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Metabolic dysfunction-associated steatotic liver disease (MASLD), previously
known as non-alcoholic fatty liver disease (NAFLD), is the most common liver
disorder worldwide, with an estimated global prevalence of more than 31%.
Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as
non-alcoholic steatohepatitis (NASH), is a progressive form of MASLD
characterized by hepatic steatosis, inflammation, and fibrosis. This review aims
to provide a comprehensive analysis of the extrahepatic manifestations of MASH,
focusing on chronic diseases related to the cardiovascular, muscular, and renal
systems. A systematic review of published studies and literaturewas conducted to
summarize the findings related to the systemic impacts of MASLD andMASH. The
review focused on the association of MASLD and MASH with metabolic
comorbidities, cardiovascular mortality, sarcopenia, and chronic kidney
disease. Mechanistic insights into the concept of lipotoxic inflammatory “spill
over” from the MASH-affected liver were also explored. MASLD and MASH are
highly associated (50%–80%) with other metabolic comorbidities such as
impaired insulin response, type 2 diabetes, dyslipidemia, hypertriglyceridemia,
and hypertension. Furthermore, more than 90% of obese patients with type
2 diabetes have MASH. Data suggest that in middle-aged individuals (especially
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flow reserve; ESLD, End-stage liver disease; ER, Endoplasmic reticulum; FXR, Farnesoid X Receptor; FA,
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ventricular; LDs, Lipid droplets; MASH, Metabolic dysfunction associated steatohepatitis; NASH, Non-
alcoholic steatohepatitis; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; PPAR,
Peroxisome proliferator-activated receptor; PAI-1, Plasminogen activator inhibitor-1; SCFAs, Short-
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those aged 45–54), MASLD is an independent risk factor for cardiovascular
mortality, sarcopenia, and chronic kidney disease. The concept of lipotoxic
inflammatory “spill over” from the MASH-affected liver plays a crucial role in
mediating the systemic pathological effects observed. Understanding the
multifaceted impact of MASH on the heart, muscle, and kidney is crucial for
early detection and risk stratification. This knowledge is also timely for
implementing comprehensive disease management strategies addressing multi-
organ involvement in MASH pathogenesis.

KEYWORDS

Adipose tissue (AT), metabolic dysfunction-associated steatotic liver disease (MASLD)/
non-alcoholic fatty liver disease (NAFLD), metabolic dysfunction-associated
steatohepatitis (MASH)/non-alcoholic steatohepatitis (NASH), cardiovascular diseases
(CVDs), sarcopenia, chronic kidney diseases (CKDs), heart, muscle

Introduction

Recently, the Delphi process, led by an international consortium
of pan-liver associations, has critically evaluated the terminological
shortcomings associated with “non-alcoholic fatty liver disease
(NAFLD).” As a result, the term has been redefined as
“metabolic dysfunction-associated steatotic liver disease
(MASLD)” (Rinella et al., 2023). This non-stigmatizing updated
terminology, coupled with enhanced diagnostic guidelines, will
support both awareness and the accuracy of patient
identification, surpassing the limitations of previous
nomenclature NAFLD. However, the inflammatory phase of
MASLD, steatohepatitis, has been identified as a critical
pathophysiological entity, deserving preservation of the term
“steatohepatitis” within the clinical context. Consequently, it has
been recommended that this condition be reclassified as “metabolic
dysfunction-associated steatohepatitis (MASH),” formerly
recognized as non-alcoholic steatohepatitis (NASH) (Estes et al.,
2018; Fan XZ et al., 2024). MASH represent a spectrum of liver
conditions consisting hepatic inflammation and fibrosis associated
to metabolic dysfunction with the absence of significant alcohol
consumption (Lim et al., 2023; Cusi et al., 2024; Fan XZ et al., 2024).
These conditions have emerged as the leading causes of liver-related
morbidity and mortality globally (Younossi et al., 2024a; Younossi
et al., 2024b). MASLD/MASH is characterized by excessive hepatic
fat accumulation, hepatic inflammation, hepatocyte ballooning and
fibrosis, which may progress to cirrhosis and hepatocellular
carcinoma (HCC) (Sinha et al., 2018; Tripathi et al., 2022).

The history of clinical MASH/NASH studies began about
45 years ago (Adler and Schaffner, 1979; Ludwig et al., 1980),
but its recent increase in prevalence poses it as a global pandemic
(Pouwels et al., 2022). Several recent studies have quantified the
overall global prevalence of MASLD to be 30%–33%. Notably,
reports show an increasing rate of MASLD prevalence from 25.3%
(1990–2006) to 38.2% (2016–2019), which is a 50.4% increase in
the last 30 years (Le et al., 2023). NAFLD/MASLD prevalence
increased from 35.42% (2008–2016) to 46.20% (2017–2020) in
MENA (Middle East and North Africa) region (Younossi et al.,
2024b). Currently, the progression from MASLD to cirrhosis is
estimated to be 4%. However, 20% of MASH patients could
progress to cirrhosis. Most importantly, recent reports showed
a dramatic increase in liver transplant waitlist registration
accounted for MASH and associated cirrhosis and HCC (Lim

et al., 2023; Younossi et al., 2024c). Epidemiologically, MASH
possesses high geographic variability with higher rates
encountered in South America and the Middle East, followed
by Asia (Younossi et al., 2023). However, a higher MASLD
incidence is recorded in the younger (45 years or younger)
Asian population, which could be attributed to carbohydrate-
rich foods, high central adiposity, and genetic predisposition
(Younossi et al., 2023). Africa has recorded a low rate of
MASLD (Younossi et al., 2023). Moreover, MASLD and MASH
are highly associated (50%–80%) with impaired insulin response,
type 2 diabetes, dyslipidaemia, hypertriglyceridemia,
hypertension, and more than 90% of obese patients with type
2 diabetes have MASH (Le et al., 2023). Considering its significant
association with other metabolic comorbidities, modelling study
by Estes et al. (2018), has forecasted the prevalent MASLD cases to
increase by 21% from 2015 to 2030, while prevalent MASH cases
will increase by 63%. A following study by Estes et al. suggested a
potential increase of 6%–20% in the prevalence of MASLD cases
across Hong Kong, Singapore, South Korea, and Taiwan between
2019 and 2030. Similarly, they projected a concurrent rise of 20%–

35% in prevalent MASH cases during the same period (Estes et al.,
2020). Furthermore, their forecast anticipated a substantial surge
in MASLD-related mortality, with estimates ranging between 65%
and 100% from 2019 to 2030, prompting a significant concern
(Estes et al., 2020).

Scientists, thus, predict that MASH could become the top
condition for liver transplants soon. Despite its growing
prevalence rate, to date, there are no specific therapies approved
by the US Food and Drug Administration for MASLD/MASH
(Tripathi et al., 2022). Treatment strategies for MASH typically
involve lifestyle interventions, such as adherence to Mediterranean
diet and increased physical activity (Semmler et al., 2021; Pouwels
et al., 2022). However, for patients who do not respond to these
interventions, several drugs targeting FXR, PPAR and GLP-1R
agonists, focusing on inflammation, ballooning, apoptosis, and
fibrosis, are currently in development (Jensen et al., 2018;
Loomba et al., 2021; Duan et al., 2022). Bariatric surgery is
designated for individuals classified as morbidly obese who have
shown inadequate response to lifestyle interventions or weight-loss
medications (Nachit et al., 2021; Pouwels et al., 2022). Studies
indicated that direct medical expenses for MASH could sum up
to $222 billion (excluding indirect and societal costs) (Witkowski
et al., 2022).
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MASLD and MASH have long been recognized primarily as a
liver disease, but recent insights have expanded our understanding
to acknowledge its significant systemic implications, especially
concerning the cardiovascular, muscular, and renal systems
(Nachit et al., 2021; Li et al., 2023; Wegermann et al., 2023).
These organs are selected for focused study due to their vital
roles in metabolic regulation and their pronounced vulnerability
to the metabolic derangements typically associated with MASH,
such as insulin resistance (IR), dyslipidemia, and systemic
hypertension (Ferrara et al., 2019; Kasper et al., 2021). The
pathological processes of MASH, including inflammation and
fibrosis, exert profound systemic effects that are particularly
observable in these organs (Chakravarthy et al., 2020; Wang
et al., 2022). These effects include cardiovascular dysfunction,
muscle wasting, and renal impairment, which not only exacerbate
the disease burden but also critically influence patient outcomes by
contributing significantly to morbidity and mortality (Ferrara et al.,
2019; Wang et al., 2022), as illustrated in Figure 1. In contrast, while
MASH undoubtedly impacts other tissues, the effects on these non-
core systems are often less direct and may not significantly alter
disease prognosis or treatment strategies. For instance, the
gastrointestinal tract, skin, or adipose tissue (AT) might
experience alterations due to metabolic dysfunction; however,
these changes may not typically result in immediate life-
threatening consequences or require the urgent, targeted
interventions demanded by cardiac, muscular, or renal
involvement (Alonso-Pena et al., 2023; Zeng et al., 2024).
Furthermore, while this review primarily addresses the direct
impacts and interactions of liver with heart, kidney and muscle

in MASLD/MASH, the roles of other tissues, notably AT, in
influencing systemic health outcomes are equally pivotal but
beyond the scope of this manuscript. AT, through its endocrine
and paracrine functions, significantly affects the heart, muscles, and
kidneys, primarily via the secretion of adipokines that modulate
inflammation, insulin sensitivity, and lipid metabolism. These
interactions are complex and contribute to the multisystem
nature of metabolic disorders. For a detailed exploration of the
systemic effects of AT and its implications for cardiovascular,
musculoskeletal, and renal health in the context of MASLD/
MASH, readers are encouraged to consult the following
comprehensive reviews (Chow et al., 2022; Gilani et al., 2024;
Hafiane, 2024; Jia et al., 2024). Therefore, this manuscript
prioritizes the heart, muscles, and kidneys due to their critical
interplay with metabolic health and their direct connection to the
primary complications associated with MASH, thereby offering
clearer targets for therapeutic intervention and management
strategies.

Systemic manifestations, as indicated above, are largely attributed to
the metabolic dysregulation underlying MASLD/MASH, including
obesity, IR, systemic inflammation, and lipid dysmetabolism, which
play pivotal roles in the pathogenesis of cardiovascular, muscular and
renal complications (Anstee et al., 2020; Venniyoor et al., 2021). The
systemic nature of MASLD/MASH and its extrahepatic manifestations
necessitates amultidisciplinary approach for itsmanagement, integrating
the expertise of hepatologists, endocrinologists, cardiologists,
nephrologists, and nutritionists. Furthermore, this complexity
highlights the importance of ongoing research to unravel the
pathophysiological mechanisms linking MASH with its systemic

FIGURE 1
Systemic Impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction associated steatohepatitis
(MASH). Illustration depicts the progression from a metabolically healthy state (left side) to the development of MASLD and MASH and its subsequent
systemic effects (right side). The left side shows the interconnectedness of healthy organs, including the heart, liver, muscle, and kidneys, maintaining
metabolic balance. However, moving to the right, the impact of an unhealthy diet, environmental factors, and genetic predispositions contribute to
the development of MASH, characterized by enlarged liver and visceral fat depot with the accumulated fat and inflammation. The hepatic and extra-
hepatic consequences of MASH are evident, as the liver afflicted with MASH causally associated with the increased risk of cardiovascular diseases (CVDs),
muscular disorders and chronic kidneys diseases (CKDs). All of whichmay also adversely impacted by the inflamed visceral fat associated with MASH. This
representation highlights the systemic pathological nature of MASH, highlighting the importance of a holistic approach to itsmanagement and treatment.
The illustration was made on BioRender.com.
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effects, aiming to identify novel therapeutic targets and improve patient
outcomes. Thus, the advancements in understanding ofMASLD/MASH
as a multisystem disease highlights the urgent need for heightened
awareness and comprehensive management strategies. This review aims
to consolidate present understanding regarding the hepatic and
extrahepatic presentations of MASH, which contribute to
cardiovascular, muscular, and renal complications, thereby laying the
groundwork for further advancements in research and clinical practices.

Liver complications of MASLD/MASH

The hepatic manifestations of MASH involve a complex
interplay of metabolic dysfunction and liver pathology. The
pathogenesis of MASH is elucidated through the “multiple hit

hypothesis,” which supersedes the earlier simplistic “two-hit
model” by integrating multiple metabolic, genetic, epigenetic, and
environmental factors that collectively drive disease progression.
Over the past two decades, research has suggested that the initiation
of MASH occurs with the accumulation of excessive intrahepatic fat,
exceeding 5% of the total liver weight (Rinella et al., 2023). This
accumulation then triggers metabolic disturbances, including
alterations in pathways associated with fatty acid oxidation,
dysregulated signaling of reactive oxygen species (ROS),
mitochondrial dysfunction, compromised proteostasis, and
imbalances in gut microbiome (Buzzetti et al., 2016; Machado
and Diehl, 2016; Mitten and Baffy, 2022; Rafaqat et al., 2024;
Zhong et al., 2024).

The implications of increased free FA accumulation involve
augmented β-oxidation rates (referred as “inadequate substrate

FIGURE 2
MASLD/MASH pathogenesis and its systemic implications. Illustration depicts the pathophysiological mechanisms of metabolic dysfunction-
associated steatotic liver disease (MASLD)/metabolic associated steatohepatitis (MASH), and its systemic consequences. Dietary fats and carbohydrates
(fructose in particular) contribute to fat import and de novo lipogenesis respectively within the liver, leading to triglyceride (TG) and cholesterol
biosynthesis, and subsequent fatty acid accumulation. Increased flux of free fatty acids to mitochondria causes mitochondrial burnout, leading to
inadequate disposal of metabolic substrates due to impaired beta-oxidation. These processes result in; i) increased lipid droplets (LDs) causing steatosis,
ii) increased very-low-density lipoprotein (VLDL) production, iii) oxidative stress marked by reactive oxygen species (ROS), and iv) endoplasmic reticulum
(ER) stress, promoting lipotoxicity deriving hepatic inflammation and fibrosis. The systemic “spill over” of inflammation from the liver impacts other
organs, including the heart, muscles, and kidneys. This “spill over” leads to extrahepatic pathologies such as cardiovascular diseases (CVDs), muscular
dystrophy, and chronic kidney disease (CKD). Additionally, visceral fat (with inflammation and fibrosis) inMASH, characterized by increased lipases activity,
contributes to the systemic inflammatory responses, thereby exacerbating the cycle of metabolic dysfunction across multiple organ systems. The
illustration was made on BioRender.com.
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disposal”) and escalated ROS production within the mitochondrial
respiratory chain (Figure 2). This imbalance between ROS
generation and antioxidant defence mechanisms instigates
oxidative stress, a hallmark of MASH pathogenesis, corroborated
by elevated oxidative stress biomarkers in affected individuals. The
oxidative milieu activates endoplasmic reticulum (ER) stress
facilitating the activation of hepatic immune cells, including
hepatocytes, hepatic stellate cells, Kupffer cells, dendritic cells,
natural killer cells, T-lymphocytes, and B-lymphocytes, alongside
pro-inflammatory signalling pathways. Free FAs exacerbate this
inflammatory cascade, fostering the secretion of pro-
inflammatory cytokines such as interleukin-6 (IL-6), tumor
necrosis factor α (TNFα), and interleukin-1β (IL-1β), thereby
perpetuating hepatic inflammation and cellular injury. These
molecular derangements compromise the liver’s capacity for
storing and exporting free FAs as triglycerides, culminating in
hepatocyte lipid overload, steatosis and lipotoxicity. These
mechanisms are comprehensively reviewed elsewhere (Buzzetti
et al., 2016; Machado and Diehl, 2016; Lebeaupin et al., 2018;
Loomba et al., 2021; Powell et al., 2021; Tilg et al., 2021; Llovet
et al., 2023; Fan XZ et al., 2024; Habibullah et al., 2024; Jiang et al.,
2024; Mahmoudi et al., 2024; Rafaqat et al., 2024; Targher et al.,
2024; Verma MKT et al., 2024; Zhang et al., 2024; Zhong
et al., 2024).

Adding to this hepatic injury, dysfunction of AT/fat deposits
during obesity and type 2 diabetes mellitus (T2D) amplifies
circulating free FAs and pro-inflammatory cytokines, intensifying
the MASH progression and vice versa. This dysregulation perhaps
extends beyond hepatic boundaries, affecting systemic metabolic
processes such as glucose uptake, glycogen synthesis, glucose and fat
oxidation, lipid storage, and lipolysis. Ectopic fat deposition with
increased inflammation resulting from MASLD and obesity in non-
AT, pose a substantial risk factor for CVDs, highlighting the severe
pathogenic impact of MASH beyond the liver (Ferrara et al., 2019;
Njoku et al., 2022). Defects in hepatic lipid metabolism not only
precipitate intrahepatic lipid accumulation but also promotes lipid
storage in non-hepatic tissues, highlighting the liver’s central role in
systemic lipid homeostasis. Altered hepatic lipid metabolism under
MASH conditions further predisposes individuals to atherogenic
dyslipidaemia, characterized by elevated low-density lipoprotein
(LDL) cholesterol levels and the ensuing formation of
atherosclerotic plaques within arterial walls (Huang et al., 2023;
Zhu et al., 2023). Thus, MASH is increasingly recognized not merely
as a liver-specific ailment but as a systemic disorder with far-
reaching effects on multiple organs. This condition is intricately
linked with an elevated risk of a spectrum of severe health outcomes,
including both fatal and non-fatal CVDs (64% higher risk), T2D,
sarcopenia, and CKDs (Peng et al., 2022; Kawaguchi et al., 2023).
The underlying pathophysiology connecting MASH to these
systemic complications is multifaceted, involving metabolic
dysregulation, inflammation, and altered lipid homeostasis.

The precise mechanisms underlie the causal relationship
between MASH and extrahepatic diseases is not fully elucidated.
However, it is likely that systemic inflammation and spill over
mechanisms play a role in promoting inflammation in other
tissues. Central to the systemic nature of MASH is the concept of
hepatic inflammatory “spill over,” where pro-inflammatory
mediators produced in the liver (Njoku et al., 2022), as a

consequence of lipid accumulation and cell injury (lipotoxicity),
disseminate through the bloodstream to distant organs (Buzzetti
et al., 2016; Loomba et al., 2021; Zhong et al., 2024). This process is
facilitated by an array of cytokines, chemokines, and other
inflammatory molecules, such as TNF-α, interleukins (e.g., IL-6,
IL-1β), and C-reactive protein (CRP), which are elevated in the
context of MASH (Buzzetti et al., 2016; Machado and Diehl, 2016;
Mitten and Baffy, 2022). These mediators can exacerbate
pathological processes in the heart, skeletal muscle, and kidneys,
contributing to the multisystem impact of the disease (Hong et al.,
2014; Buzzetti et al., 2016; Machado and Diehl, 2016; Bhanji et al.,
2017a; Mitten and Baffy, 2022). In this review, we inspect both pre-
clinical and clinical evidence to refine our understanding of MASH
and its wide-reaching pathological effects on critical organs such as
the heart, muscles, and kidneys. A comprehensive, multi-
dimensional therapeutic strategy is advocated to improve liver
injury while also mitigating adverse cardiovascular and metabolic
consequences. This highlights the importance of adopting a holistic/
integrated management approach to address the systemic
manifestations of MASH.

Cardiovascular complications in
MASLD/MASH

MASLD and MASH are increasingly recognized for its systemic
implications that exceeds hepatic boundaries. The
pathophysiological nexus between MASH and a constellation of
extrahepatic conditions, notably CVDs, manifests as a multifaceted
challenge in clinical management (Ferrara et al., 2019; Zhu et al.,
2023). CVDs are the predominant cause of mortality in patients with
MASH, outpacing liver-centric complications and malignancies (Le
et al., 2023; Choe et al., 2024). This complex relationship between
MASH and cardiovascular morbidity is underscored by shared and
interlinked risk factors, including but not limited to IR, T2D,
hypertension, dyslipidaemia, metabolic syndrome, and notably,
liver fibrosis (Houghton et al., 2019; Ismaiel and Dumitrascu,
2019). Furthermore, the relationship between the likelihood of
developing cardiovascular abnormalities and the severity of
hepatic fibrosis in MASH is strongly correlated (Yang et al.,
2022; Wegermann et al., 2023).

The spectrum of cardiovascular complications associated
with MASH is broad, encompassing coronary artery diseases
(CAD), atherosclerosis (ASCVD), cardiac remodelling
anomalies, hypertrophy, heart failure, and arrhythmias. The
precise mechanisms by which MASH contributes to
cardiovascular pathology are not fully understood. However,
emerging evidence suggests that hepatic fat accumulation serves
as a predictor for impaired myocardial metabolism and
subsequent cardiac dysfunction (Ferrara et al., 2019; Lim
et al., 2019; Njoku et al., 2022; Younossi et al., 2024a; Wang
et al., 2024). Furthermore, MASLD is strongly associated with
structural and functional cardiac abnormalities, such as left
ventricular hypertrophy, enhanced epicardial fat thickness,
and various arrhythmogenic manifestations, likely stemming
from the liver’s pivotal role in systemic glucose and lipid
homeostasis (Ismaiel and Dumitrascu, 2019; Patel and
Siddiqui, 2019; Mantovani et al., 2022).
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MASH-associated atherosclerotic risk

Independent of traditional cardiovascular risk factors, MASLD/
MASH constitutes a significant risk factor for atherosclerotic
cardiovascular diseases (ASCVD) (Pais et al., 2019; Arslan and
Yenercag, 2020). The onset of MASH is correlated with an
elevated production and release of LDL and VLDL particles from
the liver during hepatic steatosis. These circulating LDL and VLDL
particles in blood then accumulate beneath the arterial lining,
leading to the formation of atherosclerotic plaque (Siddiqui et al.,
2015; Sinha et al., 2018). Increasingly, research studies have revealed
a notable correlation between hepatic steatosis and an augmented
vulnerability to subclinical atherosclerosis (Yan et al., 2023; Zhu
et al., 2023). Moreover, liver’s exacerbated secretion of pro-
inflammatory cytokines, vasoactive substances, and pro-coagulant
molecules further scaffolds the cardiovascular disease architecture in
MASH patients (Garbuzenko, 2022; Huang et al., 2022).

More commonly, MASH is closely linked to the elevated levels
and interactions of various cytokines and chemokines, which
orchestrate an inflammatory response that directly impairs
endothelial dysfunction during atherosclerosis. Among the key
players, Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-6
(IL-6) are central to this process. TNF-α exacerbates endothelial
dysfunction by inhibiting nitric oxide (NO) synthesis, a crucial
regulator of vascular tone and endothelial health, and by
inducing the expression of vascular cell adhesion molecules that
promote leukocyte adherence and vascular inflammation
(Dimitroglou et al., 2023). IL-6, while possessing both pro- and
anti-inflammatory properties, in the context of MASH tends to
promote inflammation, contributing to vascular permeability and
endothelial activation, thereby facilitating atherosclerosis (Zegeye
et al., 2018). Further compounding the endothelial response are
Interleukin-1β (IL-1β) and Interleukin-18 (IL-18), which potentiate
the inflammatory milieu and are implicated in the upregulation of
adhesion molecules and the recruitment of inflammatory cells to
endothelial sites, promoting plaque formation and vascular stiffness
(Krishnan et al., 2014). Additionally, C-reactive protein (CRP), an
acute-phase reactant upregulated in response to IL-6, indirectly
influences endothelial function by decreasing NO availability and
promoting endothelin-1 production, a potent endothelial activator
and vasoconstrictor (Pasceri et al., 2000). Furthermore, monocyte
chemoattractant proteins (MCPs), particularly MCP-1, and the
C-X-C motif chemokine ligands (CXCLs) like CXCL8 and
CXCL12, also play pivotal roles. MCP-1 recruits monocytes to
the endothelium, facilitating their transformation into
macrophages and foam cells, a key step in atherogenesis
(Medrano-Bosch et al., 2023; Su et al., 2023). CXCL8 (IL-8),
known for its potent chemotactic abilities, further recruits
neutrophils and exacerbates local inflammation, while CXCL12 is
involved in stem cell recruitment and tissue repair, highlighting a
complex balance of detrimental and potentially reparative
mechanisms within the inflamed vasculature (Schober, 2008).
Thus, elucidating these molecular interactions offers crucial
insights into the pathophysiological mechanisms underlying
endothelial dysfunction in MASH. Additionally, quantifying these
cytokines may serve as biomarkers for assessing the increased risk of
atherosclerotic cardiovascular diseases (ASCVD)
associated with MASH.

Moreover, carotid intima-media thickness (CIMT), a non-
invasive ultrasound measure of the combined thicknesses of the
intimal and medial layers of the carotid artery wall, stands as a
validated biomarker for subclinical atherosclerosis (Ismaiel and
Dumitrascu, 2019; Ren et al., 2023). A substantial correlation
between CIMT and the severity of MASH has been documented,
implicating hepatic pathology in MASH as a potential precursor of
heightened cardiovascular risk (Ismaiel and Dumitrascu, 2019; Ren
et al., 2023). This observed association extends to the severity of
histological features within MASLD and MASH, with more
pronounced CIMT corresponding to increasingly severe liver
pathology (Targher et al., 2006; Nahandi et al., 2014). This
implies a potential bidirectional influence, wherein systemic
inflammation and metabolic dysregulation inherent to MASH
exacerbate vascular pathology and vice versa.

Furthermore, laboratory markers such as gamma-
Glutamyltransferase (GGT) and alanine aminotransferase (ALT)
have emerged as potential indicators of increased CIMT in MASH
patients, highlighting the systemic nature of the disease and its
impact on vascular health (Targher et al., 2006). Despite these
insights, the pathophysiological mechanisms underpinning the
relationship between MASH and ASCVD remains unclear.
Factors such as the direct impact of hepatic steatosis on
endothelial function, the role of liver-derived proinflammatory
cytokines in vascular inflammation, and the contribution of
metabolic dysregulation to atherogenesis are areas of ongoing
investigation (VanWagner, 2018; Muzurovic et al., 2022).
Further, the relationship between MASH and carotid artery
disease is becoming more substantiated by a growing body of
scientific/clinical evidence (Pais et al., 2019; Huang et al., 2022).
Carotid artery disease, characterized by the narrowing or blockage of
the carotid arteries which are pivotal for cerebral blood supply
(Ratchford and Evans, 2014), has been observed with greater
prevalence among individuals diagnosed with MASLD and
MASH (Simons et al., 2022; Tang et al., 2022). This association
between MASH and carotid artery disease involves various risk
factors such as elevated body mass index (BMI), active smoking,
elevated levels of LDL, IR, and the presence of metabolic syndrome,
contributing to carotid artery disease pathogenesis in MASH (Peng
et al., 2020; Katsiki et al., 2021; Zhao J. et al., 2022; Ren et al., 2023).
Thus, strategies for accurately evaluating atherosclerosis risk in
MASH patients are yet to be established.

MASH-associated coronary microvascular
dysfunction

Coronary microvascular dysfunction represents a critical facet of
cardiovascular pathology in patients with MASLD and MASH,
delineating a spectrum of abnormalities that include impaired
endothelial function, reduced coronary artery flow reserve, and
compromised collateral vessel formation in response to ischemia
(Villanova et al., 2005). Coronary microvascular dysfunction in
MASH encompasses a pattern of detrimental effects on the
coronary microcirculation, not limited to the endothelial layer
but extending to the smooth muscle cells that regulate vascular
tone and, consequently, myocardial blood flow and ultimately
resulting in myocardial ischemia (Camici and Crea, 2007; Yang
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et al., 2023). Impaired endothelial function, a hallmark of this
dysfunction, results from endothelial cells’ reduced capacity to
produce NO, a potent vasodilator, in response to stimuli which
required to prevent ischemic injury (Yang et al., 2023). This
impairment is closely linked to the systemic inflammatory state
and IR inherent to MASH, which also predispose to the formation of
coronary plaques that are particularly prone to rupture, further
exacerbating the risk of acute coronary events (Del et al., 2021).

Coronary flow reserve (CFR), the ratio of maximal flow to
resting flow in the coronary circulation, emerges as a pivotal
measure in this context. A reduced CFR signifies an inability to
sufficiently increase blood flow to meet myocardial demands during
stress, indicating both epicardial stenosis and microvascular
myocardial perfusion abnormalities (Villanova et al., 2005;
Murthy et al., 2011). Advanced imaging techniques, such as
positron emission tomography/computed tomography (PET/CT)
scans, enable the quantitative assessment of myocardial perfusion
imaging (MPI), offering an integrated view of the heart’s vascular
function (Murthy et al., 2011). This approach underscores the
systemic impact of MASH on cardiovascular health by providing
insights into the compromised myocardial perfusion characteristic
of coronary microvascular dysfunction. The presence of both
coronary microvascular and diastolic dysfunctions has been
associated with an increased risk of developing heart failure with
preserved ejection fraction (HFpEF) events (Taqueti et al., 2018).

MASH-associated risk of heart failure with
preserved ejection fraction

The complex link between coronary microvascular dysfunction
and HFpEF development in MASH patients is of growing interest.
HFpEF, featuring heart failure symptoms alongside normal ejection
fraction, is increasingly common in those with metabolic syndrome
andMASH, primarily due to diastolic dysfunction and altered filling
pressures (Yang et al., 2022;Wegermann et al., 2023). This condition
constitutes a significant portion of heart failure cases, notably in
MASH-related metabolic derangements. Clinical studies reveal
pathophysiological pathways connecting MASH to HFpEF,
emphasizing systemic inflammation, endothelial dysfunction, and
myocardial fibrosis, leading to impaired heart muscle relaxation and
elevated filling pressures, hallmarks of diastolic dysfunction. Paulus
and Tschöpe (2013) propose an inflammatory HFpEF model, where
comorbidities likeMASH trigger systemic microvascular endothelial
inflammation, resulting in coronary microvascular dysfunction,
myocardial stiffness from fibrosis, and cardiomyocyte
remodelling. Mohammed et al. (2014) demonstrate significant
diastolic dysfunction in metabolic syndrome patients, similar to
those with MASH, correlating with metabolic derangement severity,
indicating a direct link between metabolic syndrome/MASH
and HFpEF.

HOMAGE (Heart “Omics” in AGEing) research elucidated
biomarkers’ predictive value for HFpEF, including in those with
MASH. Elevated NT-proBNP and galectin-3 levels, indicative of
myocardial stress and fibrosis, forecasted HFpEF development in
metabolic disorder patients (Jacobs et al., 2014). Advanced imaging
like cardiac magnetic resonance imaging (CMRI) revealed increased
left ventricular mass, myocardial fibrosis, and impaired strain as

HFpEF predictors in MASH patients (Wegermann et al., 2023).
These findings underscore the intertwined coronary microvascular
and diastolic dysfunctions’ role in MASH-related HFpEF
pathogenesis, advocating for holistic cardiovascular assessment
and management. Early interventions addressing cardiovascular
risks in MASH may potentially curb HFpEF progression,
emphasizing integrated care strategies for metabolic dysfunction’s
hepatic and cardiac dimensions.

MASH-associated cardiac structural and
functional alterations

MASH is linked to cardiac structural and functional changes,
extending its negative impact beyond hepatic dysfunction to
significant cardiovascular implications. Ballestri et al. showed
increased left ventricular mass and impaired diastolic function in
MASLD patients (Ballestri et al., 2014), while van der Meer et al.
foundmyocardial triglyceride accumulation associated with reduced
left ventricular (LV) diastolic function in metabolic syndrome
patients (van der Meer et al., 2008a; van der Meer et al., 2008b).
Moreover, studies have reported changes such as increased diastolic
posterior-wall thickness, LV mass, relative wall thickness and left
atrial volume, (Chang et al., 2019; Ismaiel and Dumitrascu, 2019).
Additionally, variations in ejection fraction, tissue Doppler imaging
results, and the E/A ratio have been observed, indicating significant
cardiac involvement in patients with MASLD (Petta et al., 2015; Lee
et al., 2018). Magnetic resonance imaging (MRI) has further
substantiated these findings, revealing noteworthy alterations in
cardiac structure and function in individuals with MASLD,
irrespective of the presence of clinically evident cardiac disease
(Hallsworth et al., 2013). These findings highlight metabolic
dysregulation’s direct effect on cardiac tissue, even in MASLD
patients without major risk factors (Chang et al., 2019).
Moreover, increased epicardial fat thickness has been linked to
cardiac dysfunction via pro-inflammatory cytokine production
(Petta et al., 2015). Further, the association between MASLD and
a higher prevalence of atrial fibrillation highlights the potential for
inflammatory milieu of MASH to foster electrical remodelling of the
atria (Mantovani et al., 2019; Mantovani et al., 2022).
Epidemiological studies also have drawn attention to the subtle
yet persistent elevations in serum liver enzymes among MASLD
patients, positioning these markers as predictive of the development
of heart failure (Wannamethee et al., 2012; Wang et al., 2013). This
correlation highlights the broader systemic consequences of liver
pathology on cardiovascular health.

Compelling evidence links MASLD/MASH to a wide range of
cardiovascular complications, identifying it as a critical risk factor
for ASCVD, CADs, and alterations in LV function and structure.
MASLD/MASH patients are notably at risk for carotid artery
obstructions and exhibit significant changes in cardiac geometry
and function, which, combined with impaired endothelial function
and coronary plaque formation, significantly heighten
cardiovascular event risks, including heart failure. The
pathogenesis involves increased release of pro-inflammatory
cytokines and LDL/VLDL from the liver, alongside risk factors
like IR and dyslipidaemia. Cardiac assessments, particularly CFR
measurements, are vital for identifying cardiovascular risks in
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MASLD/MASH patients. Despite well-established connections
between MASH and cardiovascular disease, further research is
crucial for understanding these complex interactions and
improving management strategies, emphasizing the need for
integrated cardiac and liver disease care to mitigate
cardiovascular risks and enhance patient outcomes.

Muscular complication in
MASLD/MASH

Muscular tissue constitutes approximately 40% of total body
weight and accounts for 50%–75% of all body proteins (Frontera and
Ochala, 2015). It plays a pivotal role in metabolic processes,
particularly in insulin-dependent glucose metabolism and fatty
acid oxidation (Holecek, 2021). Functioning as an active
endocrine entity, skeletal muscle influences inflammation
regulation through the secretion of signalling molecules known as
myokines (Hoffmann and Weigert, 2017). The integrity of muscle
mass is crucial for maintaining muscle power, strength, and
endurance, which collectively determine overall muscle
performance. Hepatic steatosis disrupts the liver-muscle axis,
initiating a detrimental cycle where liver disease impairs muscle
protein synthesis and exacerbates metabolic imbalances, further
fuelling MASLD and systemic inflammation (Bhanji et al.,
2017a). This cycle is compounded by anabolic resistance in
individuals with liver cirrhosis, a condition that diminishes
skeletal muscle’s capacity to synthesize protein in response to
nutrient intake, often leading to sarcopenia (Roman et al., 2014).
Mechanistically, MASLD/MASH are associated with significant
hormonal changes that impact muscle protein synthesis and
degradation. Insulin-like growth factor-1 (IGF-1) levels are
notably reduced in MASLD/MASH patients. IGF-1, produced
mainly by the liver, plays a crucial role in muscle protein
synthesis through the activation of the PI3K/Akt signaling
pathway, which promotes muscle growth and inhibits protein
degradation (Yoshida and Delafontaine, 2020). Conversely,
myostatin, a negative regulator of muscle growth, is often
elevated in MASLD/MASH (Meng et al., 2016). Myostatin
inhibits muscle differentiation and protein synthesis by activating
the SMAD2/3 signaling pathway, leading to muscle atrophy
(Rodriguez et al., 2014). Increased myostatin levels are correlated
with higher muscle protein degradation and reduced muscle mass in
these patients (Yarasheski et al., 2002).

Additionally, alterations in adiponectin and leptin levels are
observed in MASLD/MASH patients (Valenzuela-Vallejo et al., 2023;
Venkatesh et al., 2024). Adiponectin, typically reduced in these
conditions, has anti-inflammatory and insulin-sensitizing effects that
support muscle protein synthesis (Yadav et al., 2013). Low adiponectin
levels exacerbate muscle insulin resistance and protein breakdown. In
contrast, leptin levels are often elevated and, while leptin promotes
muscle protein synthesis in physiological conditions, chronic
hyperleptinemia in MASLD/MASH can lead to leptin resistance,
impairing its beneficial effects on muscle metabolism (Yadav et al.,
2013; Polyzos et al., 2015). The hormonal imbalances inMASLD/MASH
disrupt muscle protein synthesis and degradation, leading to sarcopenia
andmuscle wasting, highlighting the extensive impact on skeletal muscle
metabolism and structural integrity.

Sarcopenia in MASLD/MASH

Sarcopenia, characterized by the loss of muscle mass and
function, emerges as a prevalent complication within MASLD,
affecting up to 60% of patients with end-stage liver disease
(ESLD) (Bhanji et al., 2017a; Bhanji et al., 2017b). This
condition, beyond being a mere consequence of aging, is
increasingly recognized as a progressive disease linked with
higher risks of obesity, T2D, osteoporosis, CVDs, and cancer
(Purnamasari et al., 2022; Yu et al., 2022; Damluji et al., 2023).
The loss of muscle mass and strength in sarcopenia critically
challenges physical performance and poses significant health
risks, including increased disability, frailty, and mortality (Santilli
et al., 2014; Lai et al., 2021). Sarcopenia shares pathophysiological
pathways with MASLD, including metabolic dysfunction, hormonal
imbalances, altered gut microbiome, and systemic inflammation
(Lee et al., 2015; Petta et al., 2017; Wijarnpreecha et al., 2019). This
multifaceted interaction contributes to a cycle where liver disease
exacerbates muscle protein breakdown and inhibits synthesis,
leading to decreased muscle mass and the onset of sarcopenia
(Meyer et al., 2020). Factors such as gluconeogenesis, oxidative
stress, mitochondrial dysfunction, and anabolic resistance play
critical roles in this process, further complicated by the systemic
effects of IR, adiposopathy, and hyperammonaemia (Walker, 2014;
Holecek, 2021).

IR, a hallmark of MASH, disrupts normal insulin signalling,
contributing to muscle loss, while adiposopathy promotes
inflammatory pathways that aggravate sarcopenia through
mechanisms like TNFα activation and myostatin release,
inhibiting muscle protein synthesis (Merz and Thurmond, 2020;
Sethi and Hotamisligil, 2021). Furthermore, NF-κB exacerbates
sarcopenia by facilitating dyslipidaemia, while the accumulation
of AT within skeletal muscles, referred to as myosteatosis, emerges
as an additional outcome of adiposopathy (Gumucio et al., 2019; Joo
and Kim, 2023). This condition notably impairs muscle strength and
functionality, positioning myosteatosis as a critical indicator for
both MASH and sarcopenia. MASH contributes to a reduction in
muscle mass coupled with an escalation in fat accumulation, a
phenomenon known as sarcopenic obesity (Gumucio et al., 2019;
Nachit et al., 2021). In populations with chronic MASLD, statistics
reveal that 43% exhibit sarcopenia, 26% are affected by sarcopenic
obesity, and 52% display myosteatosis (Montano-Loza et al., 2016;
Kang and Yoon, 2023). Additionally, vitamin D deficiency and low
testosterone levels have been implicated in the pathology of
sarcopenia within the MASLD context, suggesting potential
therapeutic targets (Dhindsa et al., 2018; Zhang et al., 2022).
Despite growing awareness, gaps in understanding the precise
mechanisms and effective management strategies for sarcopenia
in MASLD patients persist, necessitating further research to
elucidate the contributions of MASH to sarcopenia and develop
comprehensive treatment approaches.

MASLD-associated inflammatory
myopathies

Emerging evidence also points to the association of MASH with
inflammatory myopathies, muscle disorders marked by skeletal
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muscle inflammation (Lundberg et al., 2021). Although traditionally
linked to autoimmune conditions like dermatomyositis and
polymyositis, MASH-related systemic inflammation has been
implicated in muscle abnormalities’ development and progression
(Bian et al., 2013; Chaudhry et al., 2019). Immune cell infiltration
into skeletal muscles, accompanied by pro-inflammatory cytokine
release, creates a local inflammatory milieu conducive to muscle
damage, associated with MASH-related inflammatory “spill over”
(Pillon et al., 2013). Inflammatory myopathies in MASLD may
involve autoimmune responses, with autoantibodies and immune
complexes contributing to muscle inflammation and damage (Lian
et al., 2022). This process can lead to muscle fibre degeneration,
manifesting as muscle weakness, fatigue, and impaired function, and
complicating muscle repair and regeneration due to persistent
inflammation (Mounier et al., 2013). Shared pathophysiological
pathways between MASH and inflammatory myopathies involve
chronic inflammation, immune dysregulation, and oxidative stress,
contributing to muscle damage and inflammation. While the
association between MASH and inflammatory myopathies is
recognized, further research is warranted to comprehend
underlying mechanisms and clinical implications. Identifying and
addressing muscle inflammation in MASH may have therapeutic
benefits by reducing systemic inflammation and immune
dysregulation, potentially improving muscle function and overall
disease outcomes.

Renal complications in MASLD/MASH

Renal complications, particularly chronic kidney disease (CKD),
are integral to the systemic impact of MASLD/MASH, underscoring
the complex interplay of metabolic disorders (Byrne and Targher,
2020; Cao et al., 2021; Umbro et al., 2021). CKD, characterized by
progressive renal function loss, involves waste product accumulation
and disruptions in fluid and electrolyte balances, often evidenced by
biomarkers indicating kidney damage or reduced glomerular
filtration rate (GFR) (Byrne, 2013; Byrne and Targher, 2020). In
the United States, the prevalence of individuals necessitating renal
replacement therapy exceeds 400,000, with projections indicating a
surge to 2.2 million by 2030, highlighting the escalating burden of
kidney disease (Marcuccilli and Chonchol, 2016). Emerging clinical
research has identified MASLD/MASH as significant independent
predictors for both the onset and progression of CKD, suggesting a
profound link between hepatic steatosis and renal dysfunction
(Byrne, 2013; Byrne and Targher, 2020). These studies elucidate
that the severity of liver disease, characterized by fat accumulation
and inflammation in the liver, correlates with the risk of developing
kidney complications, positioning MASLD/MASH within the
broader constellation of metabolic syndrome-related conditions
that adversely affect renal health.

The pathophysiological bridges between MASLD/MASH and
CKD are multifaceted, encompassing impaired antioxidant
defences, persistent low-grade systemic inflammation, activation
of the renin-angiotensin system, and aberrant lipid metabolism
(Byrne and Targher, 2020; Bilson et al., 2023; Li et al., 2023).
These factors collectively contribute to a milieu conducive to
renal injury. Specifically, the role of pro-inflammatory, pro-
fibrogenic, and anti-fibrinolytic mediators such as fetuin-A,

fibroblast growth factor (FGF)-21, TNF-α, transforming growth
factor (TGF)-β, and plasminogen activator inhibitor-1 (PAI-1),
has been implicated in promoting kidney damage through
mechanisms that include the exacerbation of inflammation and
fibrosis within the renal tissue (Musso et al., 2014; Byrne and
Targher, 2020). Additionally, liver-derived metabolites, including
uremic toxins, play a significant role in the pathogenesis and
progression of CKD. Uremic toxins such as indoxyl sulfate (IS),
p-cresyl sulfate (PCS), and trimethylamine N-oxide (TMAO) are
primarily generated in the liver through the metabolism of dietary
components by gut microbiota, followed by hepatic processing
(Zhen et al., 2023). These metabolites are recognized for their
nephrotoxic effects and their contribution to CKD progression
(Castillo-Rodriguez et al., 2018). Indoxyl sulfate, a protein-bound
uremic toxin derived from the metabolism of tryptophan, is one of
the most studied nephrotoxic metabolites. Once produced in the
liver, IS poorly eliminated by the kidneys in CKD patients, leading to
its accumulation. Elevated IS levels induce oxidative stress and
inflammation in renal tubular cells, promoting fibrosis and
accelerating the decline in renal function (Barreto et al., 2009).
Moreover, IS was also found to be increased in MASLD patients
(Hotamisligil, 2006; Ribeiro et al., 2023). Mechanistically, IS
activates the aryl hydrocarbon receptor (AhR) pathway and
induces the expression of TGF-β and pro-inflammatory
cytokines, thereby exacerbating renal injury (Delgado-Marin
et al., 2024). Similarly, PCS, a metabolite of tyrosine, has been
implicated in CKD progression through mechanisms akin to those
of IS. PCS induces endothelial dysfunction and increases vascular
permeability, contributing to renal damage and cardiovascular
complications commonly seen in CKD patients (Meijers et al.,
2010). Additionally, PCS has been shown to inhibit the
proliferation and repair of renal epithelial cells, further impairing
renal function (Han et al., 2015).

TMAO, another liver-derived metabolite, originates from the
hepatic oxidation of trimethylamine, a product of gut microbial
metabolism of choline, phosphatidylcholine, and carnitine. Elevated
TMAO levels are associated with adverse renal outcomes, including
glomerular sclerosis and interstitial fibrosis. TMAO enhances renal
oxidative stress and inflammatory responses, contributing to the
progression of CKD (Tang et al., 2015). Moreover, TMAO has been
linked to the upregulation of pro-fibrotic and pro-inflammatory
genes, thereby exacerbating renal fibrosis and dysfunction (Zhang
et al., 2020). These liver-derived metabolites, by inducing oxidative
stress, inflammation, and fibrosis, significantly contribute to the
nephrotoxic milieu in CKD.

Despite the accumulating evidence of a link between MASH and
CKD, establishing a definitive causal relationship remains
challenging. The complexity of metabolic syndrome, with its
array of cardiovascular, hepatic, and renal manifestations,
necessitates a holistic understanding of these interconnected
systems. Further research, employing longitudinal studies and
advanced biomolecular techniques, is required to dissect the
intricate mechanisms by which MASLD/MASH contributes to
the development and progression of CKD. Such insights will be
crucial for devising targeted therapeutic interventions aimed at
mitigating renal complications in patients with metabolic liver
disease, thereby addressing an important component of the
morbidity and mortality associated with this condition.
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Pathophysiological links between
MASLD/MASH and extrahepatic
complications

The pathophysiological interrelation between MAFLD or
MASH and its extraneous manifestations, notably CVDs, CKD
and muscular anomalies, constitutes a multidimensional domain
marked by inflammation and oxidative stress, perturbations in gut
microbiota composition, and dyslipidaemia. Each component
intricately contributes to this complex network of pathogenesis.

Inflammation and fibrosis

Metabolic inflammation in MASH is marked by a systemic, low-
grade inflammatory response triggered by factors like high-fat diets.
This systemic inflammation is facilitated by the infiltration of
inflammatory cells such as macrophages and lymphocytes into
the liver, releasing pro-inflammatory cytokines that contribute to
liver damage (Buzzetti et al., 2016; Bhanji et al., 2017a; Boesch et al.,
2023). Kupffer cells, the liver’s resident macrophages, are central to
orchestrating liver inflammation (Jensen et al., 2018; Cusi et al.,
2024). The crosstalk between hepatocytes and immune cells,
mediated by inflammasomes, plays a crucial role in this process
(Fontes-Cal et al., 2021; Duan et al., 2022). Inflammation leads to
fibrosis, an abnormal wound healing response characterized by the
deposition of extracellular matrix proteins and formation of scar
tissue, potentially progressing to cirrhosis (Iwakiri and Trebicka,
2021; Zhao X. et al., 2022). Cirrhosis increases resistance in hepatic
vasculature, leading to portal hypertension, collateral vessel
formation, and increased cardiac workload, potentially resulting
in heart failure (Gonzalez et al., 2020; Iwakiri and Trebicka, 2021;
Umbro et al., 2021).

Insulin resistance

A key feature of MASLD and MASH, IR disrupts glucose
homeostasis, promoting fat accumulation in the liver and
progressing from simple steatosis to MASH and potentially to
cirrhosis and liver failure (Llovet et al., 2023; Cusi et al., 2024).
IR fosters inflammation and oxidative stress, contributing to liver
cell injury and disease progression (Loomba et al., 2021; Muzurovic
et al., 2022; Njoku et al., 2022). The complex mechanisms underlying
IRinvolve genetic factors, obesity, inflammation, lipotoxicity,
mitochondrial dysfunction, and hormonal imbalances (Powell
et al., 2021; Salah et al., 2021; Tripathi et al., 2022; Wong et al., 2023).

Gut microbiota

Dysbiosis, or the imbalance of gut microbiota, has been
increasingly recognized for its role in MASH and CVD
(Brody, 2020; Violi et al., 2023). Increased gut permeability,
or “leaky gut,” allows toxins to reach the liver, exacerbating
inflammation and damage (Brody, 2020; Song and Zhang, 2022;
Violi et al., 2023). Endotoxins from gut bacteria, such as
lipopolysaccharides (LPS), stimulate inflammation,

contributing to liver injury (Solanki et al., 2023; Violi et al.,
2023). Alterations in gut microbiota also affect bile acid
metabolism, influencing liver inflammation and metabolism
(Xiang et al., 2022). Therapeutic modulation of gut
microbiota through probiotics, prebiotics, dietary changes,
short-chain fatty acids (SCFAs) or faecal microbiota
transplantation has shown promise in improving MASH
outcomes (Philips et al., 2020; Nogal et al., 2021; Xiang
et al., 2022).

Dyslipidaemia

Characterized by abnormal levels of blood lipids,
dyslipidaemia is a crucial risk factor for CVD, ASCVD, CAD
and CKD (Linton et al., 2000; Stasi et al., 2022). High LDL
cholesterol and triglycerides contribute to atherosclerosis, while
low HDL cholesterol is linked to increased cardiovascular risk
(Linton et al., 2000). Dyslipidaemia not only contributes to
MASH development but also exacerbates the condition,
necessitating comprehensive management to mitigate
cardiovascular and liver damage risks (Mendez-Sanchez
et al., 2020).

Genetics

Genetic predispositions play a significant role in the
susceptibility to MASLD and its progression (Younossi et al.,
2023). Variants in genes related to lipid metabolism (e.g.,
PNPLA3, TM6SF2), inflammation, oxidative stress, and fibrosis
have been implicated in increasing the risk of developing
MASLD (Anstee et al., 2020; Sveinbjornsson et al., 2022; Xie
et al., 2023). These genetic factors affect liver fat processing and
storage, lipid metabolism, and the inflammatory response,
underscoring the genetic complexity of MASLD and its systemic
manifestations.

Hepatokines

Unlike liver-derived metabolites, hepatokines are the
molecular transducers with hormone-like activities (Seo et al.,
2021). These are central to the inter-organ communication that
regulates metabolic homeostasis (Stefan et al., 2023). These
molecules are implicated in a variety of physiological
processes including glucose and lipid metabolism,
inflammation, and energy homeostasis (Jensen-Cody and
Potthoff, 2021; Khan et al., 2022; Stefan et al., 2023). As
metabolic regulators, hepatokines provide a mechanistic link
between liver function and metabolic disorders such as diabetes,
obesity, CVDs, CKD, and sarcopenia. Some previous reports
have reviewed these hepatokines excellently (de Oliveira Dos
Santos et al., 2021; Jensen-Cody and Potthoff, 2021; Khan et al.,
2022; Berezin et al., 2023; Stefan et al., 2023). Few of the
important hepatokines are summarized in Table 1 with their
target organs, and their physiological roles. Mechanistically,
hepatokines exert their effects through autocrine, paracrine,
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or endocrine mechanisms, influencing not only the liver itself
but also distant organs. These effects can be either beneficial,
such as improving insulin sensitivity, or detrimental, such as
promoting IRand inflammation depending on the pathological
state of the organism. For instance, fibroblast growth factor 21
(FGF21), which is a stellar hepatokine among others, modulates
glucose and lipid metabolism in cardiac and muscle tissues
(Jimenez et al., 2018; Zhang et al., 2019). The extensive
influence of hepatokines on multiple organ systems highlights
their potential as targets for therapeutic intervention in
metabolic diseases. Understanding the specific roles of
hepatokines not only aids in translating the pathophysiology
of metabolic disorders but also opens new ways for treatment,
such as the use of recombinant FGF21 or its analogs for CVDs,
CKD and muscle disorders during MASH (Sunaga et al., 2019).
Future research focusing on the interaction between hepatokines
and their receptors may provide novel insights into their
mechanistic pathways and therapeutic potential.

The association between MASH and its extrahepatic
manifestations, especially CVDs and CKD, is reinforced by
complex pathophysiological mechanisms. While
inflammation, fibrosis, IR, dysbiosis, dyslipidaemia, and
genetic factors each contribute to the disease process, their
interplay exacerbates the systemic impact of MASH.
Understanding these mechanisms is crucial for developing
targeted therapeutic strategies to manage MASLD and its
broad spectrum of complications. Further research is needed

to elucidate these complex interactions fully and identify
effective interventions for patients with MASH.

Multidisciplinary and innovative
therapeutic strategies for managing
MASH and associated extrahepatic
manifestations

The management of MASH and its associated systemic/
extrahepatic manifestations, including CVDs, sarcopenia, and
CKDs, demands a holistic and multidisciplinary approach
(Figure 3). Collaboration among hepatologists, endocrinologists,
dietitians, and exercise specialists are essential to address the
multifaceted nature of the disease comprehensively. Tailoring
treatment plans to individual patient profiles, considering disease
severity and comorbidities, is paramount for optimizing health
outcomes. Lifestyle interventions, focusing on diet, exercise, and
weight management, serve as the cornerstone of MASH treatment
(Machado, 2021; Semmler et al., 2021; Viveiros, 2021), aiming to
mitigate metabolic derangements, reduce hepatic fat accumulation,
enhance insulin sensitivity, and alleviate inflammation and oxidative
stress. For example, caloric restriction and adherence to a
Mediterranean-style diet have shown promise in diminishing
hepatic fat and improving liver health, while aerobic and
resistance training exercises enhance insulin sensitivity and
support weight loss (Hallsworth et al., 2011; Anania et al., 2018;

TABLE 1 Table summarizing hepatokines, detailing their primary target organs and functions.

Hepatokine Target organs Functions References

FGF21 Muscle, AT, pancreas, brain Enhances insulin sensitivity, modulates lipid metabolism, regulates energy
expenditure

Liu et al. (2015), Xie and Leung (2017)

ANGPTL3 Liver, AT Inhibits lipoprotein lipase, regulates lipid metabolism Santulli (2014)

ANGPTL6 Muscle, cardiovascular
system

Modulates glucose metabolism, promotes angiogenesis Santulli (2014)

Selenoprotein P Muscle, pancreas, brain Antioxidant, regulates glucose and insulin metabolism Misu et al. (2010)

Hepcidin Intestine, liver, spleen Regulates iron metabolism, modulates inflammatory responses Ganz and Nemeth (2012)

Betatrophin Pancreas, AT Regulates β-cell proliferation, impacts lipid metabolism Raghow (2013)

Fetuin-A AT, immune system Induces inflammation, modulates insulin signaling Peter et al. (2018)

RBP4 AT, muscle Modulates insulin resistance, regulates glucose homeostasis Graham et al. (2006)

FGF19 Gallbladder, intestine, liver Regulates bile acid synthesis, modulates energy expenditure Kir et al. (2011)

Leptin Brain, AT Regulates appetite, energy balance, insulin sensitivity Li (2011)

Adropin Brain, cardiovascular system Regulates energy homeostasis and vascular function Kumar et al. (2008)

Follistatin Muscle, liver, AT Muscle growth, modulation of metabolism, suppression of myostatin Lee and McPherron (1999)

DPP4 AT, liver, immune system Enzymatic activity influencing glucose metabolism, inflammation Deacon (2011)

FGF23 Bone, kidneys Regulates phosphate metabolism, vitamin D levels Shimada et al. (2004)

GDF15 Brain, AT Regulates appetite, inflammatory responses Plomgaard et al. (2022)

Osteopontin Immune system, bone Regulates immune responses, bone remodeling Scheller et al. (2011)

Angptl8 AT, liver Regulates lipid metabolism, modulates lipoprotein lipase activity Ebert et al. (2014), Perdomo et al.
(2021)
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Ristic-Medic et al., 2020). Addressing micronutrient imbalances,
such as deficiencies in vitamins B12, folate, and potentially beneficial
supplements like vitamin E and omega-3 fatty acids, may offer
therapeutic benefits by modulating hyperhomocysteinemia,
inflammation, oxidative stress, and liver fibrosis (Calder, 2010;
Koplay et al., 2011; Ryan et al., 2013; Mahamid et al., 2018;
Musa-Veloso et al., 2018; Zaric et al., 2019; Levy et al., 2021;
Tripathi et al., 2022).

Emerging therapeutic targets and pharmacological interventions
represent significant areas of active research. The exploration of
thyromimetics, which mimic thyroid hormone actions to regulate
metabolism, demonstrates potential in ameliorating MASH-related
liver damage, inflammation, and fibrosis, as evidenced by clinical
trials with agents like resmetirom (Sinha et al., 2020). Similarly,
agents targeting metabolic pathways, such as GLP-1 receptor
agonists and PPARα agonists, are under investigation for their
capacity to correct metabolic abnormalities integral to MASH
pathophysiology (Zhu et al., 2021; Zhang et al., 2023). Moreover,
the complex interplay between MASH and gut microbiota suggests
that modulating the gut microbiome through probiotics, prebiotics,
or faecal microbiota transplantation could offer a novel avenue for
treatment, addressing dysbiosis and its contributions to liver
inflammation and damage (Xiang et al., 2022; Solanki et al., 2023).

Given MASH’s association with metabolic disturbances,
combination therapies targeting various aspects of the disease
process, ranging from inflammation and fibrosis to metabolic
dysfunctions, are likely to emerge as a promising strategy. The
synergy between pharmacological agents with complementary
mechanisms of action could enhance treatment efficacy,

potentially offering a more comprehensive approach to managing
MASH and its complications. However, the path to optimizing
MASHmanagement extends beyond current therapeutic modalities.
Future research directions include the identification of specific
molecular and genetic markers to guide personalized treatment
strategies, the utilization of non-invasive imaging techniques for
liver assessment, and the exploration of novel therapeutic targets.
Such advancements are anticipated to refine therapeutic
interventions, improve prognostication, and ultimately enhance
the quality of life for patients with MASH.

Conclusion

The management of MASH necessitates a comprehensive,
personalized strategy that encompasses lifestyle interventions,
pharmacological measures, and emerging therapeutic agents to
address both hepatic and systemic manifestations. Central to this
approach is the recognition of MASH as a systemic disorder with
significant impacts on cardiovascular health, skeletal muscle
function, and renal integrity. The interconnections between
MASH and its extrahepatic effects underline the importance of a
multidisciplinary care model, emphasizing early detection, precise
risk assessment, and tailored treatment plans that mitigate the
progression of associated conditions. Key lifestyle modifications
such as dietary adjustments, increased physical activity, and
weight management form the cornerstone of MASH
management, targeting causal metabolic dysfunctions including
IR and dyslipidaemia. Additionally, addressing chronic

FIGURE 3
An Integrated holistic care model for managing patients with metabolic associated steatohepatitis (MASH) and other MASH-associated effects.
Illustration proposed an integrated care model for patients with MASH who also have systemic indications such as obesity, diabetes, cardiovascular
diseases (CVDs), chronic kidney disease (CKD), and muscular dystrophy. Clinical interventions proposed are outlined, showing a flow of care from a
hepatologist/gastroenterologist to a team including a pathologist, endocrinologist, cardiologist, nephrologist, and rheumatologist, indicating the
need for collaborative medical management across different organ systems affected during/by MASH. Lifestyle interventions are highlighted, with a
nutritionist/dietitian and a medical exercise specialist playing key roles in managing the patient’s nutrition and physical activity, essential for the overall
treatment strategy. This model highlights the importance of a multidisciplinary integrative team working in concert to provide comprehensive care that
addresses the multifaceted aspects of MASH and its related systemic diseases. The illustration was made on BioRender.com.
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inflammation and oxidative stress through targeted pharmacological
interventions is critical for ameliorating the broader health impacts
of MASH. As research advances, the potential for novel therapies
targeting specific pathophysiological pathways offers hope for more
effective and individualized treatments, aiming to improve overall
patient outcomes and reduce the burden of complex MASLD and
MASH. Future research directions should concentrate on unveiling
new therapeutic targets, adopting precision medicine strategies, and
understanding the long-term effects of MASH on organ health to
optimize care for affected individuals.
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