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ALKBH5 is one of the demethylases involved in the regulation of RNA m6A
modification. In addition to its role in the dynamic regulation of RNA m6A
modification, ALKBH5 has been found to play important roles in various
tissues fibrosis processes in recent years. However, the mechanisms and
effects of ALKBH5 in fibrosis have been reported inconsistently. Multiple cell
types, including parenchymal cells, immune cells (neutrophils and T cells),
macrophages, endothelial cells, and fibroblasts, play roles in various stages of
fibrosis. Therefore, this review analyzes the mechanisms by which
ALKBH5 regulates these cells, its impact on their functions, and the outcomes
of fibrosis. Furthermore, this review summarizes the role of ALKBH5 in fibrotic
diseases such as pulmonary fibrosis, liver fibrosis, cardiac fibrosis, and renal
fibrosis, and discusses various ALKBH5 inhibitors that have been discovered to
date, exploring the potential of ALKBH5 as a clinical target for fibrosis.
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1 Introduction

ALKBH5 is one of the demethylases involved in the regulation of RNA N6-
methyladenosine (m6A) modification. Its main function is to remove the m6A
modification from RNA (Aik et al., 2014). m6A modification is a common form of
RNA chemical modification that plays important roles in RNA stability, translational
regulation, and post-transcriptional modification. ALKBH5 catalyzes the reaction that
converts m6A modification back to adenosine, thereby participating in the dynamic
regulation of RNA (Toh et al., 2020; Yu et al., 2021). In recent years, research on
ALKBH5 has attracted widespread attention and has made significant progress in the
field of life sciences.

Studies on ALKBH5 have demonstrated its crucial roles in multiple biological processes.
Firstly, ALKBH5 is involved in the regulation of RNAmetabolic homeostasis. By regulating
the level of m6A modification, ALKBH5 can influence RNA degradation rate and
translation efficiency, thereby controlling gene expression level and cellular functions
(Zheng et al., 2013; Yu et al., 2021). Secondly, ALKBH5 plays an important role in
germ cells, participating in germ cell development and maturation processes. Studies
have shown that the loss of ALKBH5 can lead to germ cell apoptosis and infertility (Tang
et al., 2018; Cai et al., 2022). Furthermore, ALKBH5 is closely associated with the occurrence
and progression of tumors, and its expression level in tumor cells are related to prognosis
and treatment outcomes (Hu et al., 2022; Zhai et al., 2023).
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In recent years, ALKBH5 has been found to play important
regulatory roles in various tissues fibrosis processes, although the
mechanisms of ALKBH5 in fibrosis have been reported inconsistently
(Ning et al., 2020; Sun et al., 2022a; Yang et al., 2022). Therefore, this
review summarizes the research progress of ALKBH5 in various
fibrosis-related cells and diseases such as pulmonary fibrosis, liver
fibrosis, cardiac fibrosis, and renal fibrosis. Understanding the role of
ALKBH5 in fibrosis not only contributes to a deeper understanding of
its biological processes but also provides potential targets for the
treatment and drug development of fibrotic diseases (Figure 1).

2 The structure and function of ALKBH5

ALKBH5 belonged to the iron (II)- and 2-oxoglutarate-dependent
AlkB oxygenase family (Aik et al., 2014). Endogenous ALKBH5 was
primarily found in nuclear speckles, where facilitated mRNA
processing. ALKBH5 was an mRNA-binding protein, and newly
synthesized RNA was its main substrate (Meyer et al., 2012; Zheng
et al., 2013; Feng et al., 2014). Structurally, the catalytic center of
ALKBH5 contained a double-stranded β-helix domain (DSBH

structure), consisting of 11 β strands and 5 α helices. The DSBH
domain could bind to Fe2+ and 2OG. The binding of Fe2+ and 2OG
directly affected the function of ALKBH5. The binding of Fe2+ and
2OG occurred prior to the binding of primary substrates (m6A-
modified single-stranded nucleic acids) to the active site of
ALKBH5. Studies had found that ALKBH5 was more disordered in
solution than observed in its crystal structure. These differences were
likely due to the absence of the Cys230-Cys267 disulfide bond in
solution, which restricted the binding of 2OG to the “catalytic pocket”
of ALKBH5. After 2OG binding to the “catalytic pocket,” the enzyme
underwent a conformational change, enlarging the active site and
increasing the enzyme’s affinity for substrates, allowing small molecule
substrates to enter the active site (Purslow et al., 2018). Studies had also
revealed the influence of Fe2+ on the function of ALKBH5: the
octahedral structure formed by the binding of Fe2+ to the enzyme
could promote its stability, and make residues near the key motif HX
(D/E) in the catalytic pocket more hydrophobic (Feng et al., 2014). The
hydrophobic environment was favorable for the enzyme to bind to
substrates and catalyze reactions. Additionally, the binding of
ALKBH5 to primary and secondary substrates required the
mediation of Fe2+ (Zheng et al., 2014). Research had found that

FIGURE 1
The role of RNA m6A demethylase ALKBH5 in the mechanisms of fibrosis. The figure includes 4 columns: inducers, targets, cells, organs. Inducers:
this column lists the factors or conditions that can affect or activate the function of ALKBH5, including chemicals, tumor, and cell injure. Each inducermay
modulate ALKBH5 activity or expression level in different ways. Targets: this column shows the targets of ALKBH5. We have divided the targets into three
major categories: secreted proteins (such as interleukins, chemokines, and ligand proteins), cell membrane receptor proteins and their downstream
signaling pathway proteins, and extracellular matrix proteins. Cells: this column shows the effects of ALKBH5 on different types of cells, including
parenchymal cells (hepatocytes and cardiomyocytes), immune cells (neutrophils, T cells, etc.), macrophages, endothelial cells, and fibroblasts. We list the
effects of ALKBH5 on cells functions. Organs: in this column, we show the effects of ALKBH5 on the fibrosis of different organs, including liver fibrosis,
cardiac fibrosis, pulmonary fibrosis, and renal fibrosis. We list specific induction models and the mechanisms of fibrosis development.
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ALKBH5 could regulate ferroptosis (Lv et al., 2023). However, whether
Fe metabolism and ferroptosis affect the function of
ALKBH5 remained unreported at present (Figure 2).

3 The impact of ALKBH5 on cellular
functions in fibrosis

Fibrosis referred to the excessive activation of fibroblasts, leading
to the deposition of extracellular matrix components, including
collagen, in response to various stimulus. The activation and
transformation of fibroblasts into myofibroblasts were key events
in fibrosis. Myofibroblasts could also undergo transformation from
other cell types, such as epithelial/endothelial cells through
epithelial/endothelial-mesenchymal transition (EMT/EndMT) and
from macrophages through macrophage-to-myofibroblast
transition (MMT). Additionally, various cell types, including
parenchymal cells, immune cells, macrophages, and endothelial
cells (ECs), played important roles in various stages of fibrosis
process. Current research had found that ALKBH5 regulated the
functions of these cells in different ways (Table 1).

3.1 The impact of ALKBH5 on
parenchymal cells

ALKBH5 played significant roles in the repair process of
cardiomyocytes injury, which was essentially a tissue damage

repair mechanism. In general, it was believed that in adult
mammals, when cardiomyocytes suffered significant and
sustained damage, fibrosis was the main mechanism for
repair, due to their lack of regenerative capacity (Henderson
et al., 2020).

Mitsugumin 53 (MG53), also known as TRIM72, was a potential
cardiac protective protein (Zhao et al., 2024). When cardiomyocytes
experienced acute ischemia and hypoxia, ALKBH5 inhibited the
m6A methylation of MG53, preventing its degradation. This
inhibition suppressed apoptosis and oxidative stress in
cardiomyocytes, thereby reducing cell death (Li et al., 2024a).
Following the restoration of blood supply, there was a high level
of oxidative stress in the tissues, resulting in ischemia/reperfusion (I/
R) injury (Metra and Teerlink, 2017). ALKBH5 had protective
properties on cell proliferation, injury, and apoptosis during
myocardial I/R injury (Li et al., 2022). ALKBH5 could also
inhibit I/R-induced autophagy and apoptosis through the EGFR/
PI3K/AKT/mTOR pathway (Wang et al., 2024). Additionally,
ALKBH5 stabilized SIRT1 mRNA, inhibiting oxidative stress and
apoptosis in cardiomyocytes induced by I/R (Liu and Liu, 2023).
STAT3 downregulation could aggravate I/R injury in aging
cardiomyocytes, while ALKBH5 regulated STAT3 expression by
mediating long non-coding RNA (lncRNA) H19/miR-124-3p,
thereby alleviating cardiomyocytes damage (Zhang et al., 2023).
Therefore, ALKBH5 exerted a protective effect on cardiomyocytes
by controlling the stability of various RNAs, potentially reducing the
occurrence of cardiac fibrosis following myocardial infarction (MI).
However, different results had also been reported. In diabetic

FIGURE 2
The structure and function of ALKBH5. The figure showcases the structure of ALKBH5 (Protein Data Bank ID: 4OCT) in complex with Mn(II) and 2-
oxoglutarate (2OG). Mn(II) is a substitute for Fe(II) (Xu et al., 2014). The highlighted red area corresponds to the DSBH (Double-Stranded Beta-Helix)
domain, which possesses the ability to bind to Fe(II), 2-oxoglutarate (2OG), and single-stranded RNA (ssRNA). Within this region, ALKBH5 performs a vital
function by catalyzing the removal of N6-methyladenosine (m6A) modifications from RNA.
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TABLE 1 The impact of ALKBH5 on cellular functions in fibrosis.

Cell types Expressiona Target RNAs mRNA
stability

Target
pathways

Functions Ref.

parenchymal
cells

Cardiomyocytes Up MG53 Increased Suppress apoptosis and cells
death

Li et al.
(2024a)

SIRT1 Inhibit oxidative stress and
apoptosis

Liu and Liu
(2023)

FOXO3 CDR1/Hippo Aggravate high-glucose-induced
apoptosis

Shao et al.
(2022)

ARID2 Aggravate doxorubicin-induced
apoptosis

Chen et al.
(2024)

hepatocytes Down AXL Decreased Induced hepatocytes autophagy Meng et al.
(2023)

Immune cells Neutrophils Up G-CSFR Increased Promote neutrophil migration Liu et al.
(2024)

CXCR2, NLRP12 Increased CXCR2, NLRP12 Promote granulopoiesis and
neutrophil mobilization

Liu et al.
(2022)

PTGER4, TNC,
and WNK1

Decreasedb Promote neutrophil migration

CD4+ T cells Up IFN-γ Increased Promote the secretion of IFN-γ Zhou et al.
(2021)

CXCL2 Promote CD4+ T cell responses
and neutrophil recruitment

γδ T cells Up Jagged1, Notch2 Increased Inhibit the development of γδ
T cell precursors

Ding et al.
(2022)

Treg cells Down CCL28 Increased Promote Treg cell migration Chen et al.
(2023a)

Macrophages GBM-Mø Up lncRNA NEAT1 Increased Promote CXCL8/IL8 and Mø
recruitment

Dong et al.
(2021)

HCC- Mø Up MAP3K8 Increased JNK/ERK Promote Mø recruitment You et al.
(2022)

Retinal
microglia

Down A20 Decreasedb Enhance M1 polarization of
retinal microglia

Chen et al.
(2022)

HSCs-Mø Up CCL5 Increased Promote M2 polarization Chen et al.
(2023b)

Mø Up IL-11 Increased Promote MMT Zhuang et al.
(2024)

Slamf7 Decreased Induced Mø autophagy Yin et al.
(2024)

Endothelial
cells

ECs Up SPHK1 Increased Promote EC angiogenesis Kumari et al.
(2021)

Down WNT5A Increased Contribute to angiogenic
phenotype

Zhao et al.
(2021)

LC-ECs Up lncRNA PVT1 Increased Promote angiogenesis in LC Shen et al.
(2022)

HCC-ECs Up circ-CCT3 Increased Affect angiogenesis in HCC Liu et al.
(2023)

Fibroblasts Fibroblasts Up ErbB4 Increased Activate myofibroblasts Yang et al.
(2023)

FOXM1 Increased miR-320a-3p/
FOXM1 axis

promoted lung fibroblast
activation

Sun et al.
(2022b)

HSCs Up PTCH1 Increased Hedgehog Inhibited HSC activation Yang et al.
(2022)

(Continued on following page)
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cardiomyopathy, ALKBH5 regulated FOXO3 through m6A
demethylation in m6A-YTHDF2-dependent manner, activating
the CDR1/Hippo signaling pathway ultimately aggravating high
glucose-induced cardiomyocytes apoptosis (Shao et al., 2022).
ALKBH5 could exacerbate doxorubicin-induced cardiomyocytes

apoptosis by regulating AT-Rich Interaction Domain 2 (ARID2)
expression (Chen et al., 2024).

ALKBH5 also played a significant role in hepatocytes. In the
mouse model of non-alcoholic fatty liver disease (NAFLD),
inhibiting the activity of ALKBH5 significantly induced

TABLE 1 (Continued) The impact of ALKBH5 on cellular functions in fibrosis.

Cell types Expressiona Target RNAs mRNA
stability

Target
pathways

Functions Ref.

Drp1 Decreasedb Promote mitochondrial fission
and HSC proliferation and

migration

Wang et al.
(2023b)

Mø, macrophages; GBM, glioblastomamultiforme; HCC, hepatocellular carcinoma; MMT, macrophage-to-myofibroblast transition; HSCs, hepatic stellate cells; ECs, endothelial cells; LC, lung

cancer; NSCLC, Non-small cell lung cancer; EMT, Epithelial-Mesenchymal Transition.
aALKBH5 expression.
bThe difference in RNA stability was due to the different types of m6A reader.

TABLE 2 The impact of ALKBH5 on organ fibrosis.

Organ Cells Expressionb Target
RNAs

Target pathways Functions Ref

Lung Fibroblasts Up FOXM1 Induce fibroblast-to-myofibroblast
differentiation

Promote silica-induced pulmonary
fibrosis

Sun et al.
(2022b)

— Up Zbtb7b Alleviate radiation pneumonia Inhibit RI pulmonary fibrosis Zhao et al.
(2020)

Macrophages Up Slamf7 Promoting macrophages autophagy
and reducing cytokines secretion

Inhibit silica-induced pulmonary
fibrosis

Yin et al.
(2024)

Lung tissue Down miRNA YAP1/TAZ/P4HA2 Inhibit PM2.5-induced pulmonary
fibrosis

Jin et al.
(2020)

Liver Hepatocytes Down AXL ERK/LKB1/AMPK Slow the NAFLD-fibrosis process Meng et al.
(2023)

HSCs Up Drp1 Inhibit HSC proliferation and
migration

Ameliorate fibrosis Wang et al.
(2023b)

PTCH1 Hedgehog Ameliorate liver fibrosis Yang et al.
(2022)

RI-HSCs Up TIRAP NF-κB and JNK/Smad2 Enhance RI liver fibrosis Chen et al.
(2023b)

Heart Fibroblasts Up ErbB4 Induce fibroblast activation Promote post-MI fibrotic repair Yang et al.
(2023)

ECs Up SPHK1 SPHK/eNOS-AKT Improve fibrosis caused by MI Kumari et al.
(2021)

Cardiomyocytes Up YTHDF1 ALKBH5-m6A-YTHDF1-YAP Ameliorates fibrosis caused by MI Han et al.
(2021)

Up FOXO3 CDR1as/Hippo Promote glucose-induced cardiac
fibrosis

Shao et al.
(2022)

Down ARID2 Enhance cardiomyocytes apoptosis Promote doxorubicin-induced
cardiac fibrosis

Chen et al.
(2024)

Kidney Tubular epithelial
cells

Up — Affect the EMT process Alleviate UUO-induced renal fibrosis Ning et al.
(2020)

Glomerular mesangial
cells

Down TRIM13 Inhibit inflammation and excessive
proliferation

Slow the development of chronic
glomerulonephritis

Hu et al.
(2024)

Tubular epithelial
cells

Down CCL28 CCL28/Treg/inflammatory cell axis Alleviate I/R-induced acute kidney
injury and renal fibrosis

Chen et al.
(2023a)

NAFLD, non-alcoholic fatty liver disease; HSCs, hepatic stellate cells; RI, radiation-induced; MI, myocardial infarction; ECs, endothelial cells; EMT, Epithelial-Mesenchymal Transition; UUO,

unilateral ureteral obstruction; I/R, ischemia/reperfusion.
aALKBH5 expression.
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hepatocytes autophagy by reducing the stability of AXL mRNA
(Meng et al., 2023).

3.2 The impact of ALKBH5 on immune cells

ALKBH5 played crucial roles in regulating the functions of
inflammatory cells such as neutrophils and T lymphocytes, which
were important in fibrosis. ALKBH5 played important roles in
emergency granulopoiesis and neutrophil mobilization. In a
mouse model of polymicrobial sepsis induced by cecal ligation
puncture (CLP), ALKBH5 promoted G-CSF factor-driven
emergency granulopoiesis and neutrophil mobilization by
upregulating G-CSFR expression. ALKBH5 depletion significantly
impaired the production of immature neutrophils and leaded to
higher retention of mature neutrophils in the bone marrow (Liu
et al., 2024). Furthermore, in a mouse model of polymicrobial sepsis
induced by CLP, ALKBH5 regulated the expression of molecules
involved in neutrophil migration, increasing the expression of
CXCR2 and NLRP12, which promoted neutrophil migration,
while decreasing the expression of PTGER4, TNC, and WNK1,
which inhibited neutrophil migration. Deficiency of
ALKBH5 impaired neutrophil migration (Liu et al., 2022). It
seemed that ALKBH5 could promote the infiltration of neutrophils.

Different types of T lymphocytes also played important roles
during the inflammatory phase of fibrosis. CD4+ T lymphocytes
could produce the cytokine IFN-γ, which further activated
macrophages (Mosser and Edwards, 2008). During
neuroinflammation, ALKBH5 decreased m6A modification of
IFNG mRNA of CD4+ T cells, leading to increased mRNA
stability, thus promoting the secretion of IFN-γ (Zhou et al.,
2021). At the same time, ALKBH5 mediated the stability of
CXCL2 mRNA in CD4+ T cells through m6A, affecting
CXCL2 expression in CD4+ T cells, resulting in promoted CD4+

T cell response and neutrophil recruitment (Zhou et al., 2021).
ALKBH5 had additional functions in regulating the development
and function of γδ T cells and mature T cells. ALKBH5 regulated the
expression levels of Jagged1 and Notch2 in lymphocytes, changing
the Jagged1/Notch2 signaling pathway, affecting the development of
γδ T cell precursors, and thus reduce the number of mature γδ
T cells (Ding et al., 2022). Furthermore, in a case-control study of
lupus erythematosus, it was found that overexpression of
ALKBH5 promoted apoptosis of mature T cells and inhibit T cell

proliferation (Deng et al., 2022). The interaction between
programmed death-ligand 1 (PD-L1) and programmed cell death
protein 1 (PD-1) triggered immune inhibitory signals, suppressing
the activity of T cells and other immune cells (Perry et al., 2022).
ALKBH5 decreased the expression of PD-L1 in glioblastoma (GB)
by regulating the stability of ZDHHC3mRNA. As a result, there was
increased infiltration of cytotoxic lymphocytes and pro-
inflammatory cytokines in the cerebrospinal fluid (Tang et al.,
2022). In a male mouse model of kidney injury, it was found
that inhibiting ALKBH5 enhanced the m6A modification and
stability of CCL28 mRNA, thereby regulating the recruitment of
Treg cells, ultimately alleviating macrophage and neutrophil
infiltration (Chen et al., 2023a). In summary, ALKBH5 could
regulate the function of neutrophils and various types of T cells,
including CD4+ T cells, γδ T cells and mature T cells. However,
further research was needed to fully understand the impact of
ALKBH5-mediated regulation of these immune cell functions
on fibrosis.

3.3 The impact of ALKBH5 on macrophages

The macrophages derived from monocytes were crucial in
fibrosis (Gordon and Taylor, 2005; Misharin et al., 2017).
ALKBH5 regulated the function of macrophages through various
mechanisms. Firstly, ALKBH5 promoted the recruitment of
macrophages (Wei et al., 2022). In glioblastoma multiforme
(GBM), ALKBH5 regulated the m6A modification of lncRNA
NEAT1, leading to increased expression of interleukin-8 (IL-8),
which promoted macrophage recruitment (Dong et al., 2021).
Research had also found that ALKBH5 regulated the expression
ofMAP3K8 in hepatocellular carcinoma (HCC) cells andmodulated
IL-8 expression through the JNK and ERK pathways, promoting
macrophage recruitment (You et al., 2022).

Secondly, ALKBH5 affected macrophage polarization. Activated
macrophages could polarize into M1 (proinflammatory) or M2
(anti-inflammatory/pro-fibrotic) macrophages and performed
different functions in different conditions and stages
(Adhyatmika et al., 2015; Wang Y. et al., 2023). Several studies
had shown that ALKBH5 played significant roles in macrophage
polarization. A20 was considered as an anti-inflammatory molecule
that inhibited inflammation and blocked the activation of various
signaling pathways. In the diabetic retinopathy, ALKBH5-mediated

TABLE 3 Applications of ALKBH5 research: inhibitors.

Medicine Mechanisms Selectivity Diseases Functions Ref

MV1035 Competitive inhibition Yes GBM Reduce GBM cells migration and
invasiveness

Malacrida et al. (2020), Malacrida et al.
(2022)

Dexmedetomidine Repression No Sepsis Suppress inflammation Zhu and Lu (2020)

Ena15 Non-competitive
inhibition

Yes GBM Inhibit the growth activity of GBM Takahashi et al. (2022)

Ena21 Competitive inhibition No GBM Inhibit the growth activity of GBM Takahashi et al. (2022)

DDO -2728 Competitive inhibition Yes AML Suppress tumor growth Wang et al. (2023c)

CGA Repression No NAFLD Alleviate hepatic steatosis Meng et al. (2023)

MV1035, imidazobenzoxazin-5-thione; GBM, glioblastoma multiforme; AML, acute myeloid leukemia; CGA, chlorogenic acid; NAFLD, non-alcoholic fatty liver disease.
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m6A modification leaded to decreased A20 expression, ultimately
enhancing M1 polarization of retinal microglia (Chen et al., 2022).
However, the impact of ALKBH5 on macrophage polarization
seemed to be bidirectional (Jiang et al., 2020). Research had
found that ALKBH5 promoted monocyte infiltration and
M2 polarization through the regulation of CCL5 production in
radiation-induced-Hepatic stellate cells (HSCs), thereby promoted
radiation-induced liver fibrosis (RILF) (Chen Y. et al., 2023).
ALKBH5 could also affect macrophage recruitment and
M2 differentiation by regulating the secretion of vascular
endothelial growth factor (VEGF) (Zhao et al., 2022). In lung
adenocarcinoma (LUAD), ALKBH5 regulated macrophages
M2 polarization through CDCA4 (Tan et al., 2024). Therefore,
the impact of ALKBH5 on macrophage polarization stilled
remain controversial and might be influenced by different
conditions and stages.

Besides, ALKBH5 affected MMT and macrophage autophagy,
thereby regulating fibrosis. MMT was an important source of
myofibroblasts. Under angiotensin II (AngII)-induced
hypertension, cardiac macrophages derived from circulating
monocytes preferentially underwent MMT. ALKBH5 mediated
m6A demethylation of IL-11 mRNA, leading to increased
stability and protein level of IL-11, promoting AngII-induced
MMT, and thus resulted in cardiac fibrosis and dysfunction
(Zhuang et al., 2024). There was also research suggesting that
ALKBH5 reduced Slamf7 mRNA stability in an m6A-dependent
manner, promoting macrophage autophagy and reducing the
secretion of pro-inflammatory cytokines, thereby mediated silica
particles-induced pulmonary inflammation (Yin et al., 2024).

3.4 The impact of ALKBH5 on
endothelial cells

Vascular ECs and angiogenesis played important roles in
fibrosis (Fan et al., 2023). Studies suggested that ALKBH5 might
regulate the function of vascular ECs and thus modulated
angiogenesis. VEGF, WNT signaling pathway, and hypoxia
signaling were known regulators of angiogenesis (Carmeliet and
Jain, 2011; Cui et al., 2018). Research had shown that
overexpression of ALKBH5 increased VEGF-A secretion,
promoted EC proliferation, migration, and tube formation, and
regulated vessel formation. ALKBH5 knockdown impaired VEGF-
A secretion in both in vitro and in vivo settings in GBM cells,
decreasing the pro-angiogenesis ability of GBM cells (Tao et al.,
2022; Fan et al., 2024). ALKBH5 overexpression elevated VEGF-A
secretion in retinal pigment epitheliums (RPEs), thereby
accelerating choroidal neovascularization progression in age-
related macular degeneration (Sun et al., 2023). During
ischemia, ALKBH5 decreased the m6A level on sphingosine
kinase 1 (SPHK1) mRNA in ECs, increasing its stability and
protein level, promoting vascular generation after acute ischemic
stress (Kumari et al., 2021). ALKBH5 had also been found to
regulate other extracellular mediators that affected angiogenesis.
For example, connective tissue growth factor (CTGF), a vascular
growth factor, showed significantly reduced expression in
ALKBH5 knocked-out breast cancer cells (Panneerdoss et al.,
2018). Increasing ALKBH5 level promoted angiogenesis by

regulating CTGF production. ALKBH5 also influenced
angiogenesis by modulating m6A level on non-coding RNA.
lncRNA PVT1 promoted vascular generation in lung cancer
tissue, and ALKBH5 reduced m6A modification on PVT1,
thereby facilitating vascular generation in lung cancer (Shen
et al., 2022). ALKBH5 could also affect angiogenesis by
regulating circular RNA. In HCC, ALKBH5 regulated m6A
modification on circ-CCT3, affecting angiogenesis (Liu et al.,
2023). These studies suggested a potential role of ALKBH5 in
promoting angiogenesis. However, there were also reports with
opposing findings. For instance, it had been found that
downregulation of ALKBH5 in vascular ECs under hypoxic
conditions regulated the expression of WNT5A in an m6A-
dependent manner, increasing its stability and promoting
vascular generation phenotypes (Zhao et al., 2021).

3.5 The impact of ALKBH5 on fibroblasts

Activation of fibroblasts and their transformation into
myofibroblasts were crucial steps in fibrosis (Frangogiannis,
2021). ALKBH5 had been found to regulate the activation of
fibroblasts. During the post- MI healing process,
ALKBH5 promoted the transformation of cardiac fibroblasts into
myofibroblasts and improved collagen repair after MI by enhancing
the stability of ErbB4mRNA (Yang et al., 2023). In a mousemodel of
silica-induced pulmonary fibrosis, ALKBH5 promoted lung
fibroblast activation and silica-induced pulmonary fibrosis via the
miR-320a-3p/FOXM1 axis or targeting FOXM1 directly (Sun
et al., 2022b).

ALKBH5 had also been found to regulate the transformation of
multiple mesenchymal cell types into myofibroblasts. HSCs could
transit from a quiescent state to a proliferative myofibroblast
phenotype in response to liver injury (Trivedi et al., 2021). In
vitro and in vivo models, including HSCs and clinical cases or
CCl4-induced mice liver fibrosis, ALKBH5 triggered
PTCH1 activation in an m6A-dependent manner, leading to
hedgehog signaling inactivation, which inhibited the
transformation of HSCs into myofibroblasts and ameliorated liver
fibrosis (Yang et al., 2022). Furthermore, ALKBH5 reduced
Drp1 methylation in an m6A-YTHDF1-dependent manner,
inhibiting HSC proliferation, and migration, thereby ameliorating
liver fibrosis (Wang J. et al., 2023).

Myofibroblasts could also undergo transformation from
epithelial cells and macrophages. In a mouse model of renal
fibrosis induced by unilateral ureteral obstruction (UUO).
Knockdown of ALKBH5 enhanced the expression of
mesenchymal markers, such as α-smooth muscle actin and snail,
while overexpression of ALKBH5 increased the expression of the
epithelial adhesion molecule E-cadherin and decreases snail
expression, alleviating renal fibrosis (Ning et al., 2020),
suggesting that ALKBH5 might play an important role in the
EMT process. MMT was another important source of
myofibroblasts. Under AngII-induced hypertension,
ALKBH5 mediated the m6A demethylation of IL-11 mRNA,
leading to increased stability and protein level of IL-11,
promoting AngII-induced MMT, resulting in cardiac fibrosis and
functional impairment (Zhuang et al., 2024).

Frontiers in Cell and Developmental Biology frontiersin.org07

Liao et al. 10.3389/fcell.2024.1447135

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1447135


4 The impact of ALKBH5 on organ
fibrosis

4.1 The impact of ALKBH5 on pulmonary
fibrosis

The occurrence of pulmonary fibrosis could be caused by factors
such as radiation, inhalation of substances (crystalline silica, PM2.5),
and chronic inflammation. ALKBH5 had been found to regulate
pulmonary fibrosis in various animal models. Long-term exposure
to crystalline silica could cause chronic respiratory disease and lead
to silicosis, a disease characterized by diffuse fibrosis of the lung
tissue (Hornung et al., 2008). Studie had discovered that
ALKBH5 could regulate fibroblast-to-myofibroblast
differentiation via the miR-320a-3p/FOXM1 axis or targeting
FOXM1 directly, promoting silica-induced pulmonary fibrosis
(Sun et al., 2022b). These studies suggested that ALKBH5 might
promote the occurrence of pulmonary fibrosis.

However, some studies had also found that downregulating
ALKBH5 might promote the development of pulmonary fibrosis.
Exposure to 1-nitropyrene (1-NP) could cause pulmonary fibrosis in
mice. Research had found that 1-NP promoted
ALKBH5 degradation, regulating lung epithelial cells senescence
through FBXW7 m6A modification, ultimately leading to 1-NP-
induced pulmonary fibrosis (Li SR. et al., 2024). Radiation-induced
pulmonary fibrosis (RIPF) was a common complication of thoracic
radiation therapy (Hanania et al., 2019). ALKBH5 mediated the
demethylation of IL-6 mRNA by silencing zinc finger and BTB
domain-containing protein 7B (Zbtb7b), inhibiting its nuclear
export, and suppressing the production of IL-6 in the lung,
thereby slowing the development of RIPF (Zhao et al., 2020). In
silica-induced pulmonary fibrotic tissue, ALKBH5 reduced
Slamf7 through an m6A-dependent mechanism, promoting
macrophage autophagy and reducing the secretion of pro-
inflammatory cytokines, thereby inhibiting silica-induced lung
inflammation (Yin et al., 2024). Similar to inhalation of
crystalline silica, long-term exposure to PM2.5 could lead to
pulmonary fibrosis. Knockdown of ALKBH5 significantly
upregulated the YAP1 signaling pathway in NIH3T3 cells and
lung tissue, promoting extracellular matrix deposition in
PM2.5 exposure-induced pulmonary fibrosis of mice (Zhang
et al., 2022). Therefore, the impact of ALKBH5 on pulmonary
fibrosis still requires further elucidation (Table 2).

4.2 The impact of ALKBH5 on liver fibrosis

The occurrence of liver fibrosis could be caused by multiple
factors, and ALKBH5 played significant roles in this process
(Paternostro and Trauner, 2022; Chen et al., 2023c). In a mouse
model of NAFLD, inhibiting ALKBH5 regulated hepatic autophagy
flux, thereby alleviating hepatic steatosis and fibrosis (Meng et al.,
2023). HSCs were the major fibrotic cells in the liver and could
transform into activated myofibroblast-like cells upon activation,
secreting extracellular matrix components involved in the formation
of liver fibrosis and structural remodeling (Tsuchida and Friedman,
2017). Mitochondrial homeostasis played an important role in the
progression of liver fibrosis (An et al., 2020; Wu et al., 2023).

ALKBH5 inhibited mitochondrial fission and HSC proliferation
and migration by reducing Drp1 methylation in an m6A-
YTHDF1-dependent manner, ultimately ameliorating liver
fibrosis (Wang J. et al., 2023). Furthermore, ALKBH5 could
mediate the activation of PTCH1 through an m6A-dependent
mechanism. Upregulation of PTCH1 leaded to inactivation of the
Hedgehog signaling pathway, inhibiting HSC activation and
ameliorating liver fibrosis (Yang et al., 2022). It seemed that
ALKBH5 ameliorated liver fibrosis. However, in radiation-
induced HSCs (radiation could induce HSC activation and
promote RILF, which was a common complication of HCC
radiotherapy (Kim and Jung, 2017). ALKBH5 mediated the
demethylation of toll-interleukin 1 receptor domain-containing
adaptor protein (TIRAP) mRNA through m6A modification,
activating the downstream NF-κB and JNK/Smad2 pathways, and
promoting radiation-induced HSC activation. Knockdown of
ALKBH5 significantly alleviated RILF in mice (Chen Y. et al.,
2023). These suggested that ALKBH5 could improve RILF (Table 2).

4.3 The impact of ALKBH5 on cardiac fibrosis

The injuredmyocardiumwas replaced by scar tissue, and excessive
myocardial injury could lead to cardiac fibrosis (Bergmann et al., 2009).
Myocardial ischemia and hypoxia were the primary causes of
myocardial injury and cardiac fibrosis. During acute ischemia and
hypoxia in themyocardium, ALKBH5 could influence the extent ofMI
and cardiac fibrosis through multiple mechanisms (Wang et al., 2021;
Cheng et al., 2022; Li et al., 2024b). After the ischemicmyocardiumwas
reperfused, ALKBH5 inhibited H/R-induced autophagy and apoptosis
in cardiomyocytes through pathways such as EGFR/PI3K/AKT/
mTOR (Liu and Liu, 2023; Wang et al., 2024). During the repair
phase ofMI, ALKBH5 enhanced the stability of ErbB4mRNA through
m6A demethylation, promoting the transformation of fibroblasts into
myofibroblasts and improving post-MI fibrotic repair (Yang et al.,
2023). ALKBH5 also contributed to maintaining post-acute ischemic
stress-induced angiogenesis by reducing SPHK1 mRNA m6A
methylation, thereby improving post-MI fibrosis progression
(Kumari et al., 2021). While it had long been believed that
mammalian cardiomyocytes had limited ability to re-enter the cell
cycle and primarily relied on fibrotic repair after myocardial injury
(Bergmann et al., 2009; Weinberger and Riley, 2024), the concept of
cardiac regeneration had gained attention among researchers with
advancements in scientific technology (Weinberger and Riley, 2024).
Studies had reported that ALKBH5, through the ALKBH5-m6A-
YTHDF1-YAP axis, regulated cardiomyocytes re-entry into the cell
cycle and promoted cardiomyocyte proliferation after MI (Han et al.,
2021). These studies suggested that ALKBH5 was beneficial for the
repair of ischemia-induced myocardial injury and improvement of
cardiac fibrosis.

Diabetic cardiomyopathy was also a common cause of cardiac
fibrosis (Zhang et al., 2019). ALKBH5 activated FOXO3 through
m6A demethylation in an m6A-YTHDF2-dependent manner,
activating the CDR1/Hippo signaling pathway, ultimately
aggravating high glucose-induced cardiomyocytes apoptosis (Shao
et al., 2022). Drug toxicity could also lead to cardiac fibrosis, with
drugs like doxorubicin exhibiting dose-dependent cardiac toxicity
that could result in heart failure and interstitial fibrosis (Deng et al.,
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2007). ARID2, serving as a downstream effector of ALKBH5 in
cardiomyocytes, regulated the DNA damage response and enhanced
doxorubicin-induced cardiomyocyte apoptosis, ALKBH5 could
affect the role of doxorubicin-induced cardiac dysfunction,
remodeling, and cardiomyocyte apoptosis by regulating
ARID2 expression (Chen et al., 2024). Under AngII-induced
hypertension, ALKBH5 mediated m6A demethylation of IL-11
mRNA to increase the stability IL-11, promoting AngII-induced
MMT, and resulted in cardiac fibrosis (Zhuang et al., 2024).

4.4 The impact of ALKBH5 on renal fibrosis

In a mouse model of renal fibrosis induced by UUO,
overexpression of ALKBH5 could increase the expression of the
renal epithelial adhesion molecule E-cadherin while decreasing the
expression of snail, thereby alleviating UUO-induced renal fibrosis by
affecting the EMT process. This suggested that ALKBH5 could slow
down the progression of kidney fibrosis (Ning et al., 2020). However,
different results had also been reported. For example, studies found
that inhibiting ALKBH5 reduced glomerular inflammation and
excessive proliferation of mesangial cells through the modification
of TRIM13-m6A in glomerular mesangial cells, thereby slowing the
development of chronic glomerulonephritis. This suggested that
inhibiting ALKBH5 could slow down the progression of kidney
fibrosis (Hu et al., 2024). In the I/R-induced renal injury model of
male mice, researchers found that knocking downALKBH5 increased
the expression of CCL28 through m6A modification, regulated the
downstream CCL28/Treg/inflammatory cell axis, thereby alleviating
I/R-induced acute kidney injury and renal fibrosis. This also suggested
that inhibiting ALKBH5 could slow down the progression of renal
fibrosis (Chen et al., 2023a). Therefore, the effect of ALKBH5 on renal
fibrosis needed further study (Table 2).

5 Applications of ALKBH5 research:
inhibitors

Several inhibitors of ALKBH5 had been discovered in current
research. 2OG-dependent oxygenase’s inhibitors such as NOG,
PDCA, and HIF PHD inhibitor IOX3 could weakly inhibit
ALKBH5 activity by competing with 2OG, but they lack selectivity
(Aik et al., 2014). Among them, 4-PDCA exhibited the strongest
inhibitory effect, while NOG had the weakest inhibitory effect. The
imidazobenzoxazin-5-thione (MV1035), a novel sodium channel
blocker, partially overlapped with the 2OG binding site of
ALKBH5. MV1035 inhibited the catalytic activity of ALKBH5 by
competing with 2OG at the active site, reducing GBM cells migration
and invasiveness (Malacrida et al., 2020; Malacrida et al., 2022).
Dexmedetomidine had been found to inhibit ALKBH5 expression
in vitro and decrease inflammation cytokine production of LPS-
treated HK-2 cells (Zhu and Lu, 2020). However, these inhibitors
were not primarily targeted at ALKBH5 demethylase.

Specific inhibitors targeting ALKBH5 were gradually being
discovered. Researchers identified two novel ALKBH5 inhibitors,
Ena15 and Ena21. Ena21 was a selective competitive inhibitor of
ALKBH5, which could compete with 2OG for the active site of
ALKBH5 and inhibit ALKBH5 activity, while Ena15 was a non-

competitive inhibitor of ALKBH5. Both of them could inhibit the
growth activity of GBM (Takahashi et al., 2022). Pyrazolo [1,5-a]
pyrimidine Derivative DDO-2728 had also been found to act as a
selective inhibitor of ALKBH5, significantly suppressing tumor growth
in theMV4-11 xenograft mouse model (Wang YZ. et al., 2023). A drug
with a 1-phenyl-1H-pyrazole scaffold called 20m, which had been
identified as an effective, selective, and cell-active ALKBH5 inhibitor
(Fang et al., 2022). Scientists had also shared a novel small molecule
RNA demethylase ALKBH5 inhibitor for targeted cancer therapy
(Sabnis, 2021). The selection of ALKBH5 inhibitors specific to
specific cells or even specific mechanisms of action would be the
focus of future research, relying on a deeper understanding of the
mechanisms of ALKBH5 action.

In fact, there was a natural inhibitor of ALKBH5 in cellular
environments: citrate. Citrate molecules bound to
ALKBH5 demethylase, displacing the metal ions and 2OG in
ALKBH5, thereby inhibiting its demethylation activity (Xu et al.,
2014). Chlorogenic acid (CGA), a naturally occurring plant
component, could inhibit ALKBH5 activity to regulate autophagy
and alleviate hepatic steatosis (Meng et al., 2023) (Table 3).

6 Conclusion

ALKBH5 can regulate the functions of various cells, including
parenchymal cells (hepatocytes and cardiomyocytes), immune cells
(neutrophils and T cells), macrophages, endothelial cells, and
fibroblasts, through different signaling pathways and
mechanisms, ultimately affecting tissue fibrosis in organs such as
the heart, liver, lung and kidney. The impact of ALKBH5 on fibrotic
outcomes varies and may be influenced by different cell types,
stimulation conditions, and research models. The focus of future
research will be how to select ALKBH5 inhibitors targeting specific
cells or even specific mechanisms of action, which relies on a deeper
understanding of the mechanisms of ALKBH5.
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