slug enhances miR-137 expression by binding to E-box-2 in the
miR-137 promoter. In turn, miR-137 targets the transcription factor
AP-2 gamma (TFAP2C) to promote invasion andmetastasis of non-
small cell lung cancer cells. (Chang et al., 2017).

miR-137 induces apoptosis in lung
cancer cells

Apoptosis is a programmed cell death process, but cancer cells
often evade this mechanism. Key protein families involved in the
apoptotic pathway include the Bcl-2 family and the caspase family.
Within the Bcl-2 family, Bcl-2 and Bax are prominent molecules
(Hata et al., 2015). High levels of Bax make cells sensitive to death
signals, promoting apoptosis, while high levels of Bcl-2 can inhibit
apoptosis by forming a heterodimer with Bax (Roberts et al., 2021;
Spitz and Gavathiotis, 2022; Xue et al., 2023). The ratio of Bcl-2/Bax
is crucial in determining susceptibility to apoptosis. The caspase
family consists of proteases that facilitate specific protein breakdown
in dying cells and are essential in the apoptotic process (Dasgupta
et al., 2016; Ai et al., 2024). Caspase-9 is activated first in the
apoptotic pathway, followed by the cascade amplification of
downstream Caspase-3 activation (Allan and Clarke, 2009; Sahoo
et al., 2023), Caspase-9 and Caspase-3 are key proteins in triggering
apoptosis. In lung cancer, the anti-apoptotic ability of tumor cells is
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linked to disease progression and treatment resistance (Liu et al.,
2017b; Abolfathi et al., 2023). The tumor suppressor gene miR-137
induces apoptosis in cancer cells, impeding cancer advancement and
enhancing sensitivity to chemotherapy. Overexpression of miR-137
in A549 cells has been shown to boost apoptosis induction, as
evidenced by increased membrane-bound protein V-positive cells
(Bi et al., 2014). Furthermore, miR-137 targeting AKT2 enhances
caspase-3 activity and Bax protein expression in cisplatin-treated
A549 and H520 cells, suggesting apoptosis induction (Lu et al.,
2018). Xue et al. demonstrated that downregulation of circ-
LDLRAD3 and upregulation of miR-137 led to increased
apoptosis in NSCLC cells. Their subsequent investigations
unveiled that circ-LDLRAD3 functioned as a molecular sponge
for miR-137, counteracting the suppressive effect of miR-137 on
its target SLC1A5, ultimately enhancing apoptosis (Xue et al., 2020).
Overall, miR-137 facilitates the upregulation of multiple apoptosis-
related proteins via its downstream targets, consequently inducing
apoptosis and impeding the progression of NSCLC.

Conversely, studies have shown that miR-137 suppresses the
expression of apoptosis-related proteins, leading to the inhibition of
apoptosis. It has been reported that Caspase-3 is a direct target of
miR-137, and upregulation of miR-137 results in decreased Caspase-
3 expression, thus inhibiting cisplatin-induced apoptosis.
Conversely, silencing miR-137 has been shown to increase the
population of apoptotic cells in NSCLC cells (Su et al., 2016).

miR-137 improves sensitivity of lung cancer
cells to chemotherapeutic drugs

Chemotherapy is a common treatment for cancer, but many
tumors are currently resistant to it. Resistance of cancer cells to
chemotherapy is one of the main reasons for treatment failure,
posing a significant clinical challenge (Ramos et al., 2021; Song
et al., 2023). Various mechanisms, such as accelerated drug
inactivation, drug efflux promotion, apoptotic pathway
inactivation, pro-cellular survival pathway activation, and drug-
induced damage repair enhancement, can contribute to cancer drug
resistance (Fruman et al., 2017; Salgia and Kulkarni, 2018; Chen
et al., 2024). Thankfully, miRNAs have been found to play a crucial
role in the development of chemotherapeutic resistance through
their intricate regulatory mechanisms. Modulating miRNAs can
potentially reverse cancer resistance to chemotherapeutic drugs.
Paclitaxel and cisplatin are commonly used chemotherapeutic
agents for treating advanced lung cancer (Yang et al., 2023). but
resistance often develops after multiple courses of treatment.
Research has shown that miR-137 plays a crucial role in this
drug resistance process. Decreased levels of miR-137 were
observed in human lung cancer tissues and in two drug-resistant
cell lines (A549/PTX and A549/CDDP) compared to regular lung
cancer A549 cells. Overexpression of miR-137 inhibited
proliferation, migration, and cell survival of drug-resistant cell
lines, while silencing miR-137 had the opposite effect. Further
studies revealed that miR-137 exerts its tumor-suppressive
effects by targeting NUCKS1 and inhibiting the PI3K/AKT
pathway (Shen et al., 2016), which is essential for cell cycle
regulation and proliferation (Kikuchi et al., 2013). In vivo
experiments demonstrated that miR-137 overexpression

suppressed tumor growth and angiogenesis and increased
sensitivity to paclitaxel and cisplatin in a human lung cancer
xenograft model using drug-resistant cell lines (Shen et al.,
2016). Lu et al. found that overexpression of miR-137 inhibited
cell proliferation in cisplatin-treated A549 and H520 cells by
increasing caspase-3 and Bax proteins expression, while
decreasing Cyclin D1 protein expression, leading to cell cycle
arrest and apoptosis. Additionally, AKT2 protein expression was
suppressed, and this inhibition of AKT2 was enhanced by miR-137
overexpression, suggesting a role for miR-137 in regulating AKT2-
induced apoptosis and increasing tumour sensitivity to cisplatin.
(Lu et al., 2018). Zhu et al. (2021) also reported that
circSNX6 overexpression promoted proliferation and viability of
H1299 and Calu-1 cells, while inhibiting apoptosis under cisplatin
treatment. The effects of circSNX6 knockdown on cell proliferation,
survival, and apoptosis were rescued by a miR-137 inhibitor.
Mechanistic studies revealed that miR-137 modulated ROS
production and decreased GSH and SOD levels by regulating
CXCL12, thereby enhancing lung cancer cell sensitivity to
cisplatin. Lastly, Li et al. (2014) observed a significant reduction
in miR-137 expression in H446/CDDP cells compared to
H446 cells. Transfection with miR-137 mimic increased the
sensitivity of H446/CDDP cells to cisplatin by down-regulating
KIT, while miR-137 inhibitors had the opposite effect.

In summary, miR-137 targets specific proteins downstream
and modulates cancer-related pathways, enhancing the
responsiveness of lung cancer to chemotherapeutic agents. The
combination of miR-137 with chemotherapeutic agents can
increase the sensitivity of lung cancer to chemotherapeutic
agents, and can even re-sensitise chemoresistance lung cancer
to chemotherapeutic agents. miR-137 is therefore a potential
target for reversing drug resistance in lung cancer. However,
there are reports indicating that miR-137 can also induce
resistance to cisplatin in lung cancer. Su et al. (2016) found a
negative correlation betweenmiR-137 and Caspase-3 expression in
patients with lung adenocarcinoma. In vitro experiments showed
that overexpression of miR-137 increased cell survival and reduced
cisplatin-induced apoptosis in lung cancer cells exposed to
cisplatin. The study suggested that miR-137 inhibits Caspase-3,
providing cancer cells with anti-apoptotic abilities that contribute
to cisplatin resistance.

miR-137 restricts angiogenesis in lung
cancer

Microvascular proliferation and angiogenesis play crucial roles
in the growth and metastasis of cancer, particularly in lung cancer
progression. Research indicates that miR-137 may impact
angiogenesis in lung cancer through the regulation of angiogenic
targets. A study on miR-137 and chemotherapy resistance in lung
cancer demonstrated that overexpression of miR-137 led to a
significant decrease in VEGF mRNA expression in tumours of
mice. Immunohistochemistry further revealed a reduction in
VEGF positive staining in the tumours, a key regulator of
angiogenesis. These findings suggest that miR-137 has the
potential to inhibit angiogenesis in vivo and improve sensitivity
to chemotherapy in lung cancer (Su et al., 2016).
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Other biological behaviors of cancer, such as cancer cell
stemness, immune evasion, and tumor microenvironment, have
been linked to miR-137 in various cancer types. (Fruman et al.,
2017; Salgia and Kulkarni, 2018), However, the absence of
correlation in lung cancer suggests a potential area for
future research.

Potential of miR-137 as a biomarker in
lung cancer

Tumor biomarkers play a crucial role in tumor diagnosis,
prevention, treatment, and prognosis. miR-137 exhibits
expression variations between cancer and paraneoplastic tissues,
as well as drug-resistant and parental cell lines, suggesting its
potential as a biomarker. High expression of miR-137 in NSCLC
patients is linked to improved disease-free and overall survival rates
compared to those with low miR-137 expression (Lu et al., 2018).
Studies have indicated that reduced miR-137 levels are associated
with smoking history, lymph node metastasis, TNM clinical stage,
and poor prognosis in patients with NSCLC. Patients with highmiR-
137 expression tend to have longer survival, indicating miR-137 may
serve as an independent and favorable prognostic factor for NSCLC
patients (Zhang et al., 2015; Luo et al., 2022). Furthermore, miR-137
can be silenced by abnormal promoter methylation, with higher
levels of miR-137 promoter methylation correlating with lower
disease-free survival rates (Min et al., 2018). In conclusion, miR-
137 expression is notably decreased in lung cancer, with low levels
being linked to poor prognosis, suggesting miR-137 holds promise
as a prognostic biomarker for this type of cancer. However, its
potential as a biomarker for early screening and diagnosis of lung
cancer remains unexplored.

miRNA-based therapeutic strategies for lung
cancer treatment

Since cancer-associated miRNAs can be classified into
oncogenic miRNAs and tumor-suppressive miRNAs, miRNA
mimics or inhibitors have the potential to modulate cancer
behavior and progression. Furthermore, combining miRNA-based
therapies with traditional chemotherapeutic agents can enhance
cancer sensitivity to treatment or even overcome chemoresistance.

Some tumor-suppressive miRNAs are often downregulated or
not expressed in cancers, leading to the development of miRNA-
based alternative therapies. These therapies aim to deliver exogenous
miRNAs to patients in order to regulate abnormal cellular functions
(Mollaei et al., 2019). On the other hand, oncogenic miRNAs are
typically upregulated in cancers, prompting the use of miRNA
inhibitors as alternative therapies. These inhibitors are
administered to patients to neutralize the oncogenic miRNAs,
thereby reducing or potentially eliminating their harmful activity
(Hosseinahli et al., 2018). In the context of lung cancer, various
miRNAs have demonstrated significant therapeutic potential. For
instance, let-7 is downregulated in lung cancer tissues and has the
ability to target and inhibit multiple genes involved in cancer
progression, such as NIRF, BRF2, ITGB3, and MAP4K3. By
inhibiting the proliferation, migration, and invasion of lung

cancer cells, let-7 replacement therapy has emerged as a
promising approach (He et al., 2009; Zhao et al., 2014; Li et al.,
2021). Studies have shown that intratumoural injection of let-7 can
reduce tumor size and elicit a therapeutic response in lung cancer
xenograft models (Trang et al., 2010). Similarly, intranasal
administration of let-7 has been found to suppress mutational
activation of the k-Ras oncogene and inhibit tumor formation in
animal models (Esquela-Kerscher et al., 2008). Inhibition of
oncogenic miRNAs also holds potential for lung cancer therapy.
For example, LINC00336 acts as a ceRNA for miR-6852,
competitively inhibiting the function of miR-6852 and
modulating the expression of cystathionine-β-synthase (CBS), a
key regulator of ferroptosis. This modulation ultimately promotes
ferroptosis, leading to the inhibition of NSCLC cell growth (Wang
et al., 2019). Some miRNA alternative therapies have progressed to
clinical trials, building on preclinical research that has paved the way
for the development of miR-34a-5p mimics for cancer treatment.
One such example is mRX34, a miR-34a-5p mimetic liposome,
which entered a multicentre phase I clinical trial in 2013 for various
tumors, including lung cancer. Despite demonstrating some
effectiveness, the study was halted in 2016 due to immune-
related adverse events (Beg et al., 2017; Hong et al., 2020),
highlighting the unresolved challenges associated with miRNA
alternative therapies in cancer treatment.

As a tumor suppressor miRNA, miR-137 has garnered
significant attention in recent years due to its therapeutic
potential in lung cancer. Studies have shown that miR-137
mimetics can inhibit the proliferation, migration, and invasion of
lung cancer cells in vitro, induce apoptosis, and suppress lung cancer
growth in xenograft models. Some cancer therapeutic drugs, like
tanshinone molecules, have been found to regulate miR-137
expression, leading to inhibition of lung cancer cell and tumor
growth both in vitro and in vivo (Liu et al., 2012; Li et al., 2013).
Mechanistic studies have revealed that tanshinone upregulates miR-
137 expression, which in turn targets genes involved in cell cycle
regulation, angiogenesis, apoptosis, and metastasis, ultimately
inhibiting NSCLC cell growth and tumor progression (Zhang
et al., 2016). Furthermore, combining miR-137 with
chemotherapeutic agents has shown to enhance the sensitivity of
lung cancer cells to chemotherapy, offering a promising strategy for
treating advanced chemoresistant lung cancer (Shen et al., 2016; Lu
et al., 2018). Although miR-137 shows promise for treating lung
cancer, achieving targeted delivery to tumor cells is crucial for
clinical advancement. Nucleic acid aptamers have proven
successful as vectors for delivering miR-137 to tumor cells.
Aptamers, known for their high affinity and potential to block
disease-associated proteins, offer significant advantages as
delivery vehicles for therapeutic agents (Catuogno et al., 2018).
Nuzzo et al. (2019) demonstrated the efficacy of the GL21-miR137
complex in treating NSCLC. By utilizing an aptamer (GL21.T), the
complex was able to effectively enter NSCLC cells expressing the
oncogenic receptor, leading to increased levels of miR137 and
downregulation of its target. Importantly, the GL21.T aptamer
not only inhibited the migration and growth of NSCLC but also
impacted both the oncogenic receptor and the target of miR137. In a
mouse model of NSCLC, GL21.T-137 effectively suppressed tumor
growth. These findings highlight the potential of aptamer-
microRNA complexes in cancer therapy, offering a versatile
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approach to targeting cancer cells and disrupting multiple cancer-
related processes, particularly in NSCLC therapy. Furthermore,
novel methods such as lysosomal viral therapy and nanotherapy
are being explored for delivering miRNAs to cancer cells using
diverse vectors, showing promising progress in this area (Alvanegh
et al., 2021). Leveraging these approaches for lung cancer therapy
holds great potential.

Conclusion and prospect

This review represents the first comprehensive analysis of the
relationship between miR-137 and lung cancer. Most studies suggest
that miR-137 acts as a tumor suppressor in lung cancer, with low
expression levels associated with cancer metastasis and poor
prognosis. Notably, patients with non-small cell lung cancer
(NSCLC) exhibiting high miR-137 expression have a better
survival rate compared to those with low expression.
Mechanistically, miR-137 hinders lung cancer progression by
impeding the cell cycle, suppressing cell proliferation, inducing
apoptosis, and inhibiting migration and invasion - all crucial
processes in cancer development. Furthermore, the anti-cancer
effects of miR-137 have been validated in vivo. Additionally,
miR-137 has been implicated in drug resistance in lung cancer,
with studies showing that its combination with chemotherapeutic
agents can enhance drug sensitivity and potentially reverse
resistance. Taken together, these findings suggest that miR-137
could serve as a valuable biomarker and promising therapeutic
target for lung cancer prognosis. However, due to the different
targets, some studies suggest that miR-137 can promote lung cancer
progression, with factors such as the tumor microenvironment, cell
type, stage, and genetic background influencing its effects. When the
oncogenic impact of miR-137 outweighs its tumor-suppressive
effects, it can exhibit oncogenic properties. Therefore, utilizing
miR-137 as a target for lung cancer therapy requires careful
consideration of balancing its oncogenic and tumor-suppressive
effects to ensure its clinical value. Since individual miRNAs can
regulate multiple genes and pathways, targeting a single miRNA like
miR-137 can have broad effects on cellular processes. Challenges
remain in delivering miRNAs specifically to tumor cells while
avoiding off-target effects. Promising advancements in using

nucleic acid aptamers, lysoviruses, and nanoparticles as carriers
for miRNAs offer potential solutions for targeted delivery.

miR-137 shows promise as a potential target for lung cancer
therapy. However, current research is predominantly focused on
cellular and animal models, highlighting the need to address
numerous unresolved issues before its clinical application. Once
these challenges are overcome, miR-137 has the potential to
significantly benefit not only lung cancer but also other cancer
types. Given the limited understanding in this field, further research
is essential to deepen our knowledge and advance future
developments.
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