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Atherosclerotic cardiovascular disease (ASCVD) is the most important cause of
morbidity and mortality worldwide. While it is traditionally attributed to lipid
accumulation in the vascular endothelium, recent research has shown that
plaque inflammation is an important additional driver of atherogenesis.
Though clinical outcome trials utilizing anti-inflammatory agents have proven
promising in terms of reducing ASCVD risk, it is imperative to identify novel
actionable targets that are more specific to atherosclerosis to mitigate adverse
effects associated with systemic immune suppression. To that end, this review
explores the contributions of various immune cells from the innate and adaptive
immune system in promoting and mitigating atherosclerosis by integrating
findings from experimental studies, high-throughput multi-omics
technologies, and epidemiological research.
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1 Introduction

In recent years, atherosclerotic cardiovascular disease (ASCVD) has grown to be the
leading cause of mortality worldwide (Vos et al., 2020). The formation of atherosclerotic
plaques, or atherogenesis, is preceded by increased vessel wall activation and increased
vascular permeability. Following this, in a process that spans many years, accumulation of
low-density lipoprotein (LDL) within the vascular endothelium eventually leads to plaque
formation. This process occurs mainly at sites of the vasculature that are characterized by
disturbed blood flow, such as branch points and bifurcations. As the plaque grows, sudden
occlusion can follow rupture or erosion of the plaque’s surface, leading to ischemic events
with clinical consequences such as myocardial infarction and stroke (Farb et al., 1996; Libby
et al., 2011; Bentzon et al., 2014).

Experiments in human and murine models, including the well-known Apoe−/−, apoE*3-
Leiden.CETP, and Ldlr−/− mice models, have countered the traditional view that
atherosclerosis is a disease of mere passive lipid accumulation. On the contrary, it is
now widely accepted that low-grade inflammation is a hallmark of the pathophysiology of
atherosclerosis. Leukocytes densely populate the arterial walls both in healthy and affected
individuals. Their number and composition, however, differ in health and disease. Plaque
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inflammation is driven by involvement of both the innate and
adaptive immune system, which is caused by persistent pro-
inflammatory triggers that facilitate both plaque progression and
the occurrence of plaque rupture and erosion.

Clinicians have traditionally focused on vigorously lowering
plasma cholesterol levels as the predominant approach to stalling
plaque development and prevention of cardiovascular events. This
paradigm, however, is due for reconsideration. In a considerable
proportion of patients that receive optimal lipid-lowering therapy in
accordance with current guidelines, a residual inflammatory risk of
recurrent cardiovascular complications remains (Sampson et al.,
2012). A recent meta-analysis of clinical trials, encompassing over
30.000 patients with a history of ASCVD, showed that residual
inflammatory risk, defined as high-sensitivity C-reactive
protein ≥2 mg/L, is a larger driver of recurrent cardiovascular
events than risk attributed to residual LDL cholesterol (LDL-C)
in patients already receiving optimal lipid lowering therapy (Ridker
et al., 2023). The Canakinumab Anti-inflammatory Thrombosis
Outcomes Study (CANTOS) was the first landmark study to
demonstrate that a monoclonal antibody (canakinumab)
targeting IL-1β could significantly reduce the recurrence rates of
cardiovascular events independent of changes at the lipid level
(Ridker et al., 2017). Similar results were obtained using low
doses of the anti-inflammatory drug colchicine (Nidorf et al.,
2020). It is therefore now widely recognized that mitigating
inflammation is of paramount importance to further reduce
residual cardiovascular risk. It should be noted however, that
trials like CANTOS have shown that broad targeting of
inflammation comes with serious adverse side effects.

Additionally, in the Cardiovascular Inflammation Reduction Trial
(CIRT), administration of a low dose of the broad anti-inflammatory
agent methotrexate did not result in a reduction of cardiovascular
events, which is indicative of the complexity of inflammatory
pathways in atherosclerosis. Research efforts should therefore
focus on more specific anti-inflammatory therapies that target,
for instance, one particular immune cell type or inflammatory
process that is causative for atherosclerosis. They should also
recognize that inflammation is a crucial component of host
homeostasis (Xu et al., 2022). Effective therapeutic strategies
might therefore involve not just the suppression of “bad”
inflammation but also the enhancement of “good” inflammation
to maintain a balanced immune response in the face of pro-
atherosclerotic triggers. In light of this, detailed knowledge about
the inflammatory processes governing atherogenesis is
indispensable. The introduction of novel high-throughput
methodologies, such as single-cell RNA sequencing (scRNA-seq)
has greatly accelerated our ability to characterize the immune
landscape in atherosclerosis. These techniques will continue to
enhance our understanding of the complex cellular interactions
and molecular pathways driving disease progression, paving the way
for novel personalized and effective anti-inflammatory therapies
that are cell- or pathway-specific.

In this review, we will explore the functions of various immune
cells and the molecular mechanisms at play in atherosclerosis,
emphasizing contributions from high-throughput technologies
where relevant. By using these insights to find possible
therapeutic targets, it paves the way for novel methods to
mitigate inflammatory cardiovascular risk.

GRAPHICAL ABSTRACT
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2 Endothelial cell activation primes the
vessel wall for an
inflammatory response

2.1 Laminar shear stress induces an anti-
inflammatory and atheroprotective effect

The arterial wall is lined by a single layer of endothelial cells
(EC), which are constantly exposed to variations in shear stress
patterns and regulated by a multitude of mechanical and molecular
factors that either promote or mitigate inflammation (Luscinskas
Francis and Gimbrone, 1996). EC activation serves as a first line of
defense against atherogenic stressors and potentiates an increase in
interactions between ECs and circulating immune cells. It is largely
driven by variations in blood flow-induced shear stress throughout
the arterial vasculature (Gimbrone et al., 2000). High laminar shear
stress (LSS), occurring in regions characterized by stable flow
triggers various downstream anti-inflammatory signals within
ECs. These signals are sensed by a complex network of
mechanosensitive protein complexes present on cell-cell junctions
and the apical and basal endothelial surface of ECs (Figure 1)
(Demos et al., 2020).

On the apical surface, the cation channel Piezo1 relays
downstream signals through the activation of the P2Y2 and Gαq/
11 pathways, which in turn activate Akt, upon mechanical detection
of LSS (Iring et al., 2019). At cell-cell junctions, LSS leads to the
phosphorylation of the mechanosensory cell-cell adhesion protein

Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1).
Through its interaction with Vascular Endothelial Cadherin (VE-
cadherin), phosphorylated PECAM-1 initiates Src-dependent
phosphorylation of VEGFR2 and -3 and subsequent Akt
activation (Tzima et al., 2005; Coon et al., 2015). Recent research
has shed light on the role of the guidance receptor plexin D1, which
has a mechanosensing function on the apical endothelial membrane.
This receptor forms a complex with Neuropilin 1 (NRP1) and
Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) to
contribute to activation of the latter in response to LSS (Mehta
et al., 2020). These mechanosensory pathways, involving Piezo1,
plexin D1, and PECAM-1, converge within the endothelial cell to
activate various anti-inflammatory signaling pathways (Fleming
et al., 2005; Wang et al., 2015; Iring et al., 2019; Mehta et al.,
2020). This triggers a series of downstream atheroprotective effects,
such as the upregulation of endothelial nitric oxide synthase (eNOS),
leading to increased production of endothelial nitric oxide (NO) and
thus increasing endothelial barrier integrity and reducing oxidative
stress (Fleming et al., 2005; Wang et al., 2015; Iring et al., 2019;
Mehta et al., 2020). Even more significantly, LLS-induced
mechanosignalling increases transcription of Kruppel-like
transcription factors (KLF) 2 and 4, which are recognized as
pivotal regulators in the flow-sensitive activation of anti-
atherogenic pathways (Novodvorsky et al., 2014). Notably, NO,
KLF2 and KLF4, as well as Piezo1-mediated P2Y purinoceptor 2
(P2Y2) and Gαq/11 signaling inhibit the transcription of the pro-
inflammatory nuclear factor kappa B (NF-κB) (Gofman et al., 1950;

FIGURE 1
Mechanosensing of disturbed flow induces endothelial activation At the apical surface of the vascular endothelial cell, Plexin D1, Piezo1 and P2Y2 act
as mechanosensors and sense laminar flow, leading to activation of Akt and endothelial nitric oxide synthase (eNOS), in addition to upregulation of
Kruppel-like transcription factors (KLF) 2 and 4 and downregulation of the pro-inflammatory nuclear factor-κB (NF-κB). At cell-cell junctions, vascular
endothelial cadherin (VE-cadherin) works in concert with platelet endothelial cell adhesion molecule (PECAM1) and vascular endothelial growth
factor receptor 2 (VEGFR2) to induce Akt activation in response to laminar flow. At the basal membrane, integrin signaling downregulates yes-associated
protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) signaling. In contrast, Piezo1 induces expression of NF-κB through integrin
signaling in response to disturbed flow. Coupled with unbridled YAP-TAZ signaling, this leads to a variety of pro-inflammatory responses: upregulation of
P-Selectin, E-selectin, Vascular Cell AdhesionMolecule-1 (VCAM-1) and Intercellular AdhesionMolecule-1 (ICAM-1), and increased production of various
cytokines, chemokines and Toll-like receptors (TLRs).
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Albarrán-Juárez et al., 2018). Furthermore, KLF2 directly inhibits
transcription of the glycolytic enzyme 6-phosphofructo-2-kinase/
fructose-2, 6-biphosphatase-3 (PFKFB3), thereby repressing
glycolysis in ECs and promoting a quiescent endothelial state.
Doddaballapur et al. (2015) Moreover, exposure of endothelial
mechanosensory integrin β to LSS at the basal membrane results
in the inhibition of yes-associated protein (YAP) and transcriptional
coactivator with PDZ-bindingmotif (TAZ) signaling within the pro-
inflammatory Hippo pathway (Wang et al., 2016).

2.2 Oscillatory shear stress leads to
endothelial cell activation

In contrast to LSS, oscillatory shear stress (OSS), predominantly
occurring in branch points and bifurcations of the vasculature
incites a pro-inflammatory reaction within the endothelium
(Figure 1). In this scenario, attenuation of NF-κB expression and
YAP-TAZ signaling by mechanosensors Piezo1, PECAM-1, and
integrins is lost (Tzima et al., 2005; Albarrán-Juárez et al., 2018).
Activation of Piezo1 in response to disturbed flow further induces
expression of NF-κB through integrin activation (Albarrán-Juárez
et al., 2018). Increased NF-κB and YAP-TAZ signaling trigger
endothelial activation, as evidenced by the upregulation of
monocyte adherence molecules including Vascular Cell Adhesion
Molecule-1 (VCAM-1), E-Selectin, P-selectin, and Intercellular
Adhesion Molecule-1 (ICAM-1), and expression of potent pro-
inflammatory mediators including Toll-like receptor (TLR) 2,
chemokine (C-C motif) ligand 2 (CCL2), Interleukin (IL)-6, and
IL-8 (Tzima et al., 2005; Wang et al., 2016; Bondareva et al., 2019).
Substantiating these experimental observations, a recent scRNA-seq
study on ECs from human coronary arteries in transplanted human
hearts provided compelling ex vivo evidence that endothelial
activation is essential for atherosclerotic plaque formation. In this
study, a distinct EC subpopulation that was characterized by
upregulation of genes associated with inflammation and
endothelial activation was identified, constituting over 80% of all
ECs (Hu et al., 2021). This subpopulation was more abundantly
present in atherosclerotic arteries compared to healthy controls. A
similar EC phenotype was identified in a subsequent scRNA-seq
study of human carotid plaques, where a large majority of intra-
plaque ECs showed expression of genes such as PECAM1 and
VCAM1 that are associated with endothelial activation (Depuydt
et al., 2020).

3 The role of the innate immune system
in atherosclerosis

3.1 Monocyte subtypes play different roles in
atherogenesis

Monocytes are bone marrow derived immune cells capable of
differentiating into macrophages and, under certain inflammatory
conditions, into monocyte-derived dendritic cells (DCs). As
(activated) monocytes predominantly interact with activated
endothelium, they have historically played a central role in
atherosclerosis research (Kim et al., 2020). Classical

cardiovascular risk factors, such as dyslipidemia, lead to
monocytosis through upregulation of bone marrow activity in
mice (Moore et al., 2013). In humans, a positive history of
ASCVD has been linked to increased metabolic activity of
hematopoietic tissues of the spleen and bone marrow as well as
an enhanced functional status of hematopoietic stem and progenitor
cells, indicating increased hematopoietic activity as a potential driver
of monocytosis and low-grade inflammation in ASCVD (van der
Valk et al., 2016). The relation between cardiovascular health, bone
marrow activity and atherogenesis was further studied in the
Progression of Early Subclinical Atherosclerosis (PESA) study
(Devesa et al., 2022). Here, classical risk factors such as
metabolic syndrome, hypertension, dyslipidemia, diabetes and
BMI correlated significantly with bone marrow activation on
18F-FDG PET/MRI. Consequently, these subjects showed
increased leukocyte counts and elevated markers of
inflammation, indicating low-grade systemic inflammation. In
turn, bone marrow activation was associated with arterial uptake
of 18F-FDG, indicating early plaque formation.

Within atherosclerotic plaques, monocytes transition into
macrophages, which have an affinity for the uptake of modified
LDL (Zernecke et al., 2020). Flow cytometry and fluorescence-
activated cell sorting (FACS) are often used to classify monocyte
subsets in humans based on CD14 and CD16 receptor levels:
classical monocytes (~90% of circulating monocytes;
CD14++CD16−), followed by intermediate (~5%; CD14++CD16+)
and non-classical monocytes (~5%; CD14+CD16++). A similar
classification is used in mice, where Ly6high monocytes
correspond to human classical monocytes, and Ly6low monocytes
to non-classical monocytes (Mehta and Reilly, 2012). Generally,
non-classical monocytes are ascribed a role in homeostasis and
atheroprotection, as depletion of non-classical monocytes in murine
models has resulted in aggravation of atherogenesis and increased
apoptosis of ECs (Quintar et al., 2017). Intravital microscopy
experiments have shown that classical monocytes engage in
ICAM-1 and -2-dependent “patrolling” along the endothelial
surface of murine atherosclerotic arteries (Quintar et al., 2017).
Furthermore, they typically avoid entering the subendothelial space
(Quintar et al., 2017). Classical monocytes, on the other hand, are
attracted to the atherosclerosis-prone endothelium, targeted by
CCL2 on the endothelial surface in a manner reliant on the
leukocyte C-C Chemokine Receptor Type 2 (CCR2). Their
important role in atherogenesis is confirmed in murine knock-
out models of CCR2 and CCL2, which show a significant
reduction in atherosclerosis formation compared to wild type
mice (Boring et al., 1998; Gu et al., 1998). Aside from CCL2,
CCL5 plays a role in chemotaxis of classical monocytes through
interaction with leukocyte CCR5 in the atherosclerotic vessel wall. In
murine atherosclerosis models, CCL5 expression is significantly
enhanced in the vessel wall compared to wildtype mice.
CCR5 expression is upregulated in tandem in circulating
monocytes. Various separate experiments involving
administration of function-blocking antibodies to CCR5, genetic
depletion of CCR5, and genetic depletion of CCL2 have all
demonstrated a significant reduction in lesion size (Tacke et al.,
2007; Combadiè et al., 2008; Jongstra-Bilen et al., 2021). Finally, it is
this specific group of classical monocytes that undergoes expansion
in reaction to hypercholesterolemia and atherosclerosis, whereas
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formation of non-classical monocytes is impaired under these
circumstances (Swirski et al., 2007). This finding underscores the
largely opposite roles of the two types of monocytes. Nonetheless,
the precise role of non-classical monocytes in atherosclerotic plaque
formation and inflammation in humans remains subject of
further study.

Although monocyte subtypes have traditionally been classified
based on CD14 and CD16 surface expression, recent advancements
in scRNA-seq and mass cytometry have challenged this triadic
categorization, uncovering more monocyte diversity than initially
thought. For example, a study using scRNA-seq in human
monocytes found that monocytes that had previously been
defined as intermediate subtype showed considerable overlap
with the classical and nonclassical subtypes. Surprisingly, these
monocytes clustered into two additional and previously undefined
clusters as well, introducing novel heterogeneity of intermediate
monocytes (Villani et al., 2017). Subsequent investigations in a
study using machine learning to reclassify monocyte subpopulations
based on scRNA-seq and mass cytometry data, proposed that one of
these novel monocyte subtypes represented a cluster of Natural Killer
(NK) cells (Dutertre et al., 2019). Likewise, other potential novel
monocyte subtypes have been proposed following studies using a
variety of different high-throughput strategies and analytical
approaches, both in humans (Roussel et al., 2017; Thomas et al.,
2017) and in mice (Mildner et al., 2017). Even though reaching a
consensus on these subpopulations and their distinct functions will
require further research, the enhanced subclassification of monocytes
through high-throughput techniques and omics approaches are
likely to prove essential to atherosclerosis research. In this context,
it is advisable to strive for standardization of markers and
clustering methods used to ensure reproducible identification of
cell clusters. More precise identification of monocyte subsets will
enable dissection of their specific pro-inflammatory and pro-
atherosclerotic contributions allowing for more focused and
hypothesis-driven research.

3.2 Monocytes migrate into the vessel wall
and differentiate into foam cells

Once near the activated endothelium,monocytes undergo transient
rolling interactions, followed by firm adhesion mediated by integrins
and chemokine activation, ultimately leading to their migration across
the endothelium barrier into the subendothelial space (Figure 2)
(Timmerman et al., 2016). Early experiments in mice models of
atherosclerosis involving genetic depletion of P-selectin made clear
that this protein facilitates leukocyte rolling, extravasation and by
consequence, plaque formation (Mayadas et al., 1993; Johnson et al.,
1997; Dong et al., 2000). Subsequent experiments involving murine
knockout models of its ligand, leukocyte P-selectin glycoprotein ligand-
1 (PSGL-1), confirmed the interaction of these proteins as a major
driver of monocyte recruitment in atherosclerosis (An et al., 2008).
Moreover, involvement of other adhesion molecules on the activated
endothelium, such as ICAM-1, ICAM-2 and VCAM-1, have been
associated with progression of atherosclerosis inApoe−/−mice following
coronary ligation (Sager et al., 2016).

Upon recruitment to the subendothelial space, monocytes
differentiate into macrophages. Aside from monocyte influx, the

accumulation of macrophages is driven in large part by the
proliferation of pre-existing tissue-residing macrophages, which
occurs mainly in advanced atherosclerotic lesions (Robbins et al.,
2013). These macrophages take up modified apoB lipoproteins that
are retained in the subendothelial space, of which minimally
modified LDL (mmLDL) is the most prominent. This uptake
occurs in various ways. On the one hand, through phagocytosis
mediated by scavenger receptor A1 (SRA1), Lectin-like Oxidized
Low-Density Lipoprotein Receptor-1 (LOX-1) and CD-36 (Moore
and Freeman, 2006; Poznyak et al., 2021). On the other hand, native
LDL is also internalized by macrophages, albeit to a lesser extent,
through micropinocytosis. Once internalized by the macrophages,
LDL undergoes degradation within macrophagic lysosomes, with
degradation byproducts being stored as droplets in the cytoplasm.
Microscopic analysis showed that the accumulation of these droplets
give macrophages the characteristic appearance of cholesterol-laden
foam cells (Brown and Goldstein, 1983). These foam cells contribute
significantly to plaque growth and instability and are a hallmark of
the initial fatty streak phase of atherosclerosis.

3.3 Persistent hypercholesterolemia
overwhelms foam cells, leading to a pro-
inflammatory response

The influx and subsequent proliferation of foam cells is regarded
as a main driver of fatty streak formation and subsequent plaque
growth. Even though monocyte-derived macrophages are well-
recognized contributors to foam cell formation in atherosclerosis,
scRNA-seq analysis in mouse models of atherosclerosis have
indicated a role for vascular smooth muscle cells (VSMCs) that is
far from negligible. Stimulated by TGF-β, which is secreted by
-amongst others- macrophages, ECs and T-cells, VSMCs express
high levels of smooth muscle α-actin and engage in the production
of a complex extracellular matrix containing elastin, proteoglycans
and collagen (Bobik, 2006; Bentzon et al., 2014). This matrix forms a
fibrous cap that surrounds a core of foam cells (Libby, 2000).
Interestingly, recent fate-mapping experiments have evidenced
that VSMCs within a fibrous cap are derived from proliferation
of a single VSMC in the medial layer of the vessel (Misra et al., 2018).
The proliferation of VSMCs and the formation of this fibrous cap
marks a critical point for the plaque, after which the likelihood of
spontaneous regression of the plaque diminishes (Gofman et al.,
1950; Bennett et al., 2016). On the other hand, incorporation of
VSMC-derived extracellular matrix into the fibrous cap may
increase stability, lowering the chances of plaque rupture and
subsequent atherothrombotic events (Bennett et al., 2016). As the
plaque progresses, VSMCs migrate into the plaque and undergo
transdifferentiation into a variety of transcriptionally heterogenic
phenotypes as evidenced by several murine scRNA-seq studies
(Hutton et al., 2023). Remarkably, a large subset of these VSMCs
gain expression of macrophage markers and engage in the uptake of
lipoproteins to become the majority of plaque foam cells, over
macrophages (Francis, 2023). scRNA-seq studies in human
plaques have confirmed that VSMCs in humans form a
heterogeneous population as well (Depuydt et al., 2020), but the
extent to which phenotypic switching plays a role in human disease
remains a matter of ongoing investigation.
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Following periods of persistent hypercholesterolemia, sustained
influx of lipoproteins can outpace the metabolic capacities of foam
cells. When this happens, pro-inflammatory responses are triggered,
such as the NF-κB-dependent secretion of cytokines like tumor
necrosis factor α (TNF-α), IL-6 and IL-1β (Figure 2) (Yvan-Charvet
et al., 2008). This ultimately leads to the infiltration and activation of
pro-atherogenic leukocytes, coupled with amplified lipoprotein
modification, and aggravated foam cell formation (Williams
et al., 2019). Moreover, cholesterol is incorporated into the cell
membrane of foam cells, amplifying inflammatory signaling (Tall
and Yvan-Charvet, 2015). Endoplasmatic reticulum stress caused by
prolonged lipid overload may trigger foam cells to undergo
apoptosis or necrosis, after which they are removed by
macrophages in a process called efferocytosis (Neels et al., 2023).
Initially beneficial to plaque regression, foam cell death and
subsequent clearance of cell debris by efferocytosis diminishes the
number of cells present in the plaque. Over time however, the ability
of efferocytes to efficiently clear apoptotic and necrotic cells
diminishes, resulting in accumulation of cell debris and necrotic

core formation. This induces increased plaque vulnerability
(Gonzalez and Trigatti, 2017; Neels et al., 2023). In this context,
it has been shown that efferocytes release their pro-inflammatory
cellular and lipid contents, further contributing to leukocyte
recruitment (Kojima et al., 2017).

3.4 Inflammasome-mediated inflammation
in atherosclerotic plaque formation

As the CANTOS and COLCOT trials generated promising
evidence for the anti-atherogenic effects of IL-1β antibodies and
colchicine, the inflammasome has amassed attention as the major
driving factor of IL-1β-driven inflammation in atherosclerosis.
Inflammasomes are located within the cytoplasm of immune cells
of the innate immune system. They function as intracellular sensors
that respond to damage-associated molecular patterns (DAMPs;
released during cellular stress), as well as pathogen-associated
molecular patterns (PAMPs; associated with microbes) (Kelley

FIGURE 2
Monocytes transmigrate through the activated endothelium to form foam cells. Circulating monocytes are attracted to the activated endothelium
by chemokines chemokine (C-C motif) ligand 2 (CCL2) and CCL5. P-selectin and E-selectin on the endothelial membrane are involved in monocyte
recruitment. Once in close proximity, molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1) and Intercellular Adhesion Molecule-1 (ICAM-1)
initiate monocyte transmigration. Once in the subendothelial space, monocytes differentiate intomacrophages. Through a process of phagocytosis
mediated by scavenger receptor A1 (SRA1), Lectin-like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1) and CD-36, and throughmicropinocytosis,
macrophages take up (oxidized) low-density lipoprotein [(ox)LDL]. These lipoproteins undergo lysosomal degradation, after which their byproducts are
stored as lipid droplets, leading to foam cell formation. Sustained influx of lipoproteins leads to secretion of cytokines such as tumor necrosis factor α
(TNF-α), interleukin-6 (IL-6) and IL-1β. VSMC, vascular smooth muscle cell.
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et al., 2019). These distinct patterns are detected by specialized
receptors referred to as pattern recognition receptors (PRRs), which
include TLRs and nucleotide-binding oligomerization domain-like
receptors (NLRs) (Kelley et al., 2019). These NLRs, the most
prominent of which include NLR Family Pyrin Domain
Containing 1 (NLRP1), NLRP3, and NLR Family CARD Domain
Containing 4 (NLRC4), guide the assembly of inflammasomes upon
recognition of DAMPs or PAMPs, ultimately leading to activation of
caspase-1. This enzyme then converts the inactive forms of the pro-
inflammatory cytokines IL-1β and IL-18 into their active
counterparts (Kelley et al., 2019). Within atherosclerotic plaques,
the accumulation of modified lipoproteins leads to the creation of
cholesterol microcrystals that activate the inflammasome through
enhanced signaling of the nuclear receptor subfamily three group C
member 2 (NR3C2) (Chen et al., 2023). One experimental study
definitively established the inflammasome as a link between
cholesterol and atherosclerosis, as peritoneal exposure of
atherosclerosis-prone mice to these cholesterol crystals was found
to be able to trigger inflammation and atherosclerosis in a
NLRP3 inflammasome-dependent manner (Duewell et al., 2010).
It is therefore unsurprising that genes associated with the
NLRP3 inflammasome exhibit substantially higher expression
levels in atherosclerotic plaques compared to non-atherosclerotic
areas in human arteries (Paramel et al., 2016). These changes were
found to be particularly pronounced in patients with symptomatic
lesions in a sub-group analysis of the same experiment (Paramel
et al., 2016), and an elevated expression of NLRP3 in the aorta was
found to correlate with an increased risk of developing coronary
artery disease (Zheng et al., 2013). Experimental lentiviral
NLRP3 silencing reduced atherosclerotic plaque area,
macrophage count within lesions, lipid accumulation, and
heightened plaque stability via increased collagen content in
Apoe−/− mice (Zheng et al., 2014).

The NLRP3 inflammasome promotes inflammation by
facilitating the release of IL-1β and IL-18 (Kelley et al., 2019). Of
these, IL-1β has been found to play a significant role in promoting
endothelial activation by enhancing the expression of endothelial
adhesion molecules such as ICAM-1 and VCAM-1 and monocyte
adhesion to ECs (Cejkova et al., 2019). Additionally,
NLRP3 inflammasome activation induces the release of other key
pro-inflammatory cytokines like CCL2, CXCL2, -3 and 8, IL-6 and
matrix metalloproteinases (MMPs), which are enzymes that
promote fibrous cap dissolution. Therefore, plaque instability is
promoted through an increased risk cap rupture and subsequent
thrombus formation (Popa-Fotea et al., 2023). These events also
contribute to the influx of leukocytes and the uptake of LDL from the
intravascular space, thereby perpetuating the cycle of inflammation
(Botts et al., 2021). Interestingly, it has been shown that the
phenotypic switch and transdifferentiation of VSMCs towards
macrophage-like cells is likely dependent on the activation of the
NLRP3 inflammasome in VSMCs (Burger et al., 2021).
Corroborating the effectivity of mitigating IL-1β activity in
human atherosclerosis, depleting IL-1β genetically in Apoe−/−

mice has been shown to notably reduce atherosclerosis
progression (Kirii et al., 2003). IL-18 similarly holds significance
as a driver of inflammation and plaque progression. Similarly to IL-
1β, it also increases the expression of adhesion molecules and
inflammatory cytokines through NF-κB and MAPK signaling,

albeit to a lesser extent (Yasuda et al., 2019). IL-18 acts as an
important costimulatory cytokine, essential for the production and
secretion of interferon-γ (IFN-γ) from T-helper 1 (Th1) cells and
NK cells, macrophages, DCs, and VSMCs (Yasuda et al., 2019).
Indeed, experimental genetic depletion and overstimulation of IL-18
in Apoe−/− mice has shown that the cytokine consistently
demonstrates a direct association with the progression of
atherosclerotic lesions, operating through an IFN-γ-dependent
mechanism (Whitman et al., 2002; Elhage et al., 2003; Tan
et al., 2010).

3.5 Macrophages: beyond the M1-
M2 paradigm

Not all macrophages within the plaque exhibit identical pro-
inflammatory characteristics. Macrophages have the capacity to
undergo polarization, dictated by their microenvironment,
leading to phenotypic and functional changes (Wu et al., 2023).
Traditionally, macrophage phenotypes have been categorized into
two groups: pro-inflammatory M1 and anti-inflammatory
M2 macrophages (Moore et al., 2013). The initial categorization
was based on their specific in vitro stimulation factors. Subsequent
research, both in vitro and in murine atherosclerosis models, have
led to one overarching principle: M1 macrophages are linked to the
promotion of plaque inflammation, whereas M2 macrophages are
connected to the resolution of plaque inflammation (Zhao et al.,
2023). In these studies, M1 macrophages have been detected within
atherosclerotic plaques in humans, specifically localized in lipid-
enriched regions spatially separate from M2 macrophages (Stöger
et al., 2012). Their accumulation and subsequent apoptosis or
necrosis leads to expansion of the necrotic core, which causes
plaque progression and destabilization. Aside from the pro-
inflammatory cytokines TNF-α and IL-1β, M1 macrophages
produce MMPs, which, as discussed, dissolve the fibrous cap and
promote plaque instability. They also secrete high levels of IL-6 and
IL-12, which promote differentiation of naïve T cells into pro-
inflammatory Th1 cells (Mosser, 2003). On the contrary, murine
atherosclerosis models have suggested that M2 macrophages
promote plaque regression (Feig et al., 2012). M2 macrophages
secrete high levels of IL-10, which promotes differentiation of naïve
T cells into anti-inflammatory Th2 cells. Furthermore, IL-10
promotes plaque stabilization through extracellular matrix
formation. Notably, consistent findings from murine models
indicate a reduction in macrophage population, at times
accompanied by an increased presence of M2 macrophages,
correlates with plaque regression (Jinnouchi et al., 2020).
Although M2 macrophages have also been identified within
human plaques, uncertainty remains regarding their role in
plaque development (Stöger et al., 2012). Nevertheless, it’s
imperative to acknowledge that the translatability of these
observations to humans is in some ways limited due to the
inherent differences in macrophage subtypes between mice and
humans. For instance, while general functional characteristics of
macrophage subsets, including the factors that steer their
differentiation, show a high degree of conservation between mice
and humans, surface markers seem to differ substantially between
the species (Chinetti-Gbaguidi et al., 2015).
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Today, the significance of the M1-M2 paradigm in
atherosclerosis is a major area of debate. scRNA-seq has allowed
investigators to identify previously undiscovered macrophage
subtypes characterized by distinct gene expression profiles
involved in atherosclerosis over recent years. Importantly, these
subtypes do not necessarily align with the two subtypes defined by
the classical M1-M2 paradigm. Many of these scRNA-seq datasets
are publicly available, a meta-analysis of which was recently carried
out by Zernecke et al. (2023). They found that in murine models of
atherosclerosis, as many as 10 functionally distinct macrophage
subpopulations could robustly be identified. These cell clusters
appeared to be conserved in human atherosclerosis. To date,
efforts to further characterize macrophage subpopulations are
increasing. These have recently been reviewed elsewhere
(Wieland et al., 2024).

3.6 Neutrophils attract monocytes to the
vessel wall and modulate macrophage
phenotypes in atherosclerosis

Neutrophils have long been overlooked in atherosclerosis
research, possibly due to their short lifespans and phenotypic
plasticity, making their in vivo detection challenging (Zhang
et al., 2023). In recent years, however, experimental findings have
shed a new light on these cells in the context of atherosclerosis.
Neutrophils are recruited to the activated endothelium by
chemokines such as CCL-1 and CXCR2 (Drechsler et al., 2010;
Lam et al., 2018). Similarly to monocytes, neutrophils bind to
activated ECs in a P- and E-selectin and CCR2-dependent
manner (Lam et al., 2018; Zhang et al., 2023). Upon adhering to
the endothelium, neutrophils produce reactive oxygen species
(ROS), thereby contributing to the oxidation of lipoproteins
within the endothelium and the permeability of the vessel wall
(Domínguez-Luis et al., 2019; Lian et al., 2019). Neutrophils further
increase EC permeability and facilitate the transmigration of both
neutrophils and other immune cells through secretion of pro-
inflammatory cytokines TNF-α and IL-1β (DiStasi and Ley, 2009;
Zhang et al., 2023).

In a landmark study of murine atherosclerosis, researchers
examined the aortas of neutropenic mice and their high-fat diet-
fed control counterparts. In the aortas of the neutropenic mice, the
number of monocytes and macrophages was significantly reduced,
as well as the size of atherosclerotic lesions. These findings suggest
that neutrophils play a role in the accumulation of monocytes and
monocyte-derived macrophages within atherosclerotic lesions
(Drechsler et al., 2010). Recent findings from a murine model of
advanced atherosclerosis indicate that the pro-atherosclerotic
activity of neutrophils depends on signaling by Signal transducer
and activator of transcription 4 (STAT4) (Keeter et al., 2023). Several
mechanisms have been implicated in the link between neutrophils
and atherogenesis. For instance, a recent study used intravital
microscopy in Apoe−/− mice to demonstrate that when stimulated
by activated ECs, neutrophils release neutrophil extracellular traps
(NETs) along the arterial wall, consisting mostly of DNA strands,
histones and neutrophil granules. This release promoted monocyte
adhesion independently of receptor signaling (Schumski et al.,
2021). Another study demonstrated that exposure to cholesterol

crystals could induce the release of NETs from neutrophils in both a
mouse model of atherosclerosis where it induced the release of pro-
inflammatory cytokines from macrophages (Warnatsch et al., 2015)
and in human neutrophils (Awasthi et al., 2016). In vitro studies
with human macrophages have demonstrated that citrullinated
histones, associated with NETosis, enhance the oxidation of LDL
and the formation of foam cells (Haritha et al., 2020). Finally, it has
been shown that DNA and neutrophilic granules, such as those
present in NETs, facilitate the growth of atherosclerotic plaque in
mice in a manner dependent on an increased production of
interferon-α.

Furthermore, neutrophils enhance monocyte chemotaxis and
adherence by releasing CCL2 and pentraxin 3 (Winter et al., 2018;
Popa-Fotea et al., 2023), demonstrating that neutrophils are able to
initiate efficient monocyte extravasation into the subendothelial
space. Beyond their role in monocyte recruitment, neutrophils
have also been implicated in modulating macrophage
phenotypes. Within the plaque, neutrophils secrete azurocidin
and α-defensins, which induce a shift in macrophages towards a
T-helper cell (Th)-17 stimulating M1 phenotype through β2-
integrin signaling and subsequent interferon-γ release (Zhang
et al., 2023). Furthermore, experimental exposure of lipid crystals
to neutrophils has been shown to lead to increased NET release. This
in turn triggered M1 polarization in Apoe−/− mice (Warnatsch et al.,
2015). Moreover, the effect of neutrophils on plaque content and
macrophage functionality was evidenced in a study, in which in vitro
incubation of macrophages with neutrophil-derived defensin
increased the expression of CD36, which in turn enhanced the
uptake of LDL and promoted foam cell formation (Quinn et al.,
2011). These results were corroborated in a recent study, in which
human neutrophils exposed to LDL were visualized using
fluorescent microscopy. In this study, LDL induced NET release
in vitro, which in turn promoted LDL oxidation, LDL accumulation
and foam cell formation (Haritha et al., 2020). Finally, a recent study
has established a role for NET-derived histone H4 in exacerbating
plaque instability. Here, histone H4 exerted a deleterious function
on the cell membrane of VSMCs, ultimately contributing to an
increase in plaque instability in mice and humans (Silvestre-Roig
et al., 2019). These findings underline the important role neutrophils
play in promoting atherogenesis and plaque inflammation.

4 The role of the adaptive immune
system in atherosclerosis

4.1 Auto-antigen-specific T cells modulate
atherosclerosis

T cells express the T-cell receptor (TCR) in conjunction with co-
receptors that align with their specific function and T cell subtype.
CD4 co-receptor-expressing cells differentiate into Th cells
following antigen presentation and are the most widely studied
T cell subtype in the context of atherosclerosis (Popa-Fotea et al.,
2023). Expression of the CD8 co-receptor, on the other hand, is
found in naïve and effector cytotoxic T cells (Popa-Fotea et al.,
2023). These cells regulate immune responses to antigens presented
by antigen-presenting cells (APCs) such as macrophages and DCs
on their major histocompatibility complex (MHC) class II, as well as
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by all nucleated cells on MHC class I. Concurrent interactions
between TCRs and antigens on MHC, coupled with stimulation
by co-stimulatory molecules presented on APCs, drive the clonal
proliferation of T cells and determine their phenotype (Saigusa
et al., 2020).

During the early stages of atherogenesis, T lymphocytes are
abundantly present (Saigusa et al., 2020). They are drawn to the
activated endothelium by a variety of chemokines, including CCL5,
CXCR10, and CXCL16 (Wuttge et al., 2004; Heller et al., 2006; Li et al.,
2016). Subsequently, these T cells migrate into the endothelium through
the interaction of P-selectin and PSGL-1 in vivo (MacRitchie et al.,
2019). In Apoe−/− mice, a considerable portion of plaque-resident CD4+

T cells exhibit CD44 expression, a T cell activation marker that allows
discriminating effector and memory T cells from naïve T cells. This
suggests that these lymphocytes have previously encountered and been
activated by their corresponding antigen (Koltsova et al., 2012). In
recent years, omics approaches have been of great value in exploring this
hypothesis. Mass cytometry in human atherosclerotic plaques
confirmed that chronically activated and differentiated T cell
phenotypes predominated over the naïve population (Fernandez
et al., 2019). This finding was corroborated by two separate studies
that used single-cell RNA and TCR sequencing to establish that many
T cells found in human coronary plaques were antigen-experienced
memory cells that had clonally expanded within the plaque
(Chowdhury et al., 2022; Depuydt et al., 2023). Comparison of
T cell subsets in the plaque and peripheral blood revealed that it is
mainly effector CD4+ T cells, and not CD8+ T cells that undergo clonal
expansion within the plaque (Depuydt et al., 2023).

Regarding the role these antigen-experienced T cells play in
atherogenesis, the depletion of CD44 in a murine model of
myocardial infarction resulted in heightened inflammatory
leukocyte infiltration and increased cytokine expression
(Huebener et al., 2008). Identifying the antigen specificity of
T cells in vivo has proven technically difficult. ApoB has been
identified as an auto-antigen that likely is important in this
regard. Immunization with human ApoB reduced atherosclerosis
significantly in Apoe−/− mice (Fredrikson et al., 2003; Chyu et al.,
2022). Additionally, both in murine atherosclerosis models and
humans with cardiovascular disease, a population of apoB-
specific T-helper cells was identified in experiments that used
recombinant MHC (Kimura et al., 2018). Other auto-antigens
that have been implicated in atherogenesis include beta2-
glycoprotein I (Profumo et al., 2010), cathelicidin (Mihailovic
et al., 2017) and collagens (Lio et al., 2020). These findings
underscore the important role that antigen-specific T cells
assume in modulating inflammation in cardiovascular disease.
The diverse range of potential immune-dominant antigens
implicated in atherogenesis may help clarify the complex and
sometimes contradictory roles of T cells in atherosclerosis, which
could vary depending on the disease stage and the specific
antigens involved.

4.2 CD4+ T-helper cells: different subtypes
have different functions in atherosclerosis

T-helper cells, which are classified into subtypes based on their
signature cytokines and transcription factors, play a variety of roles

in the context of atherosclerosis (Figure 3). Th1 cells, which express
the transcription factor T-bet as a lineage-defining marker,
predominate in number among all T cell subtypes in the plaque
(Li et al., 2016; Wolf and Ley, 2019). Their role is pro-inflammatory
and pro-atherogenic due to the secretion of IFN-γ, IL-2, IL-3, and
TNF-α (Popa-Fotea et al., 2023). This is highlighted by genetic
depletion experiments of T-bet and IFN-γ, which have been found
to inhibit plaque progression and instability in Ldlr−/− mice (Buono
et al., 2003; Buono et al., 2005). Furthermore, IFN-γ plays a role in
plaque progression by promoting LDL oxidation and uptake of
modified LDL by foam cells, polarizing macrophages to their
M1 subtype, and promoting the proliferation of VSMCs (Rocha
et al., 2008; Lee et al., 2021).

On the other hand, the precise role of Th2 cells, which mainly
produce IL-4, IL-5, and IL-13, remains a topic of debate (Winkels
et al., 2018). Levels of Th2 cells and IL-4 released in peripheral blood
are inversely correlated with carotid intima-media thickness in a
healthy study population, even after correcting for other
cardiovascular disease risk factors (Engelbertsen et al., 2013).
However, depletion of IL-4 has shown conflicting effects on
plaque growth in mice (King et al., 2002; Mallat et al., 2009). IL-
5 and IL-13, on the other hand, have definite anti-inflammatory and
anti-atherogenic effects (Saigusa et al., 2020).

The role of Th9 cells in atherosclerosis, too, remains uncertain,
but preliminary evidence points to a pro-atherogenic function. The
main cytokine produced by this subset is IL-9. Several clinical studies
found that IL-9 levels, but not the number of Th9 cells, are higher in
patients with atherosclerotic disease (Gregersen et al., 2013; Lin
et al., 2013). In murine models of atherosclerosis, IL-9 has been
found to have pro-atherogenic effects (Zhang et al., 2015). More
research is needed to fully elucidate the role of Th9 cells and IL-9 in
the pathogenesis of atherosclerosis.

Th17 cells feature the expression of transcription factor RORγt
as their lineage-defining factor. Previous murine in vitro studies have
elucidated the complex nature of Th17 cells: due to their high level of
plasticity, their phenotype (pro-inflammatory or anti-
inflammatory) is highly dependent on the cytokines they are
polarized with (McGeachy et al., 2007; Ghoreschi et al., 2010; Lee
et al., 2012). This heterogenic nature of Th17 cells might be the
reason why previous research efforts have found conflicting roles for
this cell type in atherosclerosis. Indeed, Th17 cell counts correlated
with atherosclerotic plaque size in Apoe−/− mice. Neutralizing
antibodies against IL-17 could diminish plaque size and
leukocyte infiltration (Nordlohne et al., 2018). On the other
hand, one study found increased plaque stability in Ldlr−/− mice
with artificially increased Th17 cell counts (Brauner et al., 2018).

T follicular helper (Tfh) cells are a specialized subset of CD4+

T cells, hallmarked by the expression of B-cell lymphoma 6 (Bcl-6),
that play a critical role in the formation and maintenance of
germinal centers, where they aid B cells in producing high-
affinity antibodies. They facilitate B cell differentiation and
antibody class switching through the secretion of cytokines and
direct cell-cell interactions (Qi et al., 2023). Evidence from
experimental studies point to divergent functions of Tfh cells in
atherosclerosis. An experimental study found that Tfh cells isolated
from Apoe−/− mice had a gene expression profile that was more pro-
inflammatory than those isolated from wild-type mice. This effect
was mediated by enhanced IL-27 production from dendritic cells
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(Ryu et al., 2018). Another study showed that marginal zone B cells
inhibit pro-atherogenic Tfh cell activity in Ldlr−/− mice (Nus et al.,
2017). Additionally, genetic depletion of Tfh cells inApoe−/−mice led

to a reduction of atherosclerosis (Gaddis et al., 2018). In a recent
experiment in an atherosclerotic mouse model, however, genetic
depletion of Tfh cells led to an aberrant antibody response of

FIGURE 3
Functions of the adaptive immune system in atherosclerosis. B1, B1 cells; B2, B2 cells; CD8+ T, CD8+ T cells; FasL, Fas Ligand; IFN-γ, Interferon
gamma; IgG, Immunoglobulin G; IgM, Immunoglobulin M; IL-10, Interleukin 10; IL-13, Interleukin 13; IL-17, Interleukin 17; IL-2, Interleukin 2; IL-3,
Interleukin 3; IL-4, Interleukin 4; IL-5, Interleukin 5; TGF-β, Transforming Growth Factor beta; Th1, T helper 1 cells; Th17, T helper 17 cells; Th2, T helper
2 cells; Th9, T helper 9 cells; TNF-α, Tumor Necrosis Factor alpha; Treg, Regulatory T cells; VSMC, Vascular Smooth Muscle Cell.
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marginal zone B cells and an associated increase in atherosclerotic
plaque formation (Harrison et al., 2024). These conflicting findings
might reflect the recently uncovered heterogeneity of Tfh subsets
(Seth and Craft, 2019), warranting further delineation of the roles of
these subsets in atherosclerosis.

Regulatory T cells (Tregs) express the forkhead box P3 (FoxP3)
and have been identified as having anti-inflammatory and
atheroprotective effects. Depletion of this population has been
found to promote atherosclerosis in Ldlr−/− mice (Klingenberg
et al., 2013), and a strong negative correlation between Treg cells
and atherosclerosis exists in humans (George et al., 2012). Tregs
exert their anti-inflammatory function through the secretion of IL-
10 and TGF-β (Saigusa et al., 2020). Depletion of either these factors
was found to increase atherosclerotic plaque size and instability in
murine models (Pinderski et al., 1999; Mallat et al., 2001). The
population of apoB-specific Tregs appears to be diminished in the
peripheral blood of patients with cardiovascular disease compared to
healthy controls (Pinderski et al., 1999). Interestingly, as
atherosclerosis progresses, Treg numbers in peripheral blood and
the plaque diminishes in favor of effector Th1/Th17 cells in both
murine models and in- mice and humans. A substantial proportion
of Tregs that remain were found to have acquired Th1 and Th17-
defining transcription factors while simultaneously losing the
expression of FoxP3 (Butcher et al., 2016; Wolf et al., 2020).
These findings suggest that a decline in the number of bona fide
Treg cells, along with their increasingly pro-inflammatory
phenotype, might be an independent driver of disease
progression in atherosclerosis.

4.3 The role of CD8+ T cells in plaque
inflammation remains to be elucidated

CD8+ T cells activate and differentiate into effector T cells
following the interaction of their TCR with an antigen presented
on MHC class I molecules. They then undergo clonal expansion and
produce TNF-α, IFN-γ, Fas-ligand, and cytotoxic granules. This
leads to the induction of apoptosis or necrosis in the targeted cell
(Schäfer and Zernecke, 2020). While CD4+ T cell functions have
been extensively studied in atherosclerosis, the role of CD8+

cytotoxic T cells in this context is less well known (Figure 3).
Similarly to CD4+ T cells, CD8+ T cells are prominently present

within atherosclerotic plaques in both mice and humans (Cochain
et al., 2018). The precise contribution of CD8+ T cells to
atherosclerosis, however, needs to be studied further. One piece
of evidence for their mechanistic role in atherosclerosis was
provided by an experiment involving the depletion of CD8+

T cells in Apoe−/− mice using anti-CD8α antibodies, which
resulted in a significant reduction in plasma CCL2 levels, as well
as the accumulation of macrophages and a reduction in
atherosclerotic plaque size in the early stages of disease
progression. These effects could be mediated by their cytotoxic
effects and subsequent growth of the necrotic plaque core (Kyaw
et al., 2013). A recent study which employed depletion of the CD8+

T cell line in a murine model of atherosclerosis, found that CD8+

T cells induce VSMC dedifferentiation toward a phenotype
associated with plaque calcification (Schäfer et al., 2024). On the
other hand, an experiment with a longer follow-up time

contradicted these findings and provided evidence for a potential
atheroprotective role of CD8+ T cells in advanced lesions (van Duijn
et al., 2019). Another study showed that in Apoe−/− mice, a subset of
regulatory CD8+ T cells is involved in the regulation of Tfh cell
activity, thereby reducing atherosclerosis (Clement et al., 2015).
These conflicting results illustrate the complexity of CD8+ T cell
functions in atherosclerosis and suggest that their impact may vary
depending on the stage of the disease. Given these discrepancies,
further investigation into the precise role of CD8+ T cells is
warranted to better comprehend their influence on atherogenesis.

4.4 B1 and B2 cells appear to have opposing
roles in atherosclerosis

The presence of B cells in atherosclerotic plaques has been
confirmed in scRNA-seq studies, but it appears they are generally
sparse (Winkels et al., 2018; Fernandez et al., 2019). Instead, they
predominantly inhabit the lymphoid tissue surrounding the arterial
wall and the peritoneal cavity (Mangge et al., 2020). These cells are
traditionally categorized into two distinct subtypes (Figure 3).
B1 cells, integral to the innate immune response, secrete germ-
line encoded IgM antibodies of low affinity aimed at common
pathogens. Conversely, B2 cells necessitate stimulation from
T-follicular helper cells (Tfh) to mature into plasma cells within
germinal centers, ultimately releasing high-affinity IgG antibodies.
In the context of atherosclerosis, B2 cells localize to and interact with
T cells and APCs in unique adventitial structures termed artery
tertiary lymphoid organs (Mohanta et al., 2014).

Observational studies reveal a dichotomous impact of these
subgroups. Titers of IgM antibodies targeting apoB exhibited an
inverse correlation with atherosclerosis, while titers of apoB-specific
IgG antibodies displayed a positive correlation with disease
progression in both murine models and humans (Karvonen
et al., 2003; Tsimikas et al., 2007; Bjö et al., 2016). Intriguingly,
the depletion of B1 cells through splenectomy in atherosclerosis-
prone mice exacerbates the formation of atherosclerotic lesions,
whereas artificial expansion of B1 cells attenuates atherosclerosis
(Kyaw et al., 2011; Srikakulapu et al., 2017; Hosseini et al., 2018).
This effect is hypothesized to result from the adverse effects of apoB-
specific IgM antibodies on macrophage-mediated lipoprotein
uptake (Kyaw et al., 2011). Conversely, an initial experiment
involving the broad antibody-mediated removal of all B2 cells in
mouse models of atherosclerosis has shown to mitigate
inflammation and atherosclerosis (Ait-Oufella et al., 2010).
However, the precise extent and characterization of B cells’
involvement in human atherosclerosis remain subjects for further
investigation. Again, it is important to consider the antigen-
specificity of B cells involved in atherogenesis, as this may
significantly impact the role of B cells in this disease.

5 Conclusion

In conclusion, this review describes atherosclerosis as a disease
of low-grade vascular inflammation that is driven by a myriad of
different pro-inflammatory processes and cellular players. A large
body of evidence in this regard is derived from experimental murine
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models of atherosclerosis for obvious reasons: it is impossible to
capture the complexity of this disease relying solely on in vitro
experiments. Nevertheless, it is important to note that significant
differences exist between the cardiovascular systems of mice and
humans that should be considered when translating findings. For
instance, shear stress levels are higher in the murine vasculature
(Greve et al., 2006). Furthermore, spontaneous plaque rupture is
rare in mice, necessitating the use of ligation as a model of plaque
rupture (Schwartz et al., 2007). With regards to the murine and
human immune system, important differences exist as well. Many
cytokines lack a cross-species counterpart (Shay et al., 2013) and the
distribution of peripheral leukocytes is different between the two
species (Mestas and Hughes, 2004). Consequently, an increasing
number of experiments are attempting to more closely replicate the
conditions of the human vasculature by employing vasculature-on-
a-chip systems or organoids (Abaci and Esch, 2024). However,
despite the limitations of mouse models, they continue to play a
vital role in research in this field, offering the advantages of a fully
developed mammalian immune and cardiovascular system.

The success of several clinical outcome trials has cemented the
role of anti-inflammatory therapeutic strategies as means to put
plaque inflammation to a halt, thereby reducing the ASCVD event
rate in patients with residual inflammatory risk. However, rather
than broadly targeting inflammation, which has been shown to lead
to an increase in infection rate due to systemic immune suppression,
the key to successfully combating inflammation in patients that are
at risk of ASCVD in the future will lie in zooming in onmore specific
pro- and anti-inflammatory processes that are crucial to disease
progression and targetable in humans. One example currently under
investigation is the use of rituximab in patients who experienced a
myocardial infarction in order to alter B cell populations (Zhao et al.,
2022a). Another avenue that is currently being explored is the use of
low-dose aldesleukin, a recombinant IL-2, in patients with stable
ischemic heart disease to specifically stimulate Tregs (Zhao et al.,
2022b). Luckily, the toolbox of atherosclerosis research has been
enriched over recent years has facilitated this, with high-throughput
methodologies such as scRNA-seq as an important means of
exploring the innate and adaptive immune system in
atherogenesis in more detail.

This review has provided an overview centered around the
knowns and the unknowns of the cellular players in
atherosclerotic inflammation, thereby providing a basis on which
future research efforts to characterize the plaque immune landscape
can build.
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