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Bone marrow stromal cells (BMSCs) play a significant role in bone metabolism as
they can differentiate into osteoblasts, bone marrow adipocytes (BMAds), and
chondrocytes. BMSCs chronically exposed to nutrient overload undergo
adipogenic programming, resulting in bone marrow adipose tissue (BMAT)
formation. BMAT is a fat depot transcriptionally, metabolically, and
morphologically distinct from peripheral adipose depots. Reactive oxygen
species (ROS) are elevated in obesity and serve as important signals directing
BMSC fate. ROS produced by the NADPH oxidase (NOX) family of enzymes, such
as NOX4, may be responsible for driving BMSC adipogenesis at the expense of
osteogenic differentiation. The dual nature of ROS as both cellular signaling
mediators and contributors to oxidative stress complicates their effects on bone
metabolism. This review discusses the complex interplay between ROS and
BMSC differentiation in the context of metabolic bone diseases.Special
attention is paid to the role of NOX4-ROS in regulating cellular processes
within the bone marrow microenvironment and potential target in metabolic
bone diseases.

KEYWORDS

bone marrow stromal cells, bone marrow adipose tissue, ROS, NADPH oxidase, bone
fragility, obesity, senescence

Introduction

Bone marrow (BM) is the heterogenous and multicellular tissue located within the
medullary cavity of bones. The BM plays an essential role in many physiological and
pathological processes, including hematopoiesis, bone remodeling, and even cardiovascular
and metabolic diseases (Benova and Tencerova, 2020). Although bone and BM are
anatomically connected, they possess some specialized roles (Del Fattore et al., 2010).
Bones provide skeletal support and organ protection, store calcium and phosphorus, and
regulate various organ systems via the release of bone-derived hormones (“osteokines”),
whereas the BM serves as a specialized niche that facilitates the generation of multiple
crucial cell types, including red blood cells, white blood cells, and platelets (Del Fattore
et al., 2010).

A significant stem cell population within the BM is hematopoietic stem cells (HSCs)
(~0.01%–0.1% of the total number of nuclear cells in BM aspirates) (Pang et al., 2011; Rossi
et al., 2011). HSCs are the source of immune cell progenitors and bone resorbing cells
(osteoclasts), which serve to negatively remodel bone. Beyond HSCs, multiple other cell
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types promote BM homeostasis, such as those providing nutrient
supply (endothelial cells), innervations (nerve cells), and bone
matrix formation (osteoblasts, osteocytes) and their progenitors,
known as BM stromal cells (BMSCs) (Peci et al., 2022). BMSCs,
though a rare population of cells within the BM (~0.001%–0.01%)
(Bianco et al., 2001), play a crucial role in the BMmicroenvironment
as they can differentiate into osteoblasts, BM adipocytes (BMAds),
and chondrocytes (cartrilage forming cells) (Dominici et al., 2006).
The ability of BMSCs to differentiate into these different cell types is
largely affected by physiological and pathophysiological conditions
that result in the activation of different transcriptional programs and
secreted factors (Tencerova and Kassem, 2016; Lecka-Czernik
et al., 2017).

Within the BM, bone cells and adipocytes exhibit cell-to-cell
contact and communication (Lanske and Rosen, 2017), to facilitate
bone remodeling, hormonal regulation and nutrient exchange.
BMAds collectively form BM adipose tissue (BMAT), a fat
depot with unique molecular and physiological properties in
comparison to peripheral adipose tissue (AT) (Suchacki and
Cawthorn, 2018). During aging, up to 70% of red BM (replete
with HSCs) undergoes conversion to yellow BM filled with BMAds
(Kricun, 1985). This conversion occurs mainly in distal bones and
does so centripetally (from peripheral skeleton to axial skeleton),
possibly due to differences in temperature, vascularity, and oxygen
tension in distal versus proximal bones (Kricun, 1985). In addition
to aging (Farr et al., 2017), other metabolic diseases, such as
obesity, diabetes and osteoporosis (Tencerova and Kassem,
2016; Suchacki and Cawthorn, 2018) affect BMSC properties
and shift BMSC differentiation towards higher BMAd
formation in the BM. Increased BMAT is often associated with
reduced bone mineral density (BMD) and higher fracture risk,
indicating a potential role of BMAT in the pathogenesis of
osteoporosis (Shen et al., 2014; Beekman et al., 2023).
Therefore, identifying the signals promoting BMAT
accumulation in metabolic diseases could bring insight into the
mechanisms affecting cell fate determination.

BMAT accumulation is accompanied with an increased
production of reactive oxygen species (ROS), which contributes
to a senescent BM microenvironment and increased bone fragility
(Tencerova et al., 2019a). Traditionally, ROS were characterized
simply as toxic by-products of aerobic metabolism that
pathologically contributed to oxidative stress by damaging
macromolecules such as lipids, proteins and nucleic acids
(Beckman and Ames, 1998). As oxidative stress can accelerate
various cellular processes including apoptosis and senescence
(Jones, 2006), ROS production has been implicated in many
disease processes. However, indiscriminate quenching of ROS can
impair cell signaling as these molecules also can act as physiological
signaling agents promoting health (Rhee et al., 2000; Finkel, 2011).
Due to the two unpaired electrons in its outer orbital, oxygen (O2) is
highly susceptible to the formation of ROS such as: O2

·−, hydroxyl
radical (HO·), H2O2, etc. (Sies, 2020). These ROS are characterized
by different half-lives, charges and abilities to cross biological
membranes. H2O2 is the most stable ROS as it has a significantly
longer half-life and can cross biological membranes, enabling it to
actively serve as a signaling molecule (Chen et al., 2008). For
instance, H2O2 can directly react with cysteine residues of
proteins involved in regulation of cell differentiation (e.g.,

Phosphatase and tensin homolog (PTEN), Akt2) (Vieceli Dalla
Sega et al., 2017; Sies, 2020).

The family of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (NOX) enzymes is a major source of ROS
production within the BM. It has been shown that NOX-ROS
play an important role in cell proliferation, differentiation,
homing, and senescence (Schroder, 2019). Notably, NOX
members are found to be differentially expressed based on cell
type, and their activity responds to specific extra- and intracellular
signals through generation of ROS, e.g., superoxide (O2

·−) or
hydrogen peroxide (H2O2) (Brown and Griendling, 2009).
Interestingly, NOX4 is unique among the NOX family members
as it does not require agonist-stimulated activation to produce ROS
(Martyn et al., 2006). A key structural property enabling NOX4 to
facilitate essential cellular processes in its third extracystosolic loop
(E loop). This loop allows NOX4 to produce H2O2 over O2

·− (Takac
et al., 2011). Consequenly, NOX4-generated H2O2 may play a
significant role in signal transduction (Finkel, 2011).

The role of NOX-ROS across different BM-resident cells in
pathophysiological conditions is not well documented. Thus, this
review provides an overview of the literature on elucidating the role
of NOX-ROS in bone-fat metabolism. As NOX4 is important in
BMSC differentiation (Atashi et al., 2015), we will highlight the
potential role of NOX4 in the regulation of BMAT expansion and
BMSC properties, which may significantly contribute to alterations
in bone homeostasis.

BMSCs and BMAT

The relationship between BMAT and metabolic diseases such as
obesity and diabetes has recently attracted increased attention, even
though BMAT was first described by anatomists in the late 19th
century in histological sections of bone biopsies (Stockman and
Greig, 1898). As opposed to the well-studied white, brown, beige and
pink AT (Richard et al., 2000), the researchers have only recently
begun to characterize the exact functions of BMAT. In the last
decade, the BM adiposity literature has rapidly increased, leading to
the recent understanding that BMAT acts as a unique fat depot that
differs from peripheral AT not only anatomically but also
developmentally, functionally, and metabolically (Hardouin et al.,
2016; Suchacki and Cawthorn, 2018; Tencerova et al., 2018).

BMAT supplies energy to neighboring BM cells, such as
osteoblasts and HSCs (Li et al., 2022; Alekos et al., 2023) during
periods of increased energy demand, such as bone remodeling,
haematopoiesis or cell proliferation (Shafat et al., 2017; Tabe
et al., 2017; Tencerova et al., 2018). Beyond the traditional role
of AT as an energy reserve, BMAT can contribute to bone loss
through the release of pro-inflammatory and pro-resorptive
cytokines and adipokines (e.g., receptor activator of nuclear
factor kappa-B ligand (RANKL), macrophage colony-stimulating
factor (M-CSF), dipeptidyl peptidase (DPP4), lipocalin 2 (LCN2),
tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6),
which negatively regulate bone metabolism) (Herrmann, 2019;
Tencerova et al., 2021). BMAT expansion results in compromised
osteoblast differentiation, as BMAT originates from BMSCs
(Tencerova and Kassem, 2016). This reciprocal relationship is
further highlighted by the fact that molecular pathways
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promoting osteogenesis typically inhibit adipogenesis and vice versa
(Li et al., 2013). This may be partially mediated by ROS-induced
changes in redox-sensitive microRNAs that inhibit transcription
factors such as Runt-related transcription factor 2 (RUNX2),
impairing osteogenesis and augmenting adipogenesis in BMSCs
through NF-κB signaling (Liao et al., 2013; Wang et al., 2015).

In both osteoporosis and obesity, there is commonly an
imbalance in the regulation of osteoblastic and adipogenic BMSC
differentiation (Sui et al., 2016). Several studies have shown a
negative correlation between BMAT volume and BMD (Yeung
et al., 2005; Li et al., 2014), which may underpin elevated risk of
bone fractures (Woods et al., 2022; Guimaraes et al., 2023)
(Figure 1). In obesity, BMAT resists the development of insulin
resistance and inflammation, unlike what is observed in peripheral
tissues (Tencerova et al., 2019a). However, continuous recruitment
of BMSCs to BMAT as seen in obesity exceeds this protective
potential and instead drives progenitor cell exhaustion, reduced
osteoblastic recruitment, and ultimately decreased bone formation
(Tencerova et al., 2018). Exposure of human BMSCs to sera isolated
from overweight individuals increased adipocyte differentiation at
the expense of osteogenic differentiation demonstrating that
circulating factors are sufficient to skew the BMSC differentiation

potential towards adipogenesis (Di Bernardo et al., 2014). In fact, the
BM contains BMSCs that are uniquely primed for adipogenesis,
which readily proliferate under obesogenic conditions and
significantly contribute to BMAT expansion (Tencerova et al.,
2019b). Increased ROS levels in obesity are associated with
adipogenic BMSCs that demonstrate a shift from glycolysis
towards higher oxidative phosphorylation, enhanced insulin
signaling, glucose transport, lipid metabolism, and senescence
(Guntur et al., 2018; Tencerova et al., 2019b). This
hypermetabolic phenotype of BMSCs may represent a
mechanism by which obesity contributes to bone fragility
(Tencerova et al., 2019a). Thus, one can hypothesize that ROS
might mediate the adverse effects of metabolic diseases on bone
and BM microenvironment.

ROS in the BM compartment

Emerging evidence suggests that elevated ROS inmetabolic bone
diseases negatively impact bone homeostasis (Table 1). ROS aid in
mineralized matrix degradation and influence the behaviour of cells
involved in this process (Agidigbi and Kim, 2019). Osteoclasts

FIGURE 1
Bone homeostasis in normal and pathophysiological conditions. In physiological conditions, bone homeostasis represents a balance between bone
formation (formed by OBs) and bone resorption (mediated by OCs). In homeostasis, BMSC differentiation favors OBs over BMAds. OCs, responsible for
degrading bone, create lacunae that are subsequently filled with newly synthesized matrices by OBs. However, in pathophysiological conditions such as
obesity, diabetes, or aging, this balance is disrupted. BMSC differentiation is shifted towards adipogenesis leading to the accumulation of BMAds
within BM through increased PPARγ and insulin signaling. OB-mediated bone formation is diminished, while OC differentiation and activities, as well as
subsequent bone resorption, are increased. This imbalance is facilitated directly or indirectly through increased production of RANKL and M-CSF,
exacerbating the detrimental effects of oxidative stress on bone health and leading to a higher risk of fracture.
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located on the bone interface generate O2
·−andH2O2 which regulates

their differentiation and development (Goettsch et al., 2013;
Agidigbi and Kim, 2019). Furthermore, ROS released by
neighboring cells stimulate osteoclast activity through ERK/NF-
κB signaling and increased RANKL production (Ha et al., 2004;

Lorenzo, 2017). These signals result in the inhibition of osteoblast
lifespan (Deng et al., 2019), differentiation (Bai et al., 2004; Chen
et al., 2018), and decreased alkaline phosphatase (ALP) activity (Luo
et al., 2020). One of the key signaling pathways influenced by ROS is
the Wingless/Int-1 (Wnt) signaling, important for BMSC fate, and

TABLE 1 Role of NOX-ROS in metsbolic bone diseases.

Metabolic bone
disease

Role of NOX-ROS References

Diabetes NOX-ROS impair the bone vessels and bonemass, which leads to uncoupling of angiogenesis
and osteogenesis and inhibition of bone formation

Wu et al. (2022)

Obesity NOX-ROS impacts bone health by inducing oxidative stress in osteoblasts and altering bone
remodeling

Halade et al. (2011), Rahman et al. (2018)

Osteoarthritis NOX-ROS mediates chondrocyte apoptosis and matrix degradation, exacerbating cartilage
destruction

Kim et al. (2015), van Dalen et al. (2018), Han
et al. (2022)

Osteopetrosis Dysregulated NOX-ROS levels impair osteoclast function, resulting in defective bone
resorption and overly dense bones

Darden et al. (1996)

Osteoporosis NOX-ROS contributes to bone resorption by osteoclasts, leading to decreased bone density
and increased fracture risk

Joo et al. (2016), Schroder (2019), Sun et al.
(2021)

FIGURE 2
ROS and its effect on bone homeostasis. ROS play a crucial role in modulating signaling pathways within bone cells. They contribute to bone loss by
impairing osteoblastogenesis and promoting osteoclastogenesis and adipogenesis. ROS induction of bone resorption occurs either directly bymediating
OC function through activation of the mitogen-activated protein kinase (MAPK) signaling pathways such as JNK, p38, and ERK1/2. In addition, they have
an important roles in signal transduction that activate cellular responses to many types of stresses, but also control the proliferation, differentiation,
and survival of osteoclasts. Indirect activation of OCs is achieved through the upregulation of RANKL expression within OBs. PKA and CREB are central to
the cAMP signaling pathway that regulates the production of RANKL. PKA activation leads to CREB phosphorylation, which binds to the RANKL promoter
to enhance its transcription. This mechanism underscores the critical role of OBs in this process. On the other hand, osteoblastogenesis, together with
bone formation is impaired through inhibiton of Wnt signaling and ALP activity, which are crucial for maintaining bone homeostasis. The activation of
PPARγ promotes adipogenic differentiation of BMSCs at the expense of osteoblastogenesis. The presence of BMAds within the BM negatively affects the
differentiaton of BMSCs towards OBs by releasing pro-inflammatory and pro- resorptive cytokines and adipokines. Created with BioRender.com
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homeostasis (Houschyar et al., 2018), which is diminished by excess
ROS causing increased BMAd expansion (Atashi et al., 2015). ROS
inhibition of Wnt occurs through the oxidation of key signaling
molecules, such as β-catenin, which is crucial for Wnt signal
transduction (Kajla et al., 2012; Staehlke et al., 2020).Another
pathway affected by ROS is the PI3K/Akt pathway, which is vital
for cell survival and proliferation (Liu et al., 2021). ROS can inhibit
the activity of PTEN, a negative regulator of the PI3K/Akt pathway,
leading to increased Akt signaling and altered cell survival and
differentiation (Koundouros and Poulogiannis, 2018; Liu et al.,
2021). ROS can modulate the MAPK/ERK pathway, which is
involved in the regulation of cell growth and differentiation.

The role of ROS in driving BMSC differentiation to BMAT is
further confirmed through the use of antioxidants where osteogenic
potential was enhanced while adipogenic potential was reduced in
mouse and human BMSCs in response to antioxidants such as the
flavanol quercetin (Wang et al., 2021), the fullerene-derivative
fullerol (Liu et al., 2013), the polyphenol resveratrol (Ali et al.,
2020), and the isoflavone formomentin (Gautam et al., 2017). The
mechanisms by which ROS quenching reduces BMAT are still being
elucidated but have been shown to involve interactions between
canonical factors like RUNX2, osterix (OSX), RANKL and
osteoprotegerin (OPG), which are crucial in bone remodeling
(Wauquier et al., 2009; Ali et al., 2020).

In summary, ROS play a pivotal role in bone by both promoting
osteoclastogenesis and inhibiting osteoblast differentiation in favor
of adipogenesis (Figure 2). While the role of ROS in bone
remodeling and the impact on osteoclasts and osteoblasts are
well-established, there is a critical need for comprehensive
research to elucidate the specific ROS-producers and effects of
ROS on BMSCs and, thus, BMAT. Unraveling the molecular
mechanisms by which ROS are produced and may modulate
BMSC fate decisions can provide valuable insights into the
complex interplay between oxidative stress and BM homeostasis.
This knowledge will not only contribute to a more nuanced
understanding of bone physiology but may also unveil potential
therapeutic targets for conditions characterized by altered bone
homeostasis.

NOX4-ROS signaling and its effect on
BMSCs and BMAT function

The quenching of high levels of ROS via endogenous or
exogenous antioxidants can prevent cell damage and attenuate
BMSC apoptosis and loss of viability (Balogh et al., 2016). Yet, as
described above, ROS are not only harmful by-products of cell
metabolism but also participate in signal transduction and are
required for cellular functions such as differentiation (Atashi
et al., 2015). Therefore, it is critical to understand the sources
and specify locations of ROS and their impacts on BMSC
function. NOXs are considered a major source of ROS
production within the BM. They are transmembrane proteins
that transfer electrons across membranes to O2 using NADPH as
an electron donor (Schroder, 2019). Among the NOX family
members, research has highlighted the role of NOX2 and
NOX4 in BM, demonstrating they contribute to bone loss,
marrow adipogenesis, and osteoclastogenesis in mice (Atashi

et al., 2015; Rahman et al., 2018; Sun et al., 2021), As
osteoclastogenesis is intricately linked to BMSC function, the role
of NOX4 in this process is significant. NOX4 is a critical source of
ROS in mouse HSCs (Wang et al., 2010), human monocytes and
human macrophages (Lee et al., 2010), controlling their function
and differentiation (Yang et al., 2004). Notably, it has been reported
that NOX4 limits bone mass by promoting osteoclastogenesis in an
osteoporotic mouse model (Goettsch et al., 2013) and it is involved
in the regulation of osteoprogenitors in bone development (Chen
et al., 2022).

During differentiation, the major sources of ROS production
include mitochondrial complexes I and III and NOX4 (Mahadev
et al., 2001; Furukawa et al., 2004). Interestingly, the relationship
between mitochondria and NOX4 seems to be bidirectional. In
cancer cells, mitochondrial ATP produced through oxidative
phosphorylation limits NOX4 activity by binding to a specific
ATP-binding motif in the C-terminal tail of NOX4
(Shanmugasundaram et al., 2017), suggesting that NOX4 serves
as an intracellular energy sensor. Indeed, NOX4 is required for
mitochondrial biogenesis in the skeletal muscle following conditions
of high energy demand like those in exercise (Specht et al., 2021). On
the other hand, NOX4 has been shown to repress mitochondrial
biogenesis and Complex I activity in fibroblasts (Bernard et al.,
2017). As mitochondrial biogenesis increases during BMSC
differentiation (Yan et al., 2021), understanding the relationship
between NOX4, mitochondrial metabolism and mitochondrial
biogenesis in BMSCs may be a fruitful avenue of research.

NOX4-ROS and differential regulation on
the peripheral AT and BMmicroenvironment
in obesity

BMAT and peripheral AT are significantly different tissues (Liu
et al., 2011; Miggitsch et al., 2019). However, examining NOX4 and
ROS in peripheral AT may reveal crucial insights into
NOX4 function and impact on overall metabolic health. In
peripheral AT, NOX4 signaling pathways are primarily centered
around adipogenesis and metabolic regulation (Den Hartigh et al.,
2017). NOX4-ROS production stimulates the differentiation of
preadipocytes to mature adipocytes (Schroder et al., 2009). This
process involves the activation of adipogenic transcription factors
which are essential for adipocyte maturation and lipid accumulation
such as peroxisome proliferator-activated receptor gamma (PPARγ)
and CCAAT enhancer-binding protein alpha (C/EBPα) (Schroder
et al., 2009). In response to hypoxia, Nox4 silencing in adipose-
derived stem cells led to reduced proliferation and cell migration,
along with decreased phosphorylation of platelet-derived growth
factor receptor-β, AKT serine/threonine kinase 1 or Protein kinase B
(AKT), and ERK1/2 (Kim et al., 2012). A common stressor to
simulate obesogenic condition in vitro is high glucose. With
obesity, NOX4 is upregulated in adipocytes (Den Hartigh et al.,
2017). Peripheral preadipocytes differentiated from mice lacking
adipocyte NOX4 are resistant to high glucose and palmitate-induced
inflammation (Den Hartigh et al., 2017). This suggests that NOX4-
ROS in AT participates in signaling cascades responsible for the
early onset of insulin resistance and the inflammatory response in
obesity (Den Hartigh et al., 2017). BMAds were shown to
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overproduce ROS mediated through the enhanced
NOX4 expression, causing increased intracellular ROS levels and
downregulating the endogenous antioxidant systems following high
glucose treatment (Rharass and Lucas, 2019). Thus, BMAds are
sensitive to both glucose and ROS levels, and these together
influence their phenotype and functionality.

Comparing the transcriptome of BMAds and peripheral
adipocytes demonstrates apparent differences between these two
tissues (Suchacki et al., 2020). However, such a comparison may
lend insights into the difference in response to ROS and adipogenic
priming in obesogenic conditions discussed above. For instance,
BMAds demonstrate increased early adipogenic gene expression,
and lower late adipogenic genes compared to epididymal
adipocytes (Liu et al., 2011). Furthermore, BMAds showed
greater expression of pro-inflammatory genes (Liu et al., 2011)
and displayed an elevated production of ROS (Miggitsch et al.,
2019). These findings suggest that BMAds may be primed to
receive maturation cues due to obesogenic stressors compared
to peripheral adipocytes due to a comparably decreased

antioxidant capacity. Therefore, NOX4-ROS may direct the
maturation of BMSCs into BMAds within BM. Together, these
data provide evidence that NOX4-ROS are important for
activation, differentiation, and the response to metabolic
stressors in the peripheral AT, which may also be relevant in
the BM. Thus, these findings collectively indicate distinct
responses of BMAds and peripheral adipocytes to metabolic
stressors (Figure 3).

Differential responses between peripheral AT and BMAT may
be due to NOX4 expression levels which alter downstream signaling.
Transcriptomic profiling revealed that NOX4 is more highly
expressed in AT compared to BM (data available from v23.0.
proteinatlas.org; https://www.proteinatlas.org/ENSG00000086991-
NOX4/tissue#rna_expression). This disparity may suggest
regulation beyond the transcriptional level through varying
activation and posttranslational modifications of proteins
involved in downstream metabolic pathways between the two cell
types (Forrester et al., 2018). Further investigation is needed to
unravel the distinct role of NOX4 expression in producing the

FIGURE 3
NOX4-ROS signaling in AT-MSCs and BMSCs. The impact of oxidative stress induced by obesogenic conditions on stem cells varies between
adipose tissue-derived AT-MSCs and bone marrow-derived BMSCs. In AT-MSCs, NOX-ROS signaling pathways predominantly affect adipogenesis and
metabolic regulation. In obesogenic conditions, the metabolism of AT-MSCs is characterized by compromised insulin response and increased
inflammation caused by increased expression of NF-κB, leading to impaired adipogenesis and insulin resistance. On the other hand, BMSCsmanifest
a distinctive insulin response in obesogenic conditions defined in BM by the absence of inflammation, which leads to different insulin responsiveness and
activation of AKT signaling compared to AT. Notably, unlike AT-MSCs, insulin signaling in BMSCs is enhanced in obesity. Obesogenic BMSCs exhibit a
molecular phenotype shift towards committed adipocytic progenitors and inhibition of Wnt signaling, a critical factor for OB differentiation. Despite this,
increased ROS contribute to an enhanced senescent phenotype in both cell types. Created with BioRender.com.
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distinct phenotype between these two tissues and to define the
unique role of NOX4 in determining the pathophysiology of BM and
bone metabolism in obesity.

Obesity is a significant risk factor for insulin resistance, a
maladaptive metabolic state characterized by impaired insulin-
mediated glucose uptake, changes in insulin secretion and
dyslipidemia (Czech, 2017). Importantly, increased NOX4-
ROS in AT due to obesity promote the generation of
dysregulated metabolism through increased production of
adipokines such as plasminogen activator inhibitor 1 (PAI-1),
IL-6, and monocyte chemotactic protein-1, and decreases the
generation of the insulin-sensitizing factor, adiponectin
(Furukawa et al., 2004). Systemic inflammation is another
hallmark of obesity linked to poor bone health (Iantomasi
et al., 2023). NOX4-ROS contributes to this low-grade
inflammation in AT, where inflammation drives obesity-
induced impairment of insulin signaling (Den Hartigh et al.,
2017). However, mixed findings surround the idea that
inflammation caused by obesity disrupts insulin signaling in
BMAT. These observations underscore the complexity of how
systemic metabolism impacts BMAT homeostasis and expansion
(Pham et al., 2020). In obesity, the BM does not demonstrate a
clear increase in the inflammatory response compared to the
periphery (Tencerova et al., 2018). This suggests the existence of
a barrier within the BM, likely due to a distinct
microenvironment that significantly influences the the stress
response of BM cells (Tencerova et al., 2018; Tencerova et al.,
2019a). Indeed, recent animal and clinical studies (Tencerova
et al., 2018; Pham et al., 2020) did not observe insulin resistance
in obese BMSCs and BMAT, further supporting the hypothesis

that significant metabolic and molecular differences exist in the
BM compartment versus peripheral tissues. Another study
reported that BMAT is capable of insulin-stimulated AKT
S473 phosphorylation but lacks AKT T308 phosphorylation
(Suchacki et al., 2020). These data suggest a distinct
mechanism for lipogenesis in BMAT, possibly less dependent
on insulin than in peripheral AT. Thus, these findings offer
potential mechanistic insight into the differential responses
between BMAds and peripheral adipocytes to metabolic stress
(Figure 3). Recent studies using specific NOX4 inhibitors in
osteoporotic animal models showed promising results in
improvement of bone loss (Woods et al., 2022). Thus,
targeting NOX4 in obesity-induced bone fragility may be an
interesting target for potential treatment in patients with
metabolic bone diseases. However, further studies are needed
to better understand the underlying mechanism in the
regulation of cellular metabolism and inflammatory responses
in BMAT in the context of obesity. While NOX4 generates ROS
in both peripheral AT and BMAT, the ultimate impact of NOX4-
ROS in metabolic bone diseases appears to depend on the
distinct depot and microenvironments within these tissues.

Limitations of the current research studies

BMAT is heterogeneous: There are different types of BMAT
(constitutive vs. regulated), present in different regions of the BM (Li
et al., 2018) exhibiting unique properties and responses to ROS. The
studies might not account for this heterogeneity, potentially
oversimplifying the conclusions.

FIGURE 4
Obesity-induced changes in AT and BM microenvironment via NOX4-ROS production. Obesity increases NOX4-ROS production in AT, which
affects adipogenesis and AT inflammation. On the other hand, NOX4-ROS in BM microenvironment accelerates BMSC adipogenesis at the expense of
osteogenic differentiation. Those changes lead to impaired glucose metabolism and increased bone fragility in obesity. Created with BioRender.com.
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In vivomodels are lacking: The versatility of in vitromodels has
promoted significant gains in our understanding of the impact of
ROS on BMSC differentiation and other instrumental properties of
BM cells. However, they also demonstrate the need for in vivo
validation due to the widely recognized microenvironmental
nuances, the phenotypic heterogeneity and multifaceted roles of
BMSCs within the BM niche. Very little in vivo research is available
using cell-type-specific genetic modifications or target-specific
molecules to elucidate the role of ROS on BMAT in osteoporosis
and metabolic diseases.

Sexual dimorphism requires further exploration: Research on
females and female-derived cells underrepresent the current
knowledge of ROS and BMAT. Due to known sexual
dimorphisms in BM adiposity, redox homeostasis, and BMSC
properties, further investigation is necessary to understand these
differences and their implications (Malorni et al., 2007; Lecka-
Czernik et al., 2017; Beekman et al., 2022).

Translation to human physiology: Findings from animal models
and in vitro studies may not always translate directly to human
physiology. Differences between species and the controlled
experimental conditions can limit the applicability of the results
to clinical settings.

Conclusion and perspectives

Taken together, the recent discoveries provide a strong rationale
for closer exploration of NOX4-ROS signaling in BMSCs and BMAT,
as well as its unique functions when compared to peripheral AT. The
BM is rich in progenitors sensitive to cues for adipogenesis in response
to stressors such asmetabolic diseases and aging, perhapsmediated by
NOX4-ROS. Increased evidence in the literature suggests that NOX4-
ROS could drive bone fragility in obesity by influencing BMSC
senescence, proliferation, and adipocyte differentiation, ultimately
promoting the expansion of BMAT (Figure 4). However, the exact
signaling pathways and effects of NOX4 in BMAT are still being
elucidated. They likely involve interactions with factors like RANKL
and OPG, which are crucial in bone remodeling. More mechanistic
and clinical studies investigating tissue-specific NOX4-ROS signaling
may bring a better understanding of the role of NOX4 in the
regulation of bone-fat metabolism and its potential use in the
treatment of metabolic bone disease.
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Glossary

AKT AKT serine/threonine kinase 1 or Protein kinase B

ALP Alkaline phosphatase

AP-1 Activator protein 1

AT Adipose tissue

AT-MSCs Adipose tissue-derived mesenchymal stem cells

BM Bone marrow

BMAds Bone marrow adipocytes

BMAT Bone marrow adipose tissue

BMSCs Bone marrow stromal cells

C/EBPα CCAAT enhancer-binding protein alpha

CREB cAMP response element-binding protein

DPP4 Dipeptidyl peptidase

ERK1/2 Extracellular signal-regulated kinases 1 and 2

GSK3β Glycogen synthase kinase-3 beta

H2O2 Hydrogen peroxide

HO· Hydroxyl radical

HSCs Hematopoietic stem cells

IL-6 Interleukine 6

LCN2 Lipocalin 2

M-CSF Macrophage colony-stimulating factor

NADPH Nicotinamide adenine dinucleotide phosphate

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B

NOXs NADPH oxidases

NOX2 NADPH oxidase 2

NOX4 NADPH oxidase 4

O2 Molecular oxygen

O2
·− Superoxide

OBs Osteoblasts

OCs Osteoclasts

OPG Osteoprotegerin

PAI-1 Plasminogen activator inhibitor 1

PPARγ Peroxisome proliferator-activated receptor gamma

RANKL Receptor activator of nuclear factor kappa-B ligand

RUNX2 Runt-related transcription factor 2

ROS Reactive oxygen species

TNF-α Tumor necrosis factor-alpha

Wnt Wingless/Int-1
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