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Lysosomes serve as catabolic centers and signaling hubs in cells, regulating a
multitude of cellular processes such as intracellular environment homeostasis,
macromolecule degradation, intracellular vesicle trafficking and autophagy.
Alterations in lysosomal level and function are crucial for cellular adaptation to
external stimuli, with lysosome dysfunction being implicated in the pathogenesis
of numerous diseases. Osteoclasts (OCs), as multinucleated cells responsible for
bone resorption and maintaining bone homeostasis, have a complex relationship
with lysosomes that is not fully understood. Dysregulated function of OCs can
disrupt bone homeostasis leading to the development of various bone disorders.
The regulation of OC differentiation and bone resorption for the treatment of
bone disease have received considerable attention in recent years, yet the role
and regulation of lysosomes in OCs, as well as the potential therapeutic
implications of intervening in lysosomal biologic behavior for the treatment of
bone diseases, remain relatively understudied. This review aims to elucidate the
mechanisms involved in lysosomal biogenesis and to discuss the functions of
lysosomes in OCs, specifically in relation to differentiation, bone resorption, and
autophagy. Finally, we explore the potential therapeutic implication of targeting
lysosomes in the treatment of bone metabolic disorders.
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1 Highlights

• Lysosome biogenesis involves protein transport, lysosomal fusion and reformation,
regulated by various factors.

• Lysosomes play a pivotal role in osteoclasts, modulating cellular processes and bone
metabolism.

• Lysosomes contribute to osteoclast autophagy, affecting the bone resorption.
• Targeting lysosomes offers a potential therapeutic approach for bone
metabolic disorders.
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2 Introduction

Numerous bone disorders, including osteoporosis
(Zhivodernikov et al., 2023), osteomalacia (Grünherz et al.,
2020), rheumatoid arthritis (Hascoët et al., 2023), and
periodontitis (Lin et al., 2022), are closely associated with
abnormal OCs, which exhibit high bone resorption activity.
These diseases have shared characteristics, including hyperactive
and differentiated OCs with enhanced bone resorption activity.
Additionally, the differentiation and bone resorption pathways
serve as therapeutic targets for various pharmacological agents,
such as bisphosphonates and denosumab, commonly employed in
clinical practice. To be specific, bisphosphonates impair OC
differentiation and resorptive activity by blocking the
mevalonate pathway through the inhibition of farnesyl
pyrophosphate synthase (Chin et al., 2022; Scala et al., 2022),
whereas denosumab impedes OC differentiation by targeting
RANKL (Reid and Billington, 2022; Ferrari and Langdahl,
2023). Nonetheless, these interventions lead to reduced bone
formation as a consequence of the decoupling between OCs and
OBs (Iñiguez-Ariza and Clarke, 2015). Therefore, a comprehensive
comprehension of the molecular mechanisms governing OC
differentiation and bone resorption function is imperative for
the identification of novel therapeutic targets for such
skeletal disorders.

Research on OC differentiation and bone resorption has been
extensively explored, yet the investigation into lysosome biogenesis
and function in OCs remains limited. Lysosomes, which are
characterized by a single membrane and dynamic,
heterogeneous nature, play crucial roles in degradation and
metabolic regulation (Paudel et al., 2023; Cao et al., 2021;
Ballabio and Bonifacino, 2020). As revealed via mechanistic
studies, lysosomes serve as a regulatory hub for multiple vesicle
trafficking pathways, including endocytic, phagocytic, and
autophagic pathways, with specific functional proteins in the
processes of bone resorption and autophagy (Nakanishi-Matsui
and Matsumoto, 2022; Mahapatra et al., 2021). The acidic
microenvironment formation and bone matrix degradation
during bone resorption rely on the biogenesis and transport of
lysosomes (Lacombe et al., 2013), while autophagy, a lysosome-
mediated catabolic process, facilitates the degradation and
recycling of cellular components, playing a pivotal role in bone
metabolism by regulating osteoclast activity and lifespan.
(Mahapatra et al., 2021). However, the specific mechanisms
involved in the regulation and biogenesis of lysosomes in OCs
remain to be further investigated. Therefore, we focus our review
on the biogenesis of lysosomes and the regulation of lysosomes in
OCs, including differentiation, bone resorption and
autophagy phases.

3 Lysosomal constituents and
biogenesis

3.1 Functional lysosomal protein

Lysosomes consist of an acidic lumen enclosed by a
phospholipid bilayer plasma membrane. The acidic environment

within the lumen is essential for physiological functions of
lysosomes, which affect the activity of both membrane and
luminal hydrolases (Xu and Ren, 2015; Zhang et al., 2023). The
lysosomal hydrolases and membrane proteins, which serve as
functional proteins within the lysosome, play a crucial role in
maintaining lysosomal function.

3.1.1 Lysosomal hydrolases
The acid lumen of lysosomes contains a variety of

degradative enzymes (also called acid hydrolases), including
glycosidases, proteases, nucleases, lipases, phosphatases, and
phospholipases (Jain et al., 2022). Over 60 hydrolases have been
identified, each with specific substrates for degradation,
collectively determining the lysosome’s degradation
capability. In addition to degrading cellular waste and
processing pro-protein, lysosomal hydrolases also participate
in the process of antigen processing, membrane repair, and the
initiation of apoptosis (Mutvei et al., 2023; Yang et al., 2023;
Pellegrini et al., 2023). In the bone resorption process of OCs,
lysosomal hydrolases play a significant role. Information about
the detailed hydrolases involved in bone resorption is discussed
further in the last section.

The synthesis and modification of hydrolases by
oligosaccharides occurs in the endoplasmic reticulum, followed
by transportation to the trans-Golgi network (TGN) where
phosphorylation of mannose residues on their oligosaccharide
chains occurs, allowing binding to the mannose 6-phosphate
receptor (MPR). Subsequently, the hydrolase-MPR complexes are
encapsulated within clathrin-coated vesicles and transported to early
endosomes (Yang and Wang, 2021; Zhang et al., 2021) (Figure 1).
During endosome maturation, a cascade of morphological and
functional transitions occurs, culminating in the fusion with
lysosomes to establish endolysosomal compartments. This fusion
event leads to the formation of an acidic milieu within the
endolysosomes, which is optimal for the activation and function
of lysosomal hydrolases, thereby facilitating the degradation of
internalized macromolecules. Oligosaccharides play a critical role
in this process, as they are not merely structural components but also
functional signals that dictate the enzyme’s destination. The correct
modification of these oligosaccharides ensures proper enzyme
targeting and functionality within the lysosome (Amaral et al.,
2023). Additionally, some lysosomal hydrolases may be directed to
endosomes through MPR-independent targeting mechanisms,
including two targeting alternative receptors, sortilin and
lysosomal integral membrane protein 2. Sortilin plays a role in
sorting the lysosomal hydrolases, such as prosaposin, acid
sphingomyelinase, cathepsin D and cathepsin H. Lysosomal
integral membrane protein two is involved in the transport of
β-glucocerebrosidase (Coutinho et al., 2012). In addition to
the pathways mediated by targeting receptors, some lysosomal
proteins without specific targeting signals may reach the
plasma membrane through the constitutive secretory pathway
and then arrive at lysosomes via endocytosis (Braulke and
Bonifacino, 2009a).

3.1.2 Lysosomal membrane protein
Lysosomal membrane proteins (LMPs) are predominantly

found in the limiting membranes of lysosomes and serve
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various functions, such as acidifying the lysosomal lumen,
facilitating the transport of degradation products, and
mediating membrane fusion. Lysosome-associated membrane
proteins 1 and 2 (LAMP1 and LAMP2) are the most prevalent
membrane proteins, constituting approximately half of all
lysosomal membrane proteins (Tong et al., 2022). Due to their
abundance and localization within the membrane, LAMPs are
considered to act as a protective barrier within the acidic
environment of the lysosome (Cesar-Silva et al., 2022).
However, recent studies have indicated that LAMPs play a role
in various cellular processes, including phagocytosis, chaperone-
mediated autophagy, macroautophagy, and cholesterol transport
(Gu et al., 2021; Xu et al., 2023). Additionally, other important

lysosomal membrane proteins, such as vacuolar-type
ATPase(V-ATPase) and proton pumps located in late
endosome membranes, are also essential for maintaining the
acidic pH necessary for lysosomal functions (Nakanishi-Matsui
and Matsumoto, 2022).

These LMPs are also derived from the TGN and are
transported to lysosomes via both direct and indirect routes.
The majority of LMPs are delivered to the plasma membrane
via the secretory pathway and subsequently proceed to
lysosomes through the endocytic pathway, whereas some
LMPs are directly transported from TGN to the
endolysosomal pathway (Luzio et al., 2014; Braulke and
Bonifacino, 2009b) (Figure 1).

FIGURE 1
The biogenesis and degradation process of lysosomes. Lysosomal hydrolases MPR-independent targeting pathway (red arrows): Lysosomal
hydrolases were delivered to the Golgi apparatus and subsequently recognized by mannose-6-phosphate receptors (MPRs). The resulting hydrolase-
MPR complexes were then transported to fuse with early endosomes, ultimately forming the late endosome. After the fusion event between the vesicle
containing hydrolases-MPR complexes and the early endosome, the MPRs disassociate from the hydrolases and undergo recycling back to the
Golgi apparatus. Lysosome membrane protein transportation pathway (yellow arrows): Lysosomal membrane proteins (LMPs) are sorted at the Golgi
apparatus and transported to endosomes directly or first transported to the cell plasma before being transferred to early endosomes through various
endocytic mechanisms, including phagocytosis, micropinocytosis and clathrin-mediated endocytosis. Endosome-lysosome pathway (purple arrows)
The early endosomes transform into late endosomes through fusion with vesicles and the luminal acidification formed by V-ATPase promotes the activity
of lysosomal hydrolases, enhancing the degradation of cargos. Phagosome-lysosome pathway (black arrows): Phagosomes formed through cell
phagocytosis mature and fuse with lysosomes, resulting in the eventual degradation of cargos contained within the phagosomes. Autophagosome-
lysosome (green arrows):Autophagic cargos undergo degradation by lysosomes via the fusion of autophagosomes with lysosomes. Lysosome
reformation (blue arrows):Lysosome reform from hybrid vesicle, including endolysosomes, phagolysosomes, and autolysosomes through tubulation,
through processes of tubulation, budding off, and the formation of new mature lysosomes.
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3.2 Lysosomal fusion and reformation

The intricate process of lysosome biogenesis involves a well-
orchestrated sequence of events, including the synthesis of
lysosomal proteins and endosome-lysosome fusion (Figure 1).
Following post-translational modifications and sorting,
lysosomal proteins are transported into the cytoplasm through
clathrin-coated vesicles originating from the TGN or plasma
membrane. The specifics of lysosomal protein processing and
sorting have been elucidated in previous part 2.1.1 and 2.1.2.
Here, we summarize the mechanisms involved in lysosomal
fusion and reformation from the perspectives of both the
endosomal-lysosomal system and the autophagy-
lysosome system.

3.2.1 Endosomal-lysosomal system
Endosomes are a type of heterogeneous vesicles formed by the

endocytosis or phagocytosis of cells. Early endosomes are formed
through the process of plasma membrane invagination and
undergo maturation into late endosomes through continuous
membrane input and output as well as material exchange.
This maturation process is pivotal in the endocytic pathway,
involving the replacement of key regulators specific to early
endosomes. Specifically, Rab5, a small GTPase integral to
the function and dynamics of early endosomes, is replaced by
Rab7, a counterpart that characterizes late endosomes.
Concurrently, phosphatidylinositol 3-phosphate (PtdIns3P), a
phosphoinositide lipid critical for signaling and membrane
trafficking at the early endosome stage, is substituted by
phosphatidylinositol 3, 5-bisphosphate [PtdIns(3,5) P2]. This
lipid serves as a molecular flag of late endosomes, marking the
transition and functional shift from early to late endocytic
compartments. These replacements underscore the intricate
regulation of endosome maturation. (Striepen and Voeltz,
2023; Schink et al., 2016). Late endosomes further interact
with vesicles containing hydrolases-MPR complexes and
receive the hydrolases bound to MPRs in vesicles from the
TGN. Within the acidic confines of the late endosome lumen,
hydrolases detach from MPRs and persist within the endosomal
lumen, whereas MPRs recycle back to the TGN. Subsequently, the
lysosomal hydrolases degrade endocytosed macromolecular
cargos (Huotari and Helenius, 2011; Scott et al., 2014;
Jeger, 2020).

Lysosomes play a critical role in receiving and degrading
cargoes produced through endocytosis (Yang and Wang, 2021).
The rapid consumption of the lysosome pool during the
degradation process underscores the importance of lysosomal
regeneration for maintaining lysosomal homeostasis. Lysosomal
reformation, characterized by the emergence of tubules from
hybrid vesicles that subsequently bud off to form new mature
lysosomes, represents a prominent pathway for replenishing the
lysosome pool (Dai et al., 2019; Nanayakkara et al., 2023). As
revealed via mechanistic studies, these processes are regulated by
various factors, such as mechanistic target of rapamycin complex 1
(mTORC1) (Li et al., 2021), PtdIns (3, 5) P2 produced by PtdIns3P
5-kinase PIKfyve (Dong et al., 2010), and the lysosomal Calcium
ions (Ca2+) channel TRPML1 (Huang et al., 2024), which regulate
the release of Ca2+.

3.2.2 Autophagosome-lysosome system
The phagophore are nascent, double-membrane structures that

initiate the process of autophagy by expanding around cytoplasmic
constituents, including damaged organelles or misfolded proteins, to
form autophagosomes, which are critical for the sequestration and
subsequent degradation of cellular components within lysosomes.
Subsequently, autophagosomes fuse with lysosomes to form
autolysosomes, within which lysosomal enzymes degrade
damaged organelles or proteins. The fusion between
autophagosomes and lysosomes is a pivotal event in the
autophagosome-lysosome system, which is modulated by various
factors, such as SNAREs (Pellegrini et al., 2023), small GTPases (Roy
and Roux, 2020), tethering factors (Mei et al., 2023).

The process of autophagic lysosome reformation (ALR) is
necessary to regenerate the lysosomes from autolysosomes, which
is important to restore the lysosomal pool and maintain lysosomal
homeostasis. During the ALR, phosphatidylinositol 4, 5-
bisphosphate (PtdIns(4,5)P2) plays an crucial role. Recent studies
have found that the dysregulation of PtdIns(4,5)P2 inhibits the ALR,
consequently resulting in the lysosomal depletion and the
suppression of autophagy (McGrath et al., 2021). PtdIns(4,5)P2 is
predominantly found on autophagic lysosomes, where its
enrichment can recruit adaptor protein 2 (Yang and Wang, 2021;
Nanayakkara et al., 2023). Adaptor protein 2, in turn, facilitates the
recruitment of clathrin, which plays a key role in mediating the
budding of autophagic lysosomes, thereby promoting the formation
of reformation tubules, a hallmark feature of ALR. The emergence of
these tubules is the most prominent feature of ALR. Subsequently,
the tip of the tubule sprouts to form a new prolysosome, which is
transformed into a mature lysosome after the maturation stage
(Chen and Yu, 2013).

3.3 Lysosomal consumption

The maintenance of lysosome pool homeostasis is essential for
preserving cellular functionality. Recent research indicates that the
abundance of lysosome pools may diminish during cell division and
become depleted for degradation of autophagic and endocytic cargo,
leading to a disruption in lysosome homeostasis (Yin et al., 2020).
The mechanisms involved in lysosomal consumption primarily
includes: 1) lysosomal exocytosis; 2) lysosomal fusion with
autophagic or endocytic vesicles and consumed for cargo
degradation; 3) autophagic processes.

3.4 The regulation of lysosome biogenesis

Lysosomes enhance their quantity through the upregulation of
lysosomal and autophagy genes at the transcriptional level in order
to uphold intracellular lysosome pools’ equilibrium. Various
transcription factors, specifically transcription factor EB (TFEB)
and transcription factor E3 (TFE3) from the microphthalmia family
(MiT/TFE), play a crucial role in orchestrating lysosome biogenesis
and autophagy. Recent research has shown that TFEB and
TFE3 govern the expression of numerous autophagy-related and
lysosomal proteins (Settembre et al., 2013). The transcriptional
factors TFEB and TFE3 upregulate lysosomal biogenesis and
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autophagy through interaction with the Coordinated Lysosomal
Expression and Regulation element (CLEAR), a palindromic ten-
base pair motif ‘GTCACGTGAC’ situated in the premotor region of
lysosomal genes (La Spina et al., 2021). The activity of TFEB and
TFE3 is modulated by their translocation between the cytosol and
the nucleus. In conditions of sufficient nutrients, mTORC1 becomes
activated and phosphorylates TFEB at multiple serine residues
(S211, S142, S122) and TFE3 at serine 321 (Paquette et al., 2021).
This phosphorylation promotes the binding of TFEB and TFE3 to
14-3-3 proteins, inhibiting their translocation from the cytosol to the
nucleus. Conversely, during periods of nutrient deprivation or
cellular stress, TFEB and TFE3 are dephosphorylated by
inactivated mTORC1 and subsequently translocated to the
nucleus where they stimulate lysosomal biogenesis and autophagy
(Dang and Back, 2021; Zhitomirsky et al., 2018). The
dephosphorylation of TFEB and TFE3 can be modulated by
glycogen synthase kinase three beta (GSK-3β) through the
protein kinase C and the eukaryotic translation initiation factor
4A-3 signaling pathways (Pan and Valapala, 2022). Calcineurin is
activated by Ca2+ released from lysosomes via TRPML1 in reaction
to various lysosomal stressors, leading to the translocation of
dephosphorylated TFEB to the nucleus and enhancing the

transcription of autophagic and lysosomal genes (Hu et al.,
2023). MYC, the transcription factor characterized by its basic
helix-loop-helix structure, can bind to the promoters of genes
targeted by TFEB, inhibiting the binding and activation of TFEB
for transcription (Wu and Eisenman, 2021). ZKSCAN3, a zinc-
finger protein containing KRAB and SCAN domains, serves as a key
transcriptional repressor of genes involved in lysosomal and
autophagy processes that are targeted by TFEB (Ouyang et al.,
2023; New-Aaron et al., 2021; Ding et al., 2022). In addition to
phosphorylation, TFEB is subject to regulation through
glycosylation, cysteine oxidation, and acetylation. The post-
translational modification of TFEB through the acetylated lysines
has been identified as a mechanism for regulating its activity
(Franco-Juárez et al., 2022). Recent research had shown that
General Control Non-repressed five protein, the histone
acetyltransferase disrupted the dimerization and transcriptional
activity of TFEB by acetylating specific lysine residues (K116,
K274, and K279), ultimately inhibiting lysosomal biogenesis
(Wang Y. et al., 2020). STIP1 homology and U-box-containing
protein 1 has been shown to facilitate the activation and nuclear
translocation of TFEB through the ubiquitination and degradation
of HDAC2 (Lu et al., 2023). Consequently, the biosynthesis of

FIGURE 2
The regulation network of TFEB/TFE3 in lysosome biogenesis TFEB/TFE3 is an important transcription factor in lysosome biogenesis. In conditions of
sufficient nutrients, mTORC1 phosphorylates TFEB/TFE3, resulting in TFEB binding to 14-3-3 and retention in the cytoplasm. Nutrient deprivation or
cellular stress inhibits the activity of mTORC1, leading to the dephosphorylation and nuclear translocation of TFEB/TFE3. GSK-3β suppress the activity of
TFEB/TFE3 by dephosphorylating it. STUB1 activates the TFEB through the ubiquitination and degradation of HDAC2. Ca2+ release activates the
TFEB/TFE3 via calcineurin, which dephosphorylates TFEB, leading to its nuclear translocation. GCN5 inhibits the transcriptional activity of TFEB by
acetylating specific lysine residues. MYC and ZKSCAN3 inhibit the transcription of TFEB. In the nuclear, TFEB/TFE3 bind with CLEARmotif to promote the
expression of lysosomal genes and autophagy genes. Abbreviations: TFEB, transcription factor EB; TFE3, transcription factor E3; mTORC1, mechanistic
target of rapamycin complex 1; GSK-3β, glycogen synthase kinase three beta; Ca2+, calcium ions; STUB1, STIP1 homology and U-box-containing protein
1; GCN5, general Control Non-repressed five protein; ZKSCAN3, Zinc finger protein with KRAB and SCAN domains 3; CLEAR, coordinated Lysosomal
Expression and Regulation element.
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lysosomes is regulated by the activation of TFEB or TFE3 in the
cytoplasm and their subsequent transcriptional activity in the
nucleus (Figure 2).

Apart from the major regulator TFEB, several other regulators
for lysosome biogenesis have been reported as well. BRD4 has been
recognized as a potential suppressor of autophagy, capable of
inhibiting the transcriptional activity of lysosomal genes through
its interaction with the Histone H4 lysine 16 residue (H4K16) at the
promoters of these genes (Gong et al., 2022). Moreover, signal
transducer and activator of transcription 3(STAT3) has been
implicated in the regulation of lysosomal gene expression.
Lysosomal protease deficiency or protein overload leads to the
generation of lysosomal reactive oxygen species and activation of
STAT3, which in turn can stimulate the transcription of key
lysosomal proteolytic hydrolases. Recent research has indicated
that STAT3 may additionally interact with V-ATPase and
enhance its function, indicating that the role of STAT3 in
regulating lysosomal acidification is independent of its
transcriptional capabilities (Liu et al., 2018).

4 Lysosomes modulate the OCs
differentiation

Lysosomes serve as conventional storage organelles for
intracellular Ca2+, a crucial signaling messenger in cells.
Fluctuations in cytoplasmic Ca2+ levels can activate various
pathways and impact cellular functions such as proliferation,
differentiation, migration, and apoptosis (J et al., 2022). OCs,
the specific bone-resorbing cells, are integral in maintaining bone
homeostasis. Recent research has highlighted the essential role of
Ca2+ in the regulation of OC differentiation. The knockdown of
P2X7R, an ion channel receptor, might decrease the Ca2+ influx
and impacts the intracellular Ca2+ levels, which lead to the
repression of the nuclear factor of activated T cells 1
(NFATc1)- mediated gene transcription, thereby inhibiting the
differentiation of OCs (Ma et al., 2022). Additionally, transient
receptor potential mucolipin 1, two-pore channel, and two-
transmembrane channel for trimeric Ca2+ (P2X4) are three
major ion channels located in the lysosomal membrane that
regulate the release of lysosomal Ca2+. The knockdown and
depletion of TRPML1 can prevent the release of lysosomal Ca2+

and block the process of Ca2+ oscillations, thereby impeding the
activation of NFATc1 and osteoclastogenesis genes
(Erkhembaatar et al., 2017). Two-pore channel 2 has been
identified as crucial for OC differentiation, as evidenced by the
hindrance of RANKL-regulated processes, including
NFATc1 activation and Ca2+ release, in two-pore channel 2-
knockdown cells (Webb et al., 2020). In addition to the Ca2+

signal, the process of lysosome biogenesis also affects the
differentiation of OCs. Rab11A and Rab34, members of the
small GTPase family, facilitate the proteolysis of
osteoclastogenic receptors c-fms and RANK through the early
endosomes–late endosomes–lysosomes pathway, leading to the
suppression of transcriptional activity of c-fos, NFATc-1, and OC
differentiation (Okusha et al., 2020; Feng et al., 2022). Tet
methylcytosine dioxygenase 2 (TET2) functions as a DNA
demethylase by oxidizing 5-methylcytosine to 5-

hydroxymethylcytosine. Knockdown of TET2 also results in
decreased formation of autophagic vesicles through upregulation of
BCL2 expression (Yang et al., 2022). Rab interacting lysosomal
protein (RILP) could reduce the migration of preosteoclasts by
PI3K/AKT signaling to regulate the formation of OCs (Wu et al.,
2023). It can be concluded that lysosomes play a crucial role in OC
differentiation, with lysosomal Ca2+ and proteins serving as important
regulators. Due to the complexity of OC differentiation and the
involvement of multiple factors, it is probable that additional
lysosomal regulators or pathways are implicated in this process
and warrant further investigation.

5 Lysosomes in bone resorption of OCs

5.1 Overview of bone resorption

OCs, large multinucleated cells derived from hematopoietic
precursors, possess secretory lysosomes with distinctive regulated
exocytic ability, similar to other cell types such as melanocytes and
cytotoxic lymphocytes (Gros and Muller, 2023; Kodama and Kaito,
2020). The process of bone resorption involves a dynamic multi-step
cycle that commences with the polarization of OCs and the
reorganization of their cytoskeleton (Figure 3). The plasma
membrane of activated OCs can be subdivided into four distinct
domains: ruffled border (RB), sealing zone (SZ), functional secretory
domain (FSD), and basolateral membrane (BL) (Hou et al., 2023).
Subsequently, activated OCs form SZ rich in filamentous actin
(known as actin ring) via αvβ3 integrins in order to attach to the
bone surface and create isolated resorption lacunae. Following tight
adhesion to the bone matrix, the plasma membrane facing the bone
fuses with late endosomal vesicles to form the RB, significantly
increasing surface area (Hou et al., 2023; Soysa and Alles, 2016; Ng
et al., 2019). The RB serves as a specialized resorbing organelle that
releases protons and lysosomal proteases through vesicular cytosis
to the isolated resorption compartment. Therefore, the RB
combined with resorptive lacunae is referred to as a “giant
extracellular lysosome” (Väänänen et al., 1990). The maintenance
of RB is implicated with the continuous retrieval of plasma
membrane and fusion of biosynthetic and transcytotic vesicular
trafficking (Na et al., 2020). Interestingly, proteins related to
autophagy, including Atg7, Atg4B, and LC3, are suggested to
play a role in RB development (Soysa and Alles, 2016).

As bone matrix is the complex of both organic (mostly type I
collagen) and inorganic (mainly crystalline hydroxyapatite
([Ca3(PO4)2]3Ca(OH)2) components, resorptive lacunae requires
acidic microenvironment to dissolve mineral as well as
proteolytic enzymes to degrade organic matrix (Yang and Wang,
2021; Gong et al., 1964). The acidification of the lacunae in bone
resorption is reliant upon the coordinated action of various
lysosomal proteins, including active macromolecule membrane
transporters (primarily V-ATPase), ion channels (such as ClC-7),
and lysosomal membrane proteins (such as OSTM1), collectively
referred to as acidification proteins (Lacombe et al., 2013; Ng et al.,
2019; Xu et al., 2007). This acidic microenvironment serves a dual
purpose in bone resorption, facilitating both the activation of
proteolytic enzymes and the sealing of resorptive pits, as
supported by existing evidence. The degraded bone matrix,
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including collagen fragments, calcium, and phosphate, is primarily
transported by RB through transcytosis and released at the FSD,
the membrane opposite to the RB (Veis and O Brien, 2023).
Molecules smaller than 100 kDa may passively infiltrate
through the SZ, but their contribution is minimal (Coxon and
Taylor, 2008) (Figure 3).

5.2 Lysosomal protein and bone resorption

Lysosomal proteins for bone resorption can be classified into
two primary categories: lacunae acidification proteins for dissolving

mineral within acidic lacunae and proteolytic enzymes for degrading
organic matrix (see Table 1).

5.2.1 Lacunae acidification protein
The V-ATPase, initially identified in yeast and plant vacuoles, is

a widely distributed macromolecular complex that transports
protons using energy derived from ATP hydrolysis in mammals
(Futai et al., 2019). It is functionally divided into two sectors: the
catalytic V1 sector and the proton-translocating V0 sector. The
peripheral V1 sector, consisting of eight subunits (A3, B3, C1, D1,
E3, F1, G3, and H1), generates energy through ATP hydrolysis and
initiates the rotation of the V0 sector. In contrast, the membrane-

FIGURE 3
Secretory lysosomes trafficking in resorbing OCs. Polarized osteoclasts (OCs) adhere to bone matrix by a sealing zone composed of actin ring that
acts like a gasket encompassing the ruffled border. Secretory lysosomes derived from endosomal pathway transport lysosomal proteins to ruffled border
via Rab7 and its downstream effector (such as PLEKHM1). As Lacunae acidification proteins inserted into ruffled border (RB) and proteolytic enzymes
released in bone resorption lacunae, bone matrix is degraded and then is reuptook by RB through transcytosis. TRAP and CTSK, which are localized
within transcytotic vesicles, are involved in the reprocessing of the degraded matrix. Ultimately, degradation products are released at the FSD.
Abbreviations: RB, ruffled border; SZ, sealing zone; FSD, functional secretory domain; BL, basolateral membrane; CLC-7, chloride channel type 7;
V-ATPase - Vacuolar-type ATPase; MMPs, matrix metalloproteinases; TRAP, tartrate-resistant acid phosphatase; CTSK, cathepsin K; PLEKHM1, protein
family member 1.
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bound V0 sector, composed of six subunits (a, d, e, c, c’, and c’’), is
energized by the V1 sector and facilitates the movement of protons
across biological membranes (Vasanthakumar and Rubinstein,
2020; Ribet et al., 2021). In response to the acidifying resorption
area, OCs have evolved specific subunit isoforms, a3 and d2, which
are expressed in secretory lysosomes. The upregulation of these
expressed isoforms during differentiation suggests that the
V-ATPase equipped with them serves as the primary proton
pump in OCs (Nakanishi-Matsui and Matsumoto, 2022; J et al.,
2003; H et al., 2009). Additionally, a high-affinity interaction
between the a3 and d2 isoforms is demonstrated by GST pull
down assay. The a3 isoform is genetically encoded by TCIRG1 in
humans and ATP6i in mice. The knock out of a3 gene caused a
phenotype of osteopretrosis (abnormally high bone density) owing
to the inability to acidify lacunae in OCs, consistent with the
phenotype observed in all-type mutations of the a3 gene
(Nakanishi-Matsui and Matsumoto, 2022; Ribet et al., 2021;
Matsumoto et al., 2018). Conversely, deficiencies in the H or
G1 isoforms led to osteoporosis (decreased bone density) in
mice, highlighting the multiple role V-ATPase isoforms play in
the bone homeostasis (Duan et al., 2018). In the process of bone
resorption, V-ATPase in secretory lysosome was transported and
inserted into RB with the aid of a3 isoform to provide a large amount
of acid equivalents necessary to dissolve mineral (Veis and O Brien,
2023). Likewise, V-ATPase Ac45 was found to regulate OC
acidification and bone resorption (Feng et al., 2008; Qin et al.,
2011). Consistently, suppression of V-ATPase by small molecule
inhibitors such as balfilomycin and saliphenylhalamide lead to the
inhibition of OC acidification and function (Qin et al., 2012; Zhu
et al., 2016a).

In order to regulate the ionic balance within lysosomes and
resorption lacunae in OCs, the transportation of Cl− ions is primarily
facilitated by chloride channel type 7(ClC-7) (Zhao et al., 2009a). As
a widely distributed member of the CLC chloride channel family,
ClC-7 functions as a CL−/H+ antiporter situated in late endosomes,
lysosomes, and the RB of bone-resorbing OCs (Stauber et al., 2012).
Studies on OCs attached to ivory in CLC-7 knockout mice have

demonstrated an inability to acidify resorption lacunae, as indicated
by staining with the pH-sensitive dye acridine orange (Kornak et al.,
2001). However, conflicting research suggested that mutations in
CLC7N, the gene encoding ClC-7, did not impact the pH levels
within the lumen. The Cl− flux is proposed to play a pivotal role in
vesicular trafficking within early endosomes by modulating the
influx of lysosomal Ca2+ (Sobacchi et al., 2013). In contrast to
other ClC chloride channels, ClC-7 requires the distinct β-
subunit osteoclastogenesis associated transmembrane protein 1
(Ostm1) for its specialized functions in bone resorption and
lysosomal activity. Recent studies utilizing cryoelectron
microscopy have elucidated the mechanism underlying the
interaction between ClC-7 and Ostm1. The intravesicular domain
and transmembrane domain of ClC-7 are shielded by the highly
glycosylated Ostm1 subunit, providing protection against
proteolysis within lysosomes and the resorptive region (Schrecker
et al., 2020; Zhang S. et al., 2020). ClC-3 has been identified on late
endosomes and is implicated in bone resorption through
acidification of the lumen (Okamoto et al., 2008). Resorbing OCs
also express ClC-4, ClC-5, and ClC-6, although the specific
functions and subcellular locations of these chloride channels
remain ill-defined (Stauber et al., 2012).

5.2.2 Proteolytic enzymes
The proteolytic resorption of exposed organic matrix occurs

after the dissolution of the inorganic matrix, as the activation of
proteolytic enzymes depends on acidic mircroenvironment.
Among them, cathepsin K(CTSK), a cysteine protease belonging
to the papain family, is predominantly expressed in OCs. As is
mentioned before, over 90% of the organic composition of bone
consists of type I collagen, with the remaining portion comprising
non-collagenous proteins such as osteocalcin, osteonectin,
osteopontin, fibronectin, thrombospondin, and bone
sialoprotein. Type I collagen composes covalently cross-linked
triple helices formed by two α1I) and one α2I) chains (Lecaille
et al., 2008). Unique among cysteine protease, CTSK is able to
degrade both helical and telopeptide domains of type I collagen as

TABLE 1 The functions of known lysosomal proteins (lacunae acidification protein and proteolytic enzymes) involved in bone resorption.

Protein Function Category Citation

V-ATPase Maintenance of acidic microenvironment in lysosomal and resorptive
lacunae; Location of Rab7 and Rab27a

Lacunae acidfication
protein

(Matsumoto et al., 2018; Matsumoto and
Nakanishi-Matsui, 2019; Zhao et al., 2001)

ClC-7 Maintenance of ionic homeostasis in lysosomal and resorptive lacunae;
Presumable involvement with vesicular trafficking

(Saito et al., 2007; Weinert et al., 2010; Graves et al.,
2008)

Ostm1 Prevention of ClC-7 from proteolysis as β subunit of ClC-7 (Schrecker et al., 2020; Zhang et al., 2020a; Lange et al.,
2006)

ClC-3 Involvement in acidifying lysosomal and resorptive lacunae Okamoto et al. (2008)

CTSK Degradation of type I collagen and several non-collagen proteins;
Involvement in lysosomal proteins transport

Proteolytic enzymes (Ghosh et al., 2003; Brömme and Okamoto, 1995;
Rosen et al., 1994)

MMP-9 Degradation of organic matrix via interaction with MMP-14 Zaidi et al. (2001)

MMP-14 Degradation of organic matrix via interaction with MMP-9 Zaidi et al. (2001)

MMP-13 Substitute for bone collagenolysis in pathological condition Delaissé et al. (2003)

TRAP Further processing of degraded collagen (Vääräniemi et al., 2004; Yamaza et al., 1998; Halleen
et al., 1999)
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well as the osteonectin and osteopontin (Zaidi et al., 2001; Costa
et al., 2011). As high exclusive expression level of mature CTSK is
demonstrated in OCs near bone surface, it can be speculated that
immature CTSK is activated in lysosomal luminal with a potential
regulator, phosphatidylinositol 3-kinases, and then secreted to
resorption area as mature CTSK (Costa et al., 2011). In
addition to OCs, CTSK is expressed in various tissues,
including bone, ovary, heart, placenta, lung, skeletal muscle,
colon, and small intestine, albeit at low levels (Zhao et al.,
2009b). Mutations in CTSK can lead to pycnodysostosis, a rare
autosomal recessive skeletal dysplasia syndrome (Mijanović et al.,
2022). In CTSK knockout mice, OCs exhibit impaired degradation
of the organic bone matrix, while biogenesis and demineralization
remain unaffected (Costa et al., 2011). Increased OC numbers in
some CTSK knockout mice may be attributed to the involvement
of CTSK in apoptosis. Furthermore, CTSK contains a mannose-6-
phosphate moiety that interacts with MPRs to facilitate transport
of lysosomal proteins to endo-lysosomal system (Ghosh
et al., 2003).

In addition to CTSK, matrix metalloproteinase (MMP) also
contribute to the solubilization of organic components. Members
of the MMP family possess the ability to cleave type I collagen at
specific peptide bonds within the triple-helical domain (Yasuda
et al., 2005). However, the enzymatic activity of MMPs extends
beyond bone resorption, which means they are also involved in
OC differentiation, OC migration and so on. Certain MMPs
found in resorption lacunae, such as gelatinases MMP-2 and
MMP-9, and collagenases MMP-13 and MMP-14, have been
identified as participants in collagenolysis (Delaissé et al.,
2003). They seem to engage in a compensatory network in
bone collagenolysis, the mechanism of which remains unclear,
as the deficiency of each of these enzymes did not lead to a bone
phenotype. MMP-9, primarily expressed in OCs, was suggested to
potentially work in tandem with MMP-14 based on the
osteopetrotic phenotype observed and the reduced bone
resorbing activity seen in Mmp-9/Mmp-14 double knockout
mice. Moreover, the concurrent inhibition of MMP-9 and
MMP-14 has been shown to reduce bone loss in mice with
parathyroid hormone or ovariectomy, suggesting a promising
therapeutic approach for osteoporosis (Zhu et al., 2020). In
pathological conditions such as CTSK deficiency or tumor-
induced osteolysis, non-osteoclastic MMP-13 may potentially
compensate for collagen degradation in bone, as evidenced by
the consistent rate of collagen breakdown independent of MMP-
13 (Delaissé et al., 2003). Additional research is necessary to draw
a definitive conclusion.

Tartrate-resistant acid phosphatase (TRAP), commonly utilized
as a biomarker for OCs, has been found to co-localize with CTSK
and collagen fragments within transcytotic vesicles. It has been
observed that the phosphatase activity of TRAP can be enhanced
by CTSK, suggesting a potential role for TRAP in the further
degradation of collagen, a process that may also involve reactive
oxygen species generated through its redox-sensitive iron atom. The
presence of a neutral pH environment within transcytotic vesicles
indicates that ROS, which can adapt to this pH level, may have a
more significant impact compared to the phosphatase function of
TRAP (Coxon and Taylor, 2008; Zhao, 2012; Vääräniemi
et al., 2004).

5.3 The regulation of lysosomes in bone
resorption

OCs have two different lysosomal systems: conventional
lysosomes, which primarily contain acidic hydrolase cathepsin D
and are responsible for maintaining intracellular homeostasis, and
secretory lysosomes, which play a crucial role in bone resorption by
promoting the formation of RB, releasing lysosomal acid hydrolases,
and acidifying the resorptive microenvironment (H, 2012). During
the bone resorption, the biogenesis, trafficking and fusion with
plasma of secretory lysosomes is considered the crucial phase for
various regulators (see Table 2) to modulate bone
resorption activity.

5.3.1 Secretory lysosomes biogenesis
The proteins in secretory lysosomes, including MMP, CTSK,

and TRAP, are synthesized in ribosomes and modified in the
endoplasmic reticulum, then transported to TGN. Some proteins,
such as CTSK and TRAP, were modified with phosphomannosyl
residues which is specifically bound with MPR, and then is
transported from TGN to endocytic compartments, where the
acid environment results in the disassembly of the enzymes-MPR
complexes. The released enzymes are packed into the secretory
lysosomes, whereas MPRs recycle back to the TGN. Other enzymes,
such as CTSK, have been reported that their sorting process is MPR-
independent pathway (Amaral et al., 2023).

Secretory lysosomes biogenesis process, including the synthesis
and sorting of protein enzymes, endosome-lysosome fusion, is
regulated by various factors. Research has shown that the sorting
of CTSK and TRAP from TGN to secretory lysosomes was
suppressed due to the distribution of MPR targeting pathway,
leading to decreased formation of secretory lysosomes and
inhibition of bone resorption activity (Vääräniemi et al., 2004).
The knockdown of GlcNAc-1-phosphotransferase leads to
disruption of the MPR pathway, thereby inhibiting the formation
of the secretory lysosome (Zhu et al., 2020). Moreover, it has been
demonstrated that gasdermin D (GSDMD) limited the formation
and function of secretory lysosomes through the endo-lysosomal
pathway. The depletion of GSDMD promoted the lysosomal
intracellular activity and bone-resorption activity (Li et al., 2022).
RANKL play an important role in regulating the biogenesis of
secretory lysosomes in OCs, among which protein kinase Cβ
mediates RANKL-induced secretory lysosomal biogenesis via the
phosphorylation of TFEB on three serine residues, S462, S466, and
S468 (M et al., 2013).

5.3.2 Secretory lysosome transport and fusion
with plasma

During the process of bone resorption, the regulation of cargo
delivery and plasma membrane recycling through vesicular
trafficking necessitates the involvement of various regulators,
including the Rab GTPase family and SNX proteins. The Rab
GTPase family, which comprises approximately 70 members in
mammals, can be classified into two groups based on their
molecular weights: small Rab GTPases (20–30 kDa) and large
Rab GTPases (70–150 kDa) (Tsukuba et al., 2021; Y et al., 2021).
These GTPases serve as key coordinators of membrane transport,
existing in two reversible states: an active GTP-bound state and an
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inactive GDP-bound state. Indeed, the GTP-bound/GDP-bound
switch is regulated by guanine nucleotide exchange factors
(GEFs) responsible for GTP/GDP exchange and GTPase-
Activating Protein for GTP-hydrolysis. In active state, Rab
proteins recruit numerous effector which interacts with actin
or microtubule-related motor proteins to regulate multiple stages
of vesicle trafficking ranging from budding to fusion (Roy and
Roux, 2020; Lamber et al., 2019; Bhuin and Roy, 2014). The
localization and function of Rab GTPase family rely on
prenylation, a practical approach to enables proteins to
efficiently bind to lipid bilayers, thereby facilitating their
dynamic recruitment from membranes for regulatory
purposes. Impaired prenylation may lead to OC apoptosis
(Coxon et al., 2006). Studies have found that dual prenylation
is essential to the functionality of Rab GTPase, as mono-

prenylated Rab protein failed to support the growth of yeast in
limited temperature and localize to correct intracellular
membrane. This deficiency was likely attributed to their
limited ability to effectively integrate into the lipid bilayer of
the modified protein (Calero et al., 2003). Furthermore, the newly
synthesized Rab protein, in its GDP-bound state, is known to be
recognized by the Rab escort protein. The Rab escort protein then
hands it over to the Rab geranylgeranyl transferase RGGT, an
enzyme that catalyzes the geranylgeranylation of one or two
cysteine residues at the carboxy terminus of the Rab proteins.
The release of prenylated, inactive Rab GTPase from subcellular
membranes into the cytosol is facilitated by GDP dissociation
inhibitor binding to the hydrophobic groups of Rab GTPase. GEF
plays a role in transporting Rab GTPase to new target membranes
by releasing GDP dissociation inhibitor (Roy and Roux, 2020).

TABLE 2 OC proteins involved in regulating secretory lysosomes during bone resorption.

Protein Location Function OC function Citation

Gasdermin D Plasma membrane, cytosol, early
endosome

Regulation of pyroptosis Lysosomal maturation
and secretion

Vääräniemi et al. (2004)

GlcNAc-1-
phosphotransferase

Golgi apparatus Formation of the mannose-6-
phosphate, targeting lysosomal
proteins to the endo-lysosomal
pathway

Secretory lysosome
biogenesis

Zhu et al. (2020)

RANK Plasma membrane Formation of transmembrane
complex by binding with RANKL,
delivering an effective stimulus

Zhao (2012)

Rab7 Late endosomes, lysosomes, RB Regulation of fusion between early
and late endosomes and between late
endosomes and lysosomes; Transport
of secretory lysosomes to RB

Secretory lysosome
trafficking

(Matsumoto et al., 2018; Palokangas
et al., 1997; Feng et al., 1995)

Rac1 Cytosol, RB Interaction with Rab7; Regulation of
the actin cytoskeleton

(Margiotta and Bucci, 2019; Sun et al.,
2005)

PLEKHM1 Late endosomes, lysosomes Interaction with Rab7; Regulation of
the terminal stages of endocytic and
autophagy pathways

(Fujiwara et al., 2016; McEwan et al.,
2015; Baba et al., 2019)

RILP – Regulation of the Cathepsin K
directly/indirectly secretion

Wu et al. (2023)

Rab27a Late endosomes, lysosomes Regulation of the plasma membrane
and lysosomal membrane fusion

(Baba et al., 2019; Shimada-Sugawara
et al., 2015)

Syt VII Lysosomes Regulation of membrane fusion by
interaction with syntaxin 4 (?)

Wang et al. (2005)

Rab3D Post-TGN vesicles Regulation of TGN trafficking to RB;
Involvement in calcium delivery by
interacting with Calmodulin

(Pavlos et al., 2005; Zhu et al., 2016b;
Abu-Amer et al., 1999)

Tctex-1 Rab3D-bearing vesicles Interaction with Rab3D as a
molecular adaptor of dynein motor
complex

Pavlos et al. (2011)

Rab9 Endosomes, lysosomes Involvement in cargo sorting and
vesicular budding from endosomes

Zhao et al. (2002)

Rab13 Vesicles between TGN and basal
plasma membrane

Regulation of secretory lysosomes
transport via interaction with
endospanin-2

(Hirvonen et al., 2012; Hirvonen et al.,
2013)

SNX10 Endosomes, lysosomes Involvement in post-TGN pathway
and/or localization of V-ATPase (?);
Associated with the activation and
transportation of MMP9

(Chen et al., 2012; Sultana et al., 2020;
Zhou et al., 2017)
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Membrane-bound transport is mainly achieved by Rab7, a small
GTPase residing in late endosome/lysosome. In resorbing OCs,
GDP-bound Rab7 is recruited by V-ATPase a3 isoform in
secretory lysosomes, and is subsequent to be activated to be
GTP-bound Rab7 presumably by Mon-Ccz1, the GEF which co-
localizes with V-ATPase a3 isoform (Nakanishi-Matsui and
Matsumoto, 2022; Matsumoto et al., 2022; Matsumoto and
Nakanishi-Matsui, 2019). Among various downstream effector,
Rac1 and protein family member 1(PLEKHM1) are two
identified one recruited by GTP-dependent Rab in OCs. Rac1, a
small Rho GTPase able to control actin cytoskeleton, is thought to
collaborate with Rab7 to mediate RB expansion by indirectly
connecting microtubules and microfilaments that allows late
endosome to be transported to RB in OCs (Margiotta and Bucci,
2019; Sun et al., 2005). Comparatively, PLEKHM1 is known to
mediate endocytic fusion through binding to the GTP-bound form
of Rab7 in aid of DEF, and followed recruitment of FAM98A and
NDEL1 (Fujiwara et al., 2016). Moreover, both the mutation and
depletion of PLEKHM1 can cause phenotype of osteopetrosis with
OCs deficient in RB and bone resorption in vivo (McEwan et al.,
2015). Besides, RILP has been suggested to play a role in bone
resorption function of OCs due to inhibited secretion of CTSK
caused by RILP inhibitor (Wu et al., 2023). In terms of the fusion of
plasma membrane with lysosomal membrane with Rab27a as a
mobility driver, V-ATPase a3 isoform is involved in the localization
of GDP-bound Rab27a (M et al., 2010). Rab7 is also redistributed to
the domain of RB, where it co-localizes with V-ATPase and CTSK,
aligning with the pathological manifestation of diminished CTSK
secretion, bone resorption, and OC polarization resulting from
Rab7 downregulation (Ng et al., 2019; Vaananen, 2005). Syt VII,
a lysosomal-associated protein, may contribute to the membrane
fusion by binding to syntaxin 4, a plasmamembrane SNARE protein
(Zhao, 2012; Wang et al., 2005).

In addition to Rab7 and Rab27a, there is limited information
about other Rab GTPases involving in vesicular trafficking. In
mature OCs, Rab 13 residing in small vesicle between TGN and
basolateral membrane is likely to mediate secretory functions by
interaction with endospanin-2, a small transmembrane protein
(Hirvonen et al., 2012; Hirvonen et al., 2013). Rab9, which has been
observed to co-localize with Rab7 in late endosomes surrounding
nuclei, plays a role in sorting cargo and promoting vesicular
budding from endosomes (Zhao et al., 2002). Rab3D, the most
prevalent Rab3 isoform (Rab3 A/B/C/D) expressed in OCs, is
thought to be involved in RB maintenance by modulating a
TGN trafficking step that is distinct from conventional
endocytic trafficking (Pavlos et al., 2005). Tctex-1 is identified
as an interaction partner of Rab3D that bridges membrane-
microtubule transport through cytoplasmic dynein (Pavlos
et al., 2011). Additionally, Calmodulin has been found to
interact with Rab3D at the RB, potentially aiding in the delivery
and calcium sensitivity of Rab3D-containing vesicles and thereby
influencing bone resorption (Zhu et al., 2016b). More recently,
member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar
transporter was found to regulate secretory lysosomes in OC bone
resorptive function (Ng et al., 2023).

Sorting nexin (SNX) family is composed of various peripheral
membrane protein with a shared phospholipid-binding domain
involved in modulating protein sorting and cargo trafficking. The

SNX10 expression is evidently upgraded during RANKL-induced
osteoclastogenesis in vitro and is expressed in OCs in vivo. Based on
studies performed by shRNA-mediated depletion of SNX10,
SNX10 is required for TRAP secretion and resorption function of
OCs. Research conducted in zebrafish and immortalized HeLa cells
indicates that SNX10 may play a role in the post-TGN trafficking
process and/or the localization of V-ATPases within vesicles (Chen
et al., 2012; Sultana et al., 2020; Zhou et al., 2017). Further
investigations are needed to validate this hypothesis. Additionally,
SNX10 has been linked to the transportation and activity of
MMP9 through the JNK-p38-ERK signaling pathway (Zhou
et al., 2017).

6 Lysosomes in autophagy of OCs

In addition to participate in the process of bone resorption,
lysosomes are also involved in the autophagy of OCs. Autophagy, a
well-conserved catabolic pathway in eukaryotic cells, was initially
observed under conditions of nutrient stress. This process allows for
the recycling of small molecule nutrients and energy, thereby
supporting cellular function and metabolism (Ou et al., 2022).
Recent studies have reported that autophagy is closely associated
with OC differentiation, migration and function. Specifically, during
the process of RANKL-induced OC differentiation, there was a
notable upregulation in the expression of autophagic proteins such
as ATG5, ATG7, and LC3. This increase in expression led to the
formation of actin rings, which play a crucial role in regulating the
initiation of osteoclastogenesis (Tong et al., 2022; Li et al., 2014).
Tannic acid, a polyphenolic compound, was reported to decrease the
quantity of autophagic vesicles and the expression levels of
autophagic proteins such as LC3B, BECN1, ATG5, and ATG7 by
deactivating AKT, ultimately leading to the inhibition of OC
differentiation (D et al., 2022). In a separate study, the
suppression of autophagy, specifically through LC3B depletion,
led to an increase in kindlin3 levels and promoted the interaction
between kindlin3 and integrin β3, resulting in the disassembly of the
actin cytoskeleton and impaired migration of OCs (Zhang Y. et al.,
2020). Other studies have suggested that autophagic proteins also
are involved in the formation of RB and the release of tissue
proteinase K, which is the key factor for maintaining normal
bone resorption process (DeSelm et al., 2011).

Lysosomes play a crucial role in regulating autophagic responses
in OCs. Autophagy can be categorized into three types: chaperone-
mediated autophagy, micro-autophagy, and macro-autophagy,
based on the mechanism by which autophagic substrates are
delivered to lysosomes (Chen et al., 2023). Among these types,
macro-autophagy has been the subject of extensive research and will
be the primary focus of the subsequent chapters, hereafter referred
to simply as autophagy.

In the process of autophagy, a membrane cistern called the
phagophore (also referred to as the isolation membrane) expands
around damaged organelles or misfolded proteins, enclosing them
within a double-membrane structure known as an autophagosome
(Mahmutefendić Lučin et al., 2022). Subsequent fusion of the
autophagosome with lysosomes results in the formation of
autolysosomes, where the degradation of cargo by lysosomal
enzymes takes place. This fusion event between autolysosomes

Frontiers in Cell and Developmental Biology frontiersin.org11

Jiang et al. 10.3389/fcell.2024.1431566

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1431566


and lysosomes, crucial to the autophagic process, is regulated by a
variety of proteins, including Beclin-1, PLEKHM1, and Rab7.
Beclin-1, a crucial regulatory protein, promotes the formation of
autolysosomes through the fusion of autophagosomes with
lysosomes. The knockdown of Beclin-1 impaired autophagosomes
fusion with lysosomes and reduced autophagy flux, thereby
inhibiting the differentiation of OCs (Tong et al., 2021). It was
also reported that IL-17A regulates OC autophagy via ERK/mTOR/
Beclin1 signal and promotes the differentiation of OCs (Tang et al.,
2023). PLEKHM1 is recognized as an essential lysosomal protein
involved in the regulation of lysosome positioning and secretion.
Recent studies have reported that PLEKHM1 interacts with
autophagic protein LC3 to regulate autophagosome-lysosome
fusion, thereby enhancing the bone resorbing activity of OCs
(Fujiwara et al., 2016). Moreover, Rab7 has been shown to be
involved in the autophagosome-lysosome fusion.
PLEKHM1 could interact with Rab7, HOPS-SNARE complexes,
and LC3 proteins to facilitate autophagosome-lysosome fusion,
thereby modulating the bone resorption activity of OCs
(McEwan et al., 2015). Also importantly, SQSTM1/p62 was
found to regulate proteins by targeting them to the ubiquitin-
proteasome system or the autophagy-lysosome pathway in OCs
and bone diseases (Sultana et al., 2021; Rea et al., 2013).

7 Lysosomes in bone disorders

Due to its ubiquitous function in disease pathology, lysosomes as
a therapeutic target have been recognized in many diseases such as
cancer, autoimmune and neurodegenerative disorders (Bonam et al.,
2019). In contrast, the exploration of lysosome-targeted therapeutics
in skeletal diseases has been limited. In addition to exploring
druggable target among lysosome proteins, a profound
comprehension of lysosomal proteins and autophagosome-
lysosome fusion is instrumental in elucidating the pathogenesis
and disease progression, thereby facilitating the development of
therapeutic interventions.

7.1 Osteopetrosis:advancing gene therapy
for improved treatment

Osteopetrosis is a hereditary disease characterized by high bone
mass and increased bone fragility. It is known that the mutations in
TCIRG1, CLCN7, OSTM1, SNX10 or PLEKHM1 can result in
autosomal recessive osteopetrosis with abundant but non-
functional OCs. Interestingly, despite the proposed functions of
these genes, OCs from affected individuals exhibited normal actin-
ring formation and acidic microenvironments in vitro, but displayed
inhibited RB formation, suggesting a potential impact on vesicular
trafficking mechanisms regulated by these genes (Sobacchi et al.,
2013). Autophagy deficiency has been observed in auto recessive
osteopetrosis mice carrying mutations in TCIRG1, potentially
resulting in compromised degradation of autophagic cargo (Wang
et al., 2023). The diverse clinical manifestations associated with
different gene mutations provide valuable information for tailoring
personalized treatment strategies. Individuals with CLCN7mutations
commonly suffer from latent neurodegeneration within the initial

3–6 months of life, a condition unresponsive to hematopoietic stem
cell transplantation (HSCT), the current definitive therapeutic option,
necessitating ongoing vigilant monitoring (Sobacchi et al., 2013). In
comparison to HSCT, gene therapy utilizing autologous
hematopoietic stem and progenitor cells presents potential
advantages over HSCT due to its ability to be promptly arranged
following diagnosis, thereby optimizing therapeutic outcomes and
decreasing the occurrence of graft-versus-host diseases and other
potential transplant-related complications. However, despite these
potential benefits, gene therapy using autologous hematopoietic
stem and progenitor cells has not yet been implemented in clinical
practice (Moscatelli et al., 2021; Chen et al., 2019). Consequently,
further research efforts should be directed towards elucidating the
molecular mechanisms underlying gene mutations and their impact
on clinical phenotypic alterations, including the intricate regulatory
mechanisms and interactions among various proteins.

7.2 Osteoporosis: lysosomes-related
therapeutic targets for OC regulation

Osteoporosis is a chronic skeletal disorder characterized by
reduced bone density, compromised microstructure of bone
tissue, heightened bone fragility, and elevated susceptibility to
fractures. This condition arises from the dysregulation of bone
homeostasis, wherein the process of bone resorption by OCs
surpasses bone formation by OBs (Li et al., 2023; Foessl et al.,
2023). Targeting lysosomal proteins, which play a crucial role in
various stages of OC activity, may offer a potential therapeutic
approach to mitigate the excessive resorptive function of OCs or
inhibit osteoclastogenesis. Some of these treatments had been put
into clinical trial. For example, Odanacatib, an oral inhibitor of
CTSK, has demonstrated the ability to improve bonemineral density
over a 5-year period, strengthen bones, and reduce the incidence of
fractures in both the vertebral and nonvertebral regions. However,
its was discontinued in the Long-term Odanacatib Fracture Trial
due to adverse effects, including strokes (Chapurlat, 2015; Khosla
and Hofbauer, 2017). Moreover, research in animal models and cell
studies suggested that targeting V-ATPase may offer a promising
approach for developing new anti-resorptive therapies for
osteoporosis. Luteolin, an inhibitor specific to OCs that targets
the interaction between V-ATPase a3-d2, effectively inhibits
osteoclastic resorptive activity without compromising
osteoclastogenesis (Chu et al., 2021; Shin et al., 2012). This
preservation of OC-OB coupling promotes osteoblastic bone
formation (Teitelbaum, 2016). However, it remains uncertain
whether these inhibitors can maintain their viability with
appropriate selectivity and minimized potential adverse effect in
clinical application. Furthermore, the precise functions of a majority
of V-ATPase isoforms in OCs are not fully elucidated yet,
necessitating further in-depth research. Targeting autophagy via
inhibiting fusion of autophagosome and lysosome in OCs may also
be feasible in treating the fast bone loss caused by excessive
osteoclastic bone resorption. Studies have shown that the
autophagy inhibitor chloroquine can effectively impede
osteoclastogenesis, mitigate OC activation induced by
ovariectomy, and consequently prevent bone loss in vivo.
Chloroquine has been reported to mainly block autophagic flux
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by inhibiting the autogosome fusion with lysosomes, and more
precisely, the transport of cargo targeted for degradation to
lysosomes in other cell types. More related studies are yet to be
established (Mauthe et al., 2018; Li et al., 2020).

8 Summary and future perspectives

The biogenesis of lysosomes is a complicated process which is
closely associated with various organelles, such as endoplasmic
reticulum, Golgi apparatus and plasma, and is regulated by
multiple transcription factors. We select crucial process to discuss
the biogenesis of lysosomes, including the biosynthesis and delivery
of lysosomal hydrolases, endosome-lysosome trafficking, lysosomal
fusion and reformation, and cargo degradation. Other process, such
as lysosome repair and clearance, which is involved in maintaining
lysosomal pool homeostasis, or lysosome exocytosis, whichmay play
an important role in immune responses, also require further
research. Moreover, apart from the M6P pathway, the
mechanisms regulating the sorting of lysosomal proteins have not
been fully elucidated.

Lysosomes, as metabolic signaling hubs, are intricately linked
to OC differentiation. Despite the identified correlation of many
lysosomal related factors with OC differentiation, few studied
have down to explore the possibility to inhibit OC differentiation
by blocking lysosomal biogenesis. In addition, we also present the
regulation of lysosome involved in the bone resorption and OC
autophagy. On the one hand, lysosomes serve as the regulator of
formation and maintenance of the resorptive organelle, RB, as
well as the supplier of protein required for degradation of organic
and inorganic bone matrix during bone resorption. The whole
process of lysosome biogenesis and vesicular trafficking is
regulated by several factors, although the specific function of
many of them remain implicit. Meanwhile, as an essential part of
vesicle trafficking, transcytosis pathway by secretory lysosome
has not been fully understood, which offers new perspectives for
future research. Furthermore, the interaction of Rab7 and
V-ATPase and indirect activation of proteolytic enzymes by
lacunae acidification protein suggest the potential network
between the protein groups in the process of bone resorption.
Meanwhile, the protein groups are not limited in bone resorption,
which means they play multiple roles in OCs including OC
differentiation and autophagy. A closer look of interaction
mechanism among proteins in different stages of OCs
contributes to better treatment of bone resorption related
diseases. On the other hand, lysosomes are considered as the
core of degradation of damaged or senescent organelles during
autophagy. The OC autophagy is divided into five steps (Chen
et al., 2023): initiation, nucleation, elongation, maturation, and
degradation, among which the fusion between autophagosome
and lysosome is the major event. However, current research on

the autophagosome-lysosome fusion in OCs is limited, so it is
advisable to further explore this process in future. Additionally,
autophagy may be closely associated with OC differentiation,
migration and function. Interestingly, over-activated autophagy
may accelerate OC apoptosis and senescence (Wang T. et al.,
2020), suggesting how to regulate precisely the degree of OC
autophagy might be the new direction for the treatment of OC-
related disorders.

In summary, current research findings support the essential role
of lysosomes in OCs. Further exploration of lysosome-related
pathways in OCs has the potential to promote the development
of lysosomal targeted therapies that selectively inhibit OCs and
effectively treat bone disorders associated with OC dysfunction.
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Glossary

BL basolateral membrane

Ca2+ calcium ions

[Ca3(PO4)2]3Ca(OH)2 crystalline hydroxyapatite

CLEAR Coordinated lysosomal expression and regulation

ClC-7 chloride channel type 7

CTSK cathepsin K

FSD functional secretory domain

GEF guanine nucleotide exchange factor

GSK-3β glycogen synthase kinase 3 beta

H4K16 histone H4 lysine 16 residue

HSCT hematopoietic stem cell transplantation

LAMP lysosome-associated membrane proteins

LMPs lysosomal membrane proteins

MMP matrix metalloproteinase

MPR mannose 6-P receptor

mTORC1 mechanistic target of rapamycin complex 1

NFATc1 nuclear factor of activated T cells 1

OCs Osteoclasts

OBs Osteoblasts

Ostm1 osteoclastogenesis associated transmembrane protein 1

PtdIns(3,5) P2 phosphatidylinositol 3,5-bisphosphate

PtdIns3P phosphatidylinositol 3-phosphate

PLEKHM1 protein family member 1

RILP Rab interacting lysosomal protein

RB ruffled border

SZ sealing zone

STAT3 signal transducer and activator of transcription 3

SNX sorting nexin

TET2 Tet methylcytosine dioxygenase 2

TFEB transcription factor EB

TFE3 transcription factor E3

TRAP tartrate-resistant acid phosphatase

TRPML1 transient receptor potential mucolipin 1

TGN trans-Golgi network

V-ATPase vacuolar-type ATPase.
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