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MyD88-KO macrophages
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Introduction: Recent progress in cell isolation technologies and high-end omic
technologies has allowed investigation of single cell sets across multiple omic
domains and a thorough exploration of cellular function and various functional
stages. While most multi-omic studies focused on dual RNA and protein analysis
of single cell population, it is crucial to include lipid and metabolite profiling to
comprehensively elucidate molecular mechanisms and pathways governing cell
function, as well as phenotype at different functional stages.

Methods: To address this gap, a cellular lipidomics and transcriptomics
phenotyping approach employing simultaneous extraction of lipids, metabolites,
and RNA from single cell populations combined with untargeted cellular
4 dimensional (4D)-lipidomics profiling along with RNA sequencing was
developed to enable comprehensive multi-omic molecular profiling from the
lowest possible number of cells. Reference cell models were utilized to
determine the minimum number of cells required for this multi-omics analysis.
To demonstrate the feasibility of higher resolution cellular multi-omics in early-
stage identification of cellular phenotype changes in pathological and physiological
conditions we implemented this approach for phenotyping of macrophages in two
different activation stages: MyD88-knockout macrophages as a cellular model for
atherosclerosis protection, and wild type macrophages.

Results and Discussion: This multi-omic study enabled the determination of the
lipid content remodeling in macrophages with anti-inflammatory and
atherosclerotic protective function acquired by MyD88-KO, hence expedites
the understanding of the molecular mechanisms behind immune cells effector
functionality and of possible molecular targets for therapeutic intervention. An
enriched functional role of phosphatidylcholine and plasmenyl/plasmalogens
was shown here to accompany genetic changes underlying macrophages
acquisition of anti-inflammatory function, finding that can serve as reference
for macrophages reprogramming studies and for general immune and
inflammation response to diseases.

4D-lipidomics, cell lipidomics, cell transcriptomics, multi-omics, ether lipids, MyD88,
atherosclerosis
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1 Introduction

As minimal functional and structural units organized by
complex hierarchical interactions in multicellular organisms cells
and cell’s functionalities are defined by the overlapping role of
genome, epigenome, transcriptome, proteome, and metabolome
(Vandereyken et al, 2023). Additionally, cells are embedded in
an environment led by autocrine, paracrine and endocrine factors
that act through ligand-receptor and other interactions to create
networks among cell populations. New findings indicate that
individual cells display different metabolic characteristics within a
clonal population (Yuan et al., 2017). Thereby, the study of the
different omics layers contributing to the phenotype and function of
cells, at high cellular population resolution, i.e., single-to-low cell
numbers, are imperative to address complex questions in
translational biology and to understand the molecular circuits
underlying cell function. For instance, the holistic view of single
cell multi-omic studies can constitute a powerful tool in systems
biology, by correlating specific molecular information from single
cells to cell populations, tissues, or even organisms. Multi-extraction
protocols are becoming increasingly important for therapeutic target
discovery due to their ability to capture a wider range of
These
techniques to maximize the diversity of biomolecules extracted

biomolecules. protocols employ a combination of
from a single sample. Biological processes rarely operate in
isolation, often involving intricate interactions between various
including DNA, RNA, proteins,

metabolites. Multi-extraction protocols allow researchers to study

biomolecules, lipids, and
the correlations, networks, and pathways that are dysregulated in
disease, in a more holistic manner. Additionally, the broader
molecular coverage offered by these protocols increases the
chances of discovering novel biomarkers. Multi-extraction
protocols also open the door to personalised medicine, as the
understanding of an individual’s unique molecular makeup, such
as variations in their genes, proteins, and metabolites, can enable
treatments tailored to their specific needs, maximizing efficacy and
minimizing adverse effects (Boggi et al., 2024). Previously, our lab
developed an integrated lipidomics and transcriptomics strategy for
low tissue amounts and successfully applied it for investigation of
lipidome and transcriptome of functional brain regions and
subregions. The dual lipid/RNA extraction was combined with
targeted mass spectrometry analysis and qPCR to enable sensitive
quantitative profiling of specific lipid and RNA targets relevant to
epileptic seizures in mouse models (Lerner et al., 2018; Lerner et al.,
2019; Post et al., 2022).

The latest advances in cell isolation together with high-end
analytical techniques and new computational tools for data
processing and integration, allow multi-omic investigations for
molecular profiling of single cells and also the collection and
analysis of large-scale data from different omics (Zhu et al., 2020;
Watson et al., 2022). Building on this, single cell studies comprising
multiple layers of molecular information, unravel cell-to-cell
heterogeneity and stochasticity, whereas during bulk cellular
analysis, variability is eliminated by averaging, masking molecular
signatures of individual cells and leading to biased conclusions.
Primary emphasis of single cell multi-omic analysis lies on the
integration of DNA and RNA or DNA/RNA and protein data,
allowing for disease subtyping based on DNA and/or RNA data, and

Frontiers in Cell and Developmental Biology

10.3389/fcell.2024.1450971

a more detailed molecular insight provided by the proteomic
dimension. Unlike proteome, genome, or transcriptome, which
are also governed by regulatory mechanisms involving post-
translational modifications of proteins and epigenetic regulation,
the capture of cell dynamics, real-time biochemical depiction, and
ultimate downstream biochemical products essential for phenotype
association can only be accomplished through the integration of
metabolomics and lipidomics. This is because, lipidome and
metabolome composition varies substantially during various
cellular differentiation, proliferation, and reprogramming states
and across cell populations. (Lee et al, 2020). Multi-omics
analyses at the cellular level are crucial for elucidating the
complexities of cellular biology. For instance, in-depth molecular
characterization enabled by cellular multi-omics helps define the
unique properties of each cellular population, including surface
markers, gene expression patterns, protein abundance, and
metabolic activity, as well as their functional diversity. This
knowledge is essential for advancing our understanding of
development, disease, and personalized medicine (Liang et al,
2024). Hence, there is a pressing need for the combined analysis
of transcriptomics, lipidomics and metabolomics in single cell and
cell subset studies (Capolupo et al., 2022).

Increasing evidence suggests that abnormal cellular metabolism,
including lipid dysfunctions, of immune and non-immune cells is
connected to abnormalities in the immune response. The immune
system plays an important role in inflammation, which is linked to
various chronic disorders such as obesity and diabetes,
cardiovascular diseases, cancer, neurodegenerative and metabolic
diseases (Zhang et al., 2022). The same is true for pro-inflammatory
signaling molecules, which interfere in lipid metabolism. Despite the
evident crosstalk between lipid metabolism, inflammation and
health, the molecular pathways and lipid function underlying
these pathological and physiological conditions are still little-
known. In this regard, higher resolution cellular multi-omics can
be a promising venue to accelerate early-stage identification of
cellular phenotype changes in disease conditions and the
subsequent determination molecular and pathway targets for
therapeutic intervention (Yu et al., 2014).

Modern mass spectrometric technologies coupled with high
resolution ion mobility (IMS-MS) enable higher structural
resolution and possibly sensitivity allowing in-depth molecular
profiling of small biological specimens (Burnum-Johnson et al.,
2019). While MS allows for the separation of ions based on their
mass-to-charge (m/z), ion mobility enables gas-phase separation of
ionized organic molecules by their collisional cross section (CCS),
which is inherently dependent on conformation, charge, as well as
mass. This extra dimension of ion separation can increase sensitivity
of individual species detection and peak sampling capabilities,
making IMS-MS a robust analytical tool to elucidate chemical
structure and separate complex mixtures (Kanu et al., 2008). The
high ion utilization efficiency of trapped ion mobility spectrometry
(TIMS) along with a novel MS scan mode called parallel
accumulation-serial fragmentation (PASEF) make it an enticing
platform for in-depth and sensitive qualitative and quantitative
molecular profiling particularly for lipidomics and proteomics.
(Meier et al., 2018; Paglia et al., 2022; Bennett et al., 2023; Lerner
et al., 2023; Mayer and Karl, 2023; Shapiro and Bassani-Sternberg,
2023; Merciai et al., 2024). Multi-omic analysis for disease marker
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identification and better understanding of disease mechanisms has
become an essential approach in biomedical research. Through
multi-omic cellular approaches, researchers can elucidate the
molecular pathways and regulatory networks and identify novel
targets and biomarkers for the diagnosis, treatment, and prevention
of different chronic diseases (Liang et al., 2024). Accordingly, we set
out to develop an integrated lipidomics and transcriptomic protocol
for cellular profiling, amenable for high lipidome and transcriptome
coverage from cell subsets and single cell populations of low number
of cells. We subsequently applied this approach for the
characterization of the lipid and RNA changes and pathways
associated with an anti-inflammatory and anti-atherosclerosis
macrophage phenotype of MYD 88 KO.

Atherosclerosis is a chronic condition that affects the arteries
and is linked to systemic inflammation. It is responsible for about
fifty percent of all deaths in westernized societies. A thorough
understanding of the cell-specific signalling mechanisms that
mediate the inflammatory response is crucial for improving anti-
inflammatory therapies and reducing mortality and morbidity
(Ridker 2014).
dysregulation of macrophages due to uptake of modified lipids,

and Thomas, Atherosclerosis involves the
formation of cholesterol crystals, and lipid and inflammatory
mediators that favour foam cell formation. This also affects
monocytes and leads to different states of macrophage activation
with both pro- and anti-inflammatory phenotypes (Poznyak et al.,
2021). MyD88 (myeloid differentiation primary response 88) is an
adaptor protein that plays a significant role in initiating and
amplifying the immune response in atherosclerosis by inducing
signalling from multiple receptors at the plasma membrane and
endosomes (Akira 2003; Podrez et al., 2002; Ishii et al., 1996; Ma
et al., 2022). MyD88 signalling can trigger production of pro- or
anti-inflammatory cytokines as well as the activation of other
inflammatory factor such as type I IFNs, NF-kB and AP-1
through various receptors including TLRs and several cytokine
receptors that are associated to the ability of macrophages to
polarize toward the M1 phenotype. M1 macrophages constitute
the most common cell population in lesions of patients with
coronary heart disease. While this pathway was Iinitially
characterized in innate cells, it has been found that MyD88 is
broadly expressed across most cell types of the immune system
and cardiovascular systems, often exerting distinct roles specific to
certain cell types within cardiovascular disease contexts (Blagov
et al, 2023). While its role during pathogenic responses is well
understood, new insights into molecular mechanisms underlying
inflammatory responses in atherosclerosis are emerging, providing
valuable insights for potential therapeutic targets. MyD88 knockout
macrophages have demonstrated reduced plaque formation
indicating their potential use for studying atherosclerosis
protection. These findings highlight targeting MyD88 signalling
in macrophages as a promising approach for reducing
inflammation and protecting against atherosclerosis (Bayer and
Alcaide, 2021). The widespread involvement of these pathways in
cardiovascular endurance is the basis for future mechanistic studies
which may identify MyD88 as effective target for therapeutic
intervention in cardiovascular diseases (Akira, 2003). In this
study we set out to characterize in-depth how the lipid
composition changes and which lipid pathways are effected in

macrophages upon acquiring an anti-inflammatory phenotype
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due to MyD88 knock-out gene. Additionally, the interplay with
the transcriptome changes is expected to expand the window of
understanding of the anti-atherosclerotic and anti-inflammatory
function of macrophages and to serve as a reference for future
studies of macrophages and immune cell reprogramming and
function. Specifically, we aimed to uncover potential molecular
mechanisms and fingerprints related to atherosclerosis protection
of MYD 88 deficient macrophages. To this end, we developed and
applied a dual extraction approach of cellular lipidome and
with high-end 4D-TIMS
lipidomics and RNA sequencing in order to, for the first time

transcriptome and combined it
due to our knowledge, comprehensively investigate the lipidome,
of more than 400 lipids, and the transcriptome of MyD88-KO
macrophages. The dual-extraction protocol of lipidome and
transcriptome from a single cellular population of low number of
cells, presented in this article, combined with the cellular 4D-TIMS
lipidomics and RNA sequencing, enable uncovering of lipids, RNA,
and their interplay and associations with diseases and identification
of new potential disease-specific fingerprints and integrated
pathways, not accessible through single-extraction methods.

2 Materials and methods
2.1 Samples

Human Embryonic Kidney (HEK) 293 cells were obtained from
the Clinical Lipidomics Unit and Institute of Physiological
Chemistry of the University Medical Center of Mainz, Germany.
Macrophages MyD88-KO (ENH179-FP) and CT (ENHI167-FP)
were purchased from Kerafast (Shirley, United States). In-house
existing mouse brain tissue was used as a proxy to multicellular
biological sample in the first steps of 4-Dimensional (4D) trapped
ion mobility mass spectrometry-(tims) development for cellular
profiling and in assessment of amenability of dual lipidomics and
transcriptomic extraction for subsequent unbiased lipidome analysis
at high coverage (Lerner et al., 2018; Post et al., 2022).

2.2 Co-extraction and analysis of lipids,
metabolites, and RNA in cells

Lipids and metabolites extraction from reference cells and
tissues was carried out using a classical liquid-liquid extraction
(LLE) technique, utilizing methyl tert-butyl ether (MTBE)/
methanol (MeOH) (10:3; v/v) and 0.1% formic acid (FA) to
separate non-polar and polar compounds into distinct phases.
This extraction was used to: i) assess and tailor analytical and
that are
conducive to high coverage of lipidome in complex cellular

processing parameters for 4D-cellular lipidomics
matrices, e.g., cells and tissue sample as a proxy to multicellular
biospecimens. For the latter, in-house available brain tissue was
used; ii) evaluate the lipidome coverage following co-extraction of
lipids and RNA and compare it with the lipidome coverage obtained
after classical lipid LLE extraction, iii) establish an initial spectral
library, as well as RT and CCS reference values of cellular lipidome
and multicellular lipidome using brain tissue as a proxy. This cellular
spectral library and annotation parameters for 4D-TIMS analysis

frontiersin.org


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1450971

del Barrio Calvo and Bindila

was curated by manual annotation of lipid identities and structures,
collisional cross section values, retention times and fragmentation
patterns, using MS-Dial data bases and our previously established
4D-libraries from lipid standards and plasma lipids.

Lerner et al. improved the traditional liquid-liquid extraction
method of tissues by integrating RNA co-extraction using the
RNeasy” Mini Kit, enabling dual extraction of lipids and RNA
from the same tissue sample and subsequent analysis via a
targeted lipidomic approach (Lerner et al, 2018; Post et al,
2022). Essentially, chloroform and RNeasy" Micro Kit buffer
along with internal standards were added to the sample prior to
extraction of RNA and subsequent MTBE-based LLE extraction of
lipids. Building upon this prior dual extraction protocol, we further
optimized the dual extraction protocol to achieve cell-level
resolution using LLE strategy and the RNeasy’ Micro Kit for
RNA extraction, while also evaluating the effectiveness of the
sample preparation and extraction procedure for high coverage
lipidome by untargeted 4D-TIMS lipidomics. Internal standards
mixture was prepared in 200 pL of MeOH and added to the cell
pellet together with the extraction solvent. The cell solution is
further homogenized using Precellys® (5,000 rpm, 15 s) to ensure
its efficient disruption and subsequently centrifuged at maximum
speed for 5 min, to separate the upper aqueous phase and the lower
organic phase. Different solvent ratios were tested for 1 million
HEK293 cells for the lower organic phase (A, MTBE:MeOH (10:3; v/
v)/FA (0.1 M) in a proportion of 8/2; B, MTBE:MeOH (10:3; v/v)/FA
(0.1 M) in a proportion of 6/4 and; C, MeOH). The lipid extract was
obtained after vortexing (45 min, 4 °C) and centrifugation at (15 min,
1,300 g). Classical extraction of lipids using LLE method from
HEK293 cells was used to compare the performance of dual
lipidome/transcriptome extraction. For this, 1 million HEK293 cells
was homogenized with Precellys” (5,000 rpm, 15 s) and centrifugated at
maximum speed for 5 min, after the addition of internal standards and
extraction solvent. To evaluate linearity and lowest number of cells from
which lipidome and transcriptome is analyzable, 1,000,000, 500,000,
250,000, 125,000, 62,500, 31,250, 15,625, 7,813 and 3,906 cells,
respectively, were extracted and analyzed using both extraction
protocols. All lipid extracts were evaporated and stored at —20°C till
further analysis. The aqueous phases obtained from the dual extraction
protocol were immediately processed for RNA extraction using
RNeasy” Micro Kit protocol. The lipid extracts were resolubilized in
MeOH/H,O (9:1; v/v) for 4D lipidomics analysis. 4D-TIMS lipidomics
and Metaboscape 2021b (Bruker, Bremen Germany) with in-house
created 4D-lipid cellular library and/or Metabobase, for metabolite
identification, was utilized for the subsequent lipidomic and
metabolomic investigation (Figure 1).

2.2.1 Lipid deuterated and non-deuterated
internal standards

Deuterated and non-deuterated internal standards (ISTDs) from
Avanti Polar Lipids, Inc., USA, were used for relative quantification
(see Supplementary Material).

2.2.2 Chemicals and reagents

The following LC-MS grade solvents and reagents used in
analytical workflow were purchased from Merck (Germany):
chloroform water, methanol (MeOH), 2-propanol, formic acid
(FA), triethylamine, ammonium formate, acetonitrile (ACN) and
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methyl tert-butyl ether (MTBE). Absolute ethanol was purchased
from Honeywell (North Carolina, United States). The RNeasy”
Micro Kit was purchased from QIAGEN (Venlo, Netherlands).

2.2.3 Untargeted 4-dimensional (4D) trapped ion
mobility mass spectrometry (TIMS) cellular
lipidomics

For lipid separation, an Elute UHPLC system (Bruker Daltonics,
Bremen, Germany) with a C18 Luna Omega column (100 A x
2.1 mm X 1.6 um) purchased from Phenomenex (Germany) was
used to perform the reversed phase (RP) chromatographic
separation of samples. The column was thermostated at 45 “C.
The separation solvent and gradient system used for the
lipidomic and metabolomic approach in negative and positive
ion mode as well as the liquid chromatography (LC) lipidomic
gradient is the same as described by Lerner et al. (2023). This
gradient was run at a flow rate of 0.2 mL/min. In positive mode, the
injection volume onto the column was 10 pL, whereas in negative
mode, it was 20 pL. Throughout the analysis, the auto-sampler
remained consistently at 4°C. The experiments were conducted in a
hybrid TIMS-qToF mass spectrometer coupled to an Elute UHPLC
using a Bruker Daltonics TIMS-qToF pro instrument (Bruker
Daltonics, Germany) for both negative ion mode and positive ion
mode. For fragmentation analysis, the scan mode was set to PASEF
with the mass scan range of 100-1,350 Da for both MS and
MS2 acquisition. The acquisition cycle consisted of 0.1 s with the
mobility scan range of 0.55-1.87 V*s/cm2 for the positive mode and
0.55-1.86 V*s/cm2 for the negative mode. Both the TIMS and mass
calibration of the instrument was carried out on a weekly basis with
the following peaks from the Agilent ESI LC-MS tuning mix [m/z, 1/
KO: (322.0481, 0.7318 Vs. cm-2), (622.0289, 0.9848 Vs. cm-2),
(922.0097, 1.1895 Vs. cm—2), (1,221.9906, 1.3820 Vs. cm—2)] in the
positive mode, and [m/z, 1/KO0: (666.01879, 1.0371 Vs. cm-2),
(965.9996, 1.2255 Vs. cm—2), (1,265.9809, 1.3785 Vs. cm—2)] in
the negative mode. The parameters utilized in these experiments are
consistent with those described by Lerner et al. (2023).

2.2.4 Transcriptomics

RNA validation and quantification was performed using a
Nanodrop 2000/2000¢ spectrophotometer (Thermo Fisher Scientific,
Germany). RNA integrity number (RIN) and RNAseq were performed
using Agilent 2100 Bioanalyzer System in Starseq facility at Johann-
Joachim-Becher-Weg 30a (D-55099) Mainz, Germany.

2.3 Data and statistical analysis and pathway
determination

Compass Hystar 6.2 direct the LC instrument, while timsControl
2 (Bruker Daltonics in Bremen, Germany) is used to control and
monitors the TIMS-TOF instrument’s instrumental calibration and
data collection. Compass DataAnalysis and Metaboscape 2021b, both
from Bremen, Germany’s Bruker Daltonics, were used for processing
and extraction of the lipid features, quality control assessment,
annotation and curation of lipid data, respectively. Metaboscape
2021b was used for extraction of the 4 dimensional (4D) features,
peak area of individual signals, lipid identification and curation,
spectral library establishment. Compass DataAnalysis was used to
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FIGURE 1

(A) Schematic of experimental workflow. UHPLC Elute LC system and TIMSTOF Pro MS are reproduced from Bruker (Bremen, Germany). (B)
Schematic display of the rationale of study design, analytical workflow and application of the cellular lipidomics and transcriptomics approach for tha
characterization of the MYD88 KO macrophages. UHPLC Elute LC system and TIMSTOF Pro MS are reproduced from Bruker (Bremen, Germany).

retrieve ion mobility and extracted ion chromatogram for lipid data
curation and verification, fragmentation spectra inspection in
individual samples, and general data visualisation for annotation
and quality control purposes. (Lerner et al., 2023).

GraphPad Software (Boston, United States) and Origin
(OriginLab Corporation, Northampton, United States) were used
for statistical analysis. Lipid Pathway Enrichment Analysis (LIPEA,
https://hyperlipea.org/home), created by Biomedical Cybernetics
Group (Dresden, Germany) and Reactome (http://www.reactome.
org), a curated and peer-reviewed resource of human biological
processes, were used for pathway discovery.

Frontiers in Cell and Developmental Biology

3 Results

3.1 Development of dual lipidomic and
transcriptomic methods for cells

3.1.1 Assessment of 4D-TIMS lipidomics profiling
method for cellular lipidome and metabolome
First, we assessed the effectiveness of the untargeted 4D LC-
TIMS-PASEF-MS for the comprehensive analysis of cellular lipids
and metabolites. To this end, untargeted 4D-TIMS analysis of a
brain tissue lipidome, extracted using classical lipid extraction was
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performed to ascertain the suitability of 4D-TIMS lipidomics from a
complex multicellular matrix and establish an extended panel of 4D
lipid library to be used for initial annotation of cellular lipidome.
Similarly, lipid extracts of 1 million HEK293 cells and subsequent 4D-
TIMS-PASEF analysis was performed. HEK293 cellular lipidome was
annotated using the in-house existing 4D-libraries for tissue, lipid
standards, MS-DIAL, and manual annotation. (Lerner et al., 2023).
Additionally, metabolites were annotated with Bruker Metabobase
spectral library. These results laid the foundation for creating an initial
4D-cellular reference lipid library which will aid in identification of
lipid structures in subsequent stages of development including for
macrophage lipidome annotation.

This approach illustrates the potential of combining mass
spectrometry and ion mobility with a UHPLC microliter flow for
orthogonal separation of molecules in this cellular matrix (Figure 2A).
The advantage of orthogonal lipid separation by microliter flow RP-
UHPLC chromatography combined with TIMS-PASEF for cellular
lipids analysis is evident in Figure 2B, where mobility-based
separation of PC 17:0_14:1 and PS 16:0_18:1 isomers compensates
the chromatographic separation and allows delineation of the
compositional and/or possible configurational isomers. The EIM
frames, as shown in Figure 2B, demonstrates how ions are
additional
discovery, separation, and identification of molecules. Accordingly,

separated in this mobility dimension, enabling
the EIM results indicate that ion mobility introduces a new separation
dimension facilitating peak-based separation of isomers for both
phospholipid species. The MS and MS/MS of each mobility frame
are named from 1 to 3, from the lowest to the highest CCS value,
respectively. The MS/MS spectra obtained for the second mobility
frame in Figure 2B (left) show the diagnostic fragments corresponding
to PC 17:0_14:1, whereas in Figure 2B (right) diagnostic fragments
corresponding to PS 16:0_18:1, as well as the FA 18:0 corresponding
to another lipid specie are detected. Although MS/MS from the
precursor ions at m/z 762.53428 in Figure 2B were only obtained
for the second mobility frame, IM demonstrates its potential in
reducing background noise and revealing new characteristic CCS
features of each ion, allowing thus identification and discovery of
lipids that would not be possible with TIMS off. Figure 2C depicts how
the values of m/z, RT, and CCS contribute to the spatial separation of
lipids within their respective classes (Supplementary Material). It is
evident that CCS plays a significant role in determining the spatial
distribution of lipids, enhancing peak resolution and confidence of
structural identification. Therefore, with this strategy we are able not
only to enhance the characterization and differentiation of complex
mixtures, but also to provide valuable insights into chemical structure
and composition.

3.1.2 Optimization of dual cellular lipidome
extraction in HEK293 cells

The previous assessment steps have all contributed to ascertain
the advantages of 4D-TIMS- cellular lipidome for facilitating high
coverage of lipidome and high-throughput profiling, which are
necessary for integrating cellular multi-omic approaches. We,
hence focused further on assessing, using reference HEK293 cells,
the amenability of dual cellular lipidome and transcriptome
extraction for subsequent comprehensive 4D-cellular lipidome
profiling and RNA sequencing. Comparative coverage of the
lipidome using 4D-TIMS lipidomics was performed to ascertain
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performance of classical and dual extraction methods for high
lipidome coverage and quantification.

Lipids extracted using the previously developed dual lipidomic
& transcriptomic protocol and the classical lipid extraction were
analyzed in negative mode within a single batch and simultaneously
processed (annotation and relative quantification) in Metaboscape
to better compare the lipidome coverage using both methods. While
7 lipids were identified specifically using the classical extraction and
1 lipid was present only when the dual extraction was applied,
151 lipids were commonly identified with both extraction methods
(Figure 3). The metabolite interrogation using Metabobase
both
effectiveness of the dual extraction in profiling the metabolome

annotation in extracts demonstrates the superior
of this cell model. Although only 15 metabolites were detected using
dual lipidomic & transcriptomic extraction compared to
6 metabolites using the classical extraction (Figure 3) it suggests
that prospective use of an appropriate metabolomic platform can
allow the co-investigation of low mass metabolites and provision of
additional valuable information on metabolome. Based on the
results obtained for the 4D-lipidome of HEK293 cells, two
spectral libraries were created for positive and negative ion
modes, named: “Multi-omic-derived cellular Lipidome 2023 pos”
and “Multi-omic-derived cellular Lipidome 2023 neg”, respectively.

The comparison of lipid levels between the classical and dual
extraction methods in negative ion mode (Figure 3) evidence that the
dual extraction method yields higher lipid levels for certain lipid
classes compared to the classical method Specifically, LPE, PS, and PS-
O exhibit higher quantification values when the dual extraction
strategy is employed. On the other hand, the classical extraction
strategy results in higher levels of the PE-O/P lipid class compared to
the dual extraction and PE, PG, and PI are equally represented in both
extraction methods. Considering the future prospects of this method
in single cell multi-omics, where sensitivity holds significant value, the
dual extraction procedure was selected as the preferred approach for
further analysis in cells. The ability to enable simultaneous analysis of
RNA, lipids, and metabolites from the same sample is particularly
advantageous in cellular multi-omics research, where limited sample
availability and low volumes of cell suspensions or homogenates are
frequently encountered and not readily aliquotable for individual
dual

comparable lipid coverage and superior metabolite coverage and

omic extractions. Moreover, extraction demonstrated
lipid quantification values for most lipid classes. Aiming at further
identifying the optimal solvent composition and solvent ratios for
qualifying and quantifying lipids and metabolites in cells using dual
extraction, two experiments were conducted in parallel using the
classical and dual extraction protocols, respectively. For each
extraction, three distinct solvents were employed for 1 million
HEK293 cells. The lipid extracts were analyzed using 4D-TIMS
untargeted lipidomics and annotated using the established
extended lipidome 4D-library (see above). The primary focus was
to assess the suitability of extraction procedure for 4D-TIMS cellular
lipidomics and metabolomics using a population of 1 million
HEK293 cells, with emphasis on lipid and metabolite coverage as
well as lipid quantification. Three different extraction solvents were
assessed to enhance the yield of lipidomic and metabolomic analyses.
(Each extraction method is designated by a letter corresponding to the
type and proportion of solvents used): A, MTBE:MeOH (10:3; v/v)/

FA (0.1 M) in a proportion of 8/2; B, MTBE:MeOH (10:3; v/v)/FA
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(A) 2D-hystogram of cellular lipidome distribution of raw data in 2D mobility and m/z dimension of ions using ESI+ (left) and ESI- (right). (B) PC 17:0_
14:1762.53428 m/z EIC, EIM, MS and MS/MS in ESI- (left); PS 16:0_18:1760.51421 m/z EIC, EIM, MS and MS/MS in ESI- (right). (C) 3D-scatter plot cellular
lipidome separation across lipid classes using using ESI+ (left) and ESI- (right).
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(A) Venn diagram representation of specific and common lipids to classical and dual extraction methods in ESI- (up). Metabolites presence and
absence in classical versus dual extraction methods in ESI- (down). (B) Lipid quantification comparison of dual vs. classical method in ESI-. Log;o of the
quantified values was used for the visualization. Color grade from dark to light blue indicating each lipid specie abundance. (C) Lipid coverage comparison
for three different solvents using the classical extraction in ESI+ and ESI- (upper graph) and dual extraction in ESI+ and ESI- (bottom graph).

(0.1 M) in a proportion of 6/4, and; C, MeOH. First, a higher lipid
coverage was obtained for solvents A and B compared to C in both
negative and positive mode (Figure 3), demonstrating the superiority
of MTBE:MeOH/FA over MeOH in terms of lipid coverage. Secondly,
upon closer examination of the number of annotated lipids in the
MTBE:MeOH/FA fractions, it is observed that B solvent yields slightly
higher results in both classical and dual extraction methods
(Supplementary Material).

To conclude, similar quantification results were obtained with
both classical and dual extractions, demonstrating that the solvents
A and B containing MTBE are better suited than methanol as they
provide improved quantification values and a higher lipidome
coverage, while the HEK293' characteristic lipidome significantly
fades in both experiments and ion modes when MeOH is employed
as extraction solvent (Supplementary Figure S1). Hence, it is evident
that MTBE-containing solvents render an acceptable lipid coverage
using both classical and dual extraction strategies. Solvent B
consistently outperforms A solvent in terms of quantitative
coverage across various lipid classes. This is evident from the
consistently improved quantification coverage of LPE-O and SM,
as well as PE, PE-O, PE-P, PC-O, PI-O, and PS species.

3.1.3 Cellular lipidomics, metabolomics and
transcriptomics in a low number of cells

In order to develop a sensitive cellular analytical platform using
dual-omic extraction and microliter flow 4D-TIMS cellular
lipidomic profiling, two experiments were conducted to achieve
comprehensive lipidome profiling at high cellular resolution, i.e., in
low cell numbers. In a first experiment, the organic phase previously
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extracted using dual extraction was serially diluted. In another
experiment, the cell suspension of 1 million cells was also serially
diluted for subsequent extraction using dual and classical protocols
for lipid and RNA analysis. During the initial experiment, the
organic phase aliquot corresponding to 28,571 cells was
sequentially diluted by factors of 1/2, 1/4, and 1/8 resulting in
dilutions corresponding to 14,285, 7,141, and finally down to
3,572 cells respectively. The diluted lipid extracts were analyzed
in negative ion mode and annotated with the extended 4D-cellular
lipidome library. Supplementary Figure S2 depicts the peak area
linearity, e.g., R-squared (R*) for different lipids across dilutions.
The analysis reveals that a significant portion of the annotated lipids
(78.07%) exhibit an R value ranging from 0.8 to 1, evidencing the
alignment of our results with a linear regression across different
dilutions. Only 21.92% of the annotated lipids exhibit an R* below
0.8. The robustness of 4D-TIMS lipidomics and dual omic
extraction for low cell numbers profiling is illustrated in Figure 4,
where the lipid coverage across extracts of different cell numbers is
represented. When comparing the diluted extracts, a significant
decrease, i.e., from 152 to 113 in the number of identified lipids is
observed between 28,571 and 14,285 cells, followed by a rather
steady coverage with, ie. 114, and 109 lipids for subsequent
dilutions, respectively. It is obvious that the sensitivity of lipid
detection reaches a steady threshold from about 14.000 cells
downwards. This indicates, however, the robustness of the
approach in terms of maintaining consistent the lipid coverage in
cellular lipidomics in a low number of cells, but also the lowest
threshold of cell number at which with current analytical conditions
cellular lipidome can be reliably quantified. We consider, however,
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that the 113, 114 and 109 number of identified lipids across the three
lowest dilutions points in negative ion mode is sufficiently
informative of researching the cellular lipidome content and
function as it contains most of the representative and specific
species of each lipid class. The method’s quantitative performance
for low cell numbers is illustrated in Figure 4 where the normalized
lipid values (normalized to internal standards) across the different
dilutions are compared. Remarkably, the relative quantification values
remain consistent across the various cell dilutions, including the
highest dilution, highlighting the method’s ability to reliably quantify
lipids even in limited cell amounts and for low abundant lipid species
as well. Only a few lipid species are absent in the extract of 3,572 cells,
indicating a good limit of detection and quantification of a specific set
of lipids in samples with as low as 3,572 cells.

Frontiers in Cell and Developmental Biology

Finally, we applied the optimized dual extraction and lipidome
analysis on 9 different cell dilutions (1,000,000, 500,000, 250,000,
125,000, 62,500, 31,250, 15,625, 7,813 and 3,906 cells). The lipid
extracts of the diluted cell samples were analyzed in negative and
positive ion mode and annotated using the 4D-cellular lipidome
library, MSDIAL and Bruker Metabobase spectral libraries for lipids
and metabolites. Figure 5 displays the lipid coverage, data linearity
and reproducibility of identified lipids extracted with optimized dual
extraction and analyzed by 4D-TIMS cellular lipidomics covering
9 cell number dilutions (1,000,000, 500,000, 250,000, 125,000,
62,500, 31250,15,625, 7,813 and 3,906 cells). The graph
demonstrates that this approach enables the coverage of most
lipid classes even in the lower cell dilution. Exceptions make
lipid species of the GM3, LPA, LPC-O, LPE-O, LPG, LPI, PG-O,
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PI-O, PS-O and DGDG subclasses, which are not detectable in
negative ion at the low cell number, e.g., 3,906 cells.

The comparative quantification values of lipids obtained across
the various dilutions in both positive and negative ion species mode
of lipids extracted with the optimized dual extraction method was
carried out to determine the lower limit of quantification of lipid
classes and/or species in relation to the number of cells extracted.
Supplementary Material shows the relative quantification results in
negative and positive ion mode using the dual extraction method
across the different dilutions. The peak area linearity was calculated
for both ion modes, with a R* value superior to 0.8 for 90.51% and
91.11% of the lipids in positive ion mode and negative mode,
respectively. Conversely, less abundant lipid species maintain
consistent quantification values even at the lowest dilutions. The
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lowest dilution point corresponds to lipid extracts from 157 cells
injected on the column in negative ion mode and 79 in positive ion
mode, which substantiates a good sensitivity of the overall workflow.
Particularly, considering that no instrumentation specific to single-
cell omics was here used approach (Gerichten et al., 2023).

In Figure 5B, the relative quantification values of 9 cell dilutions
obtained from the two extraction methods are contrasted. The PE
lipid class generally demonstrates higher values with classical
extraction than with dual extraction method in positive ion
mode, while LPCs, LPEs, and PIs are more prevalent with dual
extraction compared to classical extraction in negative ion mode.
However, these differences are particularly significant only for
specific lipid species within these classes; overall results indicate a
similar level of relative quantitation profile under these conditions.
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In order to further demonstrate the suitability of this optimized
dual extraction protocol for analyzing both omic layers, lipidomics
and transcriptomics, RNA was extracted from the aqueous phase
using RNeasy” Micro Kit protocol designed for human cells and
subsequently quantified. The RNA was in parallel also extracted and
quantified directly from the cell pellet to compare and benchmark
the performance of dual lipidome/transcriptome extraction from
cells. Figure 6A illustrates how the RNA quantification values
decrease linearly across cell dilutions, while Figure 6B
demonstrates a significant improvement in RNA extraction yield
when using dual extraction compared to direct extraction of RNA.
Additionally, it shows that this optimized method is adequate for
RT-qPCR analysis with as few as 31,250 cells for 0.5 ug of RNA when
utilizing the entire volume of extract. RN Aseq can be performed on
7,813 cells with a total RNA of approximately 150 ng, meeting the
required amount of genetic material for this analysis. Hence, these
findings indicate that the optimized multi-extraction method and
the selected kit are appropriate for isolating RNA, making it readily
amenable for subsequent analysis using RNA-seq or qPCR,
depending on the specific objectives of the study.

To conclude, satisfactory global qualitative and quantitative
profiling of lipids and RNAs is obtainable from a low number of
cells, using combinatorial approach including: i) co-extraction of
lipidome, transcriptome and to some extent metabolome, ii)
untargeted 4D-TIMS cellular lipidomic, and iii) transcriptome

analysis by RNA sequencing and/or qPCR.

3.2 Characterization of MyD88-KO
macrophages’ phenotype for
atherosclerosis protection: application of
optimized multi-extraction for lipids,
metabolites, and RNA, as well as 4D-TIMS
cellular lipidomics and transcriptomics

In order to showcase the applicability of this cellular multi-omic
platform and also to characterize the lipidome and transcriptome
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associated with an atherosclerosis protective phenotype of
macrophages, we investigated the specific molecular changes in
MYD88-KO macrophages versus control cells.

To investigate this question, wild type (WT) (C57BL/6]) and
knock-out MyD88-KO (C57/129) macrophages from mice were
chosen. When MyD88 is knocked out or disabled in macrophages it
inhibits the typical signal transduction pathways that would lead to
the pro-inflammatory M1 phenotype in macrophages. One critical
factor in the initiation and progression of atherosclerosis is the
release of inflammatory factors and cytokines produced by the
MyD88 upon the activation of toll-like receptor 4 (TLR4).
MyD88 contributes to the migration and polarization of
macrophages to form M1 macrophages that will release more
proinflammatory factors and hence, enhance monocyte migration
and plaque formation. Therefore, the key role of MyD88 in the
initiation and amplification of this cascade leading to formation and
growth of the atherosclerotic plaque, makes it an excellent model to
study the impact of reduced pro-inflammatory signaling on the
lipidome and transcriptome of macrophages in the context of
atherosclerosis. This approach would involve the extraction of
lipids, RNA, and metabolites from macrophages.

3.2.1 Macrophages lipidome

This study utilized two biological replicates of MyD88-KO and
WT, each consisting of 500,000 cells. To simplify, we labeled the
biological replicates of wild-type (WT) and knockout (KO)
macrophages as 167.1, 167.2 for WT, and 179.1, 179.2 for KO.
The lipidome profiling was performed using three technical
replicates for each biological group. The bucket list of lipid
signals during data processing in Metaboscape was curated
utilizing the previously generated HEK293 4D libraries, “Multi-
omic-derived cellular Lipidome 2023 pos” and “Multi-omic-derived
cellular Lipidome 2023 neg”, along with other routine databases.
Integration of common and specific lipids to both ionization modes
in MyD88-KO and WT macrophages was performed for relative
quantification. The results were visualized via principal component
analysis (PCA) in Figure 7A, where each data point represents one of
the technical replicates of both cell types. The loadings for each
principal component analysis axis are included in Supplementary
Figure S3. Biological replicates of both WT and KO macrophages
shows dispersion in the PC2 space due to sample variability. The

frontiersin.org


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1450971

del Barrio Calvo and Bindila

10.3389/fcell.2024.1450971

A B WT MyD88-KO WT MyD88-KO
4
2.01 179.23 o
1.54 ® WT (biological replicate 1)
@ WT (biological replicate 2)
s ® MyD88-KO (biological replicate 1) 3
L 1.041 ® MyD88-KO (biological replicate 2
S 167.2.2 e bl e
= o 179.21 o
% 4167.1.2 167.1.1
@ 0.5 e ©
Z PY
N 0.0 167.1.3
o 17922 o .
o 167.2.1
-0.5
~1.01 ¢167.2.3
179.1.2 o
-1.51 17913 @ 1
T T T T T
-4 -2 0 2 4
0,
PC 1 (42,75 %)
C — 0
100 ©WT biological replicate 1
© WT biological replicate 2
e © MyD88-KO biological replicate 1
10 . ; . MyD88-KO biological replicate 2
§ s [} . HE : e
IR s ° = LI T | s 8 0 . 3
z s : o H ; ; ..l IS s s : e o B ;' % 3 8.8
§0.1 G_ o0 @ 00 3 H k=S - B . H ™ vl e 2* .v" 00 et LI i °é . R .
e ggted w0 ¢ 83 dgsial * G, e LAt DL IR P oL @®
s s = : L A i B B e *ee
001 ° H . - s *-8 . o
: H ot o8
Cer FAHFA  HexCer LPC LPE PA PC
3% 0% 935K 5% wae% - ne%
6% azeew  2108% 225% o wex 20125
© WT biological replicate 1
@, ©WT biological replicate 2
s @ MyDB88-KO biological replicate 1
$ N MyD88-KO biological replicate 2
'] )
£
146% 1784%  2181% o 2756%
FIGURE 7

(A) PCA of all the quantified lipids using UHPLC (RP)-TIMS-TOF(ESI+) and UHPLC (RP)-TIMS-TOF(ESI-), showing the separation between MyD88-
KO and WT macrophages classes. (B) Heatmap showing the relative quantification values for lipids comparing two macrophage models (WT and MyD88-
KO). (C) Scatter plot depicting the logarithmic relative quantification of lipid species and coefficient of variation across lipid classes, with blue representing

MyD88-KO and red representing WT macrophages.

dispersion is higher in the case of MyD88 macrophages probably
due to the heterogeneity of this experimental group triggered by the
inactivation of this gene. However, the two macrophage groups are
fully distinguishable by their distribution and separation across
PC1 space (Figure 7A). One technical replicate “179.1.17 was
excluded from the analysis as an outlier due to its noticeably
different distribution compared to the other technical replicates
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in the PCA space. The distinct lipid profile of MyD88-KO
macrophages indicates the direct effect of MyD88 on their lipid
composition.

The heatmap in Figures 7B, C depicts the relative quantification
values of various lipid species in the KO and WT macrophages.
While the relative abundance of most FAHFA species is lower in
MyD88-KO compared to WT, ether-linked lipids (PC/PE-O) as well
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FIGURE 8

Volcano plot of differentially regulated lipids and percentage contribution of each lipid class to the dysregulation of these lipids in MyD88-KO. Each
point represents a lipid species plotted based on fold change and statistical significance. The x-axis shows the log,-fold change (FC) in lipid expression,
with positive values indicating upregulation and negative values indicating downregulation. The y-axis represents the -log;o(P-value), reflecting statistical
significance. Points above the horizontal threshold line denote lipids with statistically significant changes.

as PE and PC, show remarkably higher values for MyD88-KO
The TG species do differ
between both cell types. PS, PG and PI phospholipids are also
dysregulated in MyD88-KO. Since MyD88 is linked to inflammatory
responses, these results underscore the role of lipid patterns in

compared to WT macrophages.

regulating inflammatory pathways associated with atherosclerosis in
2023).
importance of these lipids in the mechanistic pathways that can

macrophages (Blagov et al, This demonstrates the
be potentially involved in regulating anti-inflammatory mechanisms
in cardiovascular diseases, which are remarkably important in the
formation of the atheroma plaque. The potential of these lipids as
important targets for protecting against atherosclerosis, makes the
study of their metabolic and mechanistic functions crucial for future
research. The reproducibility of relatively quantified levels of lipids
and the average coefficient of variation (CV) for each lipid class
indicate a good quantitative reproducibility of the MyD88-KO
lipidome phenotype. The average CV for both cell types is
21.58% and 22.87% and demonstrate a similar quantitative
reproducibility among phenotypes despite the different molecular
matrix of both cell types (Chiu et al., 2010). In conclusion, the multi-
omic cellular approach used in this study provides a reliable and
consistent lipidomic profile of macrophages anti-inflammatory state
helping us to derive valuable insights into molecular mechanisms
associated with MyD-88 function in macrophages.

So far, the findings suggest a clear lipid profile difference in the
KO cells, potentially linked to the influence of MyD88. To
investigate significantly up- or downregulated lipids (P-value <
0.05) in this anti-inflammatory macrophage model more closely,
a volcano plot was utilized (Figure 8). The percentage contribution
of each lipid class to this dysregulation is also visualized. Ether-
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linked lipids, PC/PE-O and PC/PE-P, constitute the most prominent
group of the total upregulated lipids (62.2%) followed by PC and SM.
The high representation of the ether-linked lipids and PC lipid class
within the upregulated lipids in MyD88-KO macrophages makes
them a potential target of the anti-inflammatory mechanism and
response. In view of the cell reprogramming events, it will be
interesting to explore whether these classes play an essential role
in the reprogramming macrophages toward an anti-inflammatory
phenotype (Cortés et al., 2023; Kelly and O’Neill, 2015; Pérez and
Rius-Pérez, 2022). LPE, TG and PA lipid species contribute equally
to the downregulated effect of MyD88 in the lipidome of this
macrophage model.

3.2.2 Transcriptomic profiling of WT and MyD88-
KO macrophages

RNA obtained via the improved dual-omics extraction
technique was analyzed using RNAseq. The RIN are 2.4 for
MyD88-KO and 2.3 for WT samples. To facilitate subsequent
of both WT and MyD88-KO
macrophages T, RNAr depletion was carried out. This approach

transcriptome  profiling
increased specificity in capturing target mRNA molecules by

reducing ribosomal RNA presence that could disrupt
downstream analysis processes.

The pie chart in Figure 9A depicts 3,381 differentially expressed
genes and 6,482 differentially expressed transcripts compared to the
total count of expressed and tested genes with MYD-88 KO. It
provides firsthand information about the extensive high number of
genes and transcripts expressed and tested in MyD88, potentially
involved in regulating anti-inflammatory pathways modulated by

MyD88 in macrophages. Furthermore, Figure 9B shows a PCA plot
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(A) Pie chart of genes selected for RNAseq analysis. (B) PCA plot of RNAseq sample distribution of WT and KO. (C) Heatmap showing the expression
of the first 30 differentially expressed genes with adjusted P-value < 0.05 for WT and MyD88-KO macrophages. (D) Volcano plot of up- and
downregulated genes expressed in MyD88. 0.01 was defined as P-value threshold as well as a FC of 2.

that illustrate distinct clustering and separation of WT and MyD88-
KO macrophages based on their gene expression profiles, with
technical replicates of the same cell type clustering together. This
group separation fully aligns with the results showed previously in
the PCA analysis of the lipidome sample distribution. The genes and
transcripts differentially expressed in MyD88-KO compared to WT
macrophages primarily contributing to this differentiation are
depicted in the heatmap in Figure 9C of the first 30 differentially
expressed genes. Selected genes with up- and downregulation trends
were based on a P-value < 0.01 and fold change (>1 or < -1).
Figure 9D illustrates the direction of regulation trends in MyD88-
KO macrophages using a volcano plot, displaying the gene
expression difference between MyD88-KO and WT macrophages
with the significance (P-value < 0.01) and a log 2-fold change. The
analysis also indicates distinct transcriptome profile differences in
this anti-inflammatory macrophage model.

3.2.3 Pathway investigation of MyD88-KO
macrophages

Significantly represented lipids and RNA from the globally
profiled lipidome and transcriptome in MyD88-KO macrophages
compared to WT macrophages, were investigated by Reactome
pathway to unveil their mechanistic function in this anti-
inflammatory response. The pathway clusters marked in yellow
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in Figure 10 are those affected by the dysregulation of RNA and
lipids in MyD88-KO macrophages. Upon initial examination of
these pathways obtained by the comprehensive analysis of the
impact of MyD88 deficiency on the transcriptome, there is a
significant influence on genes associated with cellular responses
to stimuli and signal transduction. The metabolism of RNA, DNA
repair, gene expression transcription, and programmed cell death
are also impacted, as well as some disease pathways related to
cellular DNA
transporters, signal transduction by growth factor receptors and

responses to  stress, repair, transmembrane
second messengers and programmed cell death (from lower to
higher FDR). Both up- and downregulated lipids impact
metabolism, whereby lipid metabolism is predominantly
upregulated with only a few downregulated species. An in-depth
analysis of the pathways affected by imbalanced lipid levels indicates
that both up- and downregulated lipids impact metabolism.
Additionally, vesicle-mediated transport, small molecule transport,
protein metabolism, immune system function, and disease pathways
are specifically affected by the upregulated lipids produced by
MyD88 absence. The predominant upregulation of PC-O among
the upregulated lipids, substantially influences the dysregulation of the
highlighted pathways in Figure 10A, potentially involving their anti-
inflammatory effects. The graph in Figure 10B depicts the 25 most

significant pathways underlined by the upregulated lipids, and the
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Pathway list generated using Reactome (right).

5 significantly identified pathways for the downregulated lipids along
with their percentage contribution. Only the pathways with a
P-value < 0.05 and a false discovery rate (FDR) < 0.2 were chosen
for further analysis, prioritizing those with the highest significance
and lowest FDR. Similarly, to simplify the analysis of the
transcriptome, only the first 30 differentially expressed genes
between MyD88-KO and WT were selected for pathway discovery
based on their P-value < 0.01 and fold change > 1 or < -1
10B). In both graphs, the pathways with highest
significance values are represented from top to bottom in both

(Figure

graphs. These findings indicate that vesicle-mediated transport and
glycerophospholipid biosynthesis exhibit the highest contribution
rates in this anti-inflammatory macrophage model. In addition, the
highest significantly disrupted pathways by the change in the lipidome
are related with the membrane transport and trafficking of molecules
between Golgi and endoplasmic reticulum (ER), as well as the
remodeling of other lipids and proteins such as: PC, cardiolipins
(CL), high density lipoprotein (HDL) and other plasma lipoproteins.
Other pathways affected are ATP-binding cassette (ABC) transporters
and G-proteins transport, phospholipase C beta (PLC() and A2 and
(PLA2) metabolism and phagocytosis mediated by phospholipids and
by Fc gamma receptor (FCGR). The pathways affected by the
transcriptome disruption, cellular response to stress and stimuli as
well as interferon (IFN) signaling pathways, have the highest
contribution rates and are also the most significant in this anti-
inflammatory macrophage model.

The mechanistic function of these pathways is potentially
involved in anti-inflammatory protection against the development
of macrophages’ pathogenic phenotypes. Thus, remodeling of these
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pathways also by alternative, or adjuvant venues to knocking out the
MyD88 could play a crucial role in the re-programming of
macrophages to prevent the formation of atheroma plaques and
advancement of atherosclerosis disease.

4 Discussion

The suitability of 4D-cellular multi-omics for analyzing cellular
lipids and metabolites, from single lipidome extraction or dual
extraction of lipids and RNA stemming from a small number of
cells was demonstrated using HEK293 as a cell model. In terms of
lipids and RNA cellular resolution, the qualitative and relative
quantitative analysis of the lipidome and the relative quantitative
analysis of the total extracted RNA of the serial dilutions of cell
numbers, illustrated the applicability range of this protocol when
working with minimal sample amounts. Similar or increased levels
of certain lipid classes, such as PI, SM, PE-O/P and LPE was
obtained by dual lipid and RNA extraction compared to lipid-
only extraction protocol, suggesting a differential dislocation of
these lipids from the cell’s biomolecular network due to physico-
chemical properties these extraction parameters are enabling. A core
set of cca 100 lipids mostly covering the glycerophospholipidome are
consistently detected and can be quantified in high (cca 1 mil) and
lower number cells (cca 3,900). Determination of the lower limit of
quantification and detection, in terms of the lowest number of cells
required for detection of individual cellular lipid species is valuable
in deriving the lipid function knowledge that is preserved with
lowering number of cells. Besides, it also allows prospective

frontiersin.org


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1450971

del Barrio Calvo and Bindila

informed-study design, including selection of minimum number of
cells for a given set of lipid targets, when aiming to investigate
specific lipid alteration in cellular populations.

This is particularly advantageous when dealing with limited
sample availability. This comprehensive dual extraction method
combined with 4D-TIMS cellular lipidomics and RNA analysis is
essential for protecting and maximally utilizing valuable scarce
samples as well as for improving molecular read-out/per sample.
It also reduces errors from single-variable data variability and
diverse molecular distribution characteristics, during aliquoting
and sampling facilitating effective data combination. Certainly,
dual with
technologies dedicated to single-cell omic analysis, single cell

combining the extraction protocol analytical
lipidomics and transcriptomics is expected to increase the
lipidome and transcriptome coverage and depth of functional
analysis in cells. Moreover, prospective inclusion of metabolite
analysis will add a new molecular dimension, making this
approach an excellent tool for translational biology. (Chen et al.,
2023; Bayer and Alcaide, 2021).

The effects of MyD88 in the immune system activity and its
correlation with some disease processes are rather well studied,
particularly its high potential as a target for combating inflammatory
processes involving important pathways such as NF-kB and AP-1.
As an example, a recent study demonstrated that MyD88 deletion
decreased macrophage recruitment and affected macrophage
function in plaques (Bayer and Alcaide, 2021). Macrophages
isolated from MyD88’/ ~ mice exhibited reduced activation, lipid
accumulation and foam cell formation in response to ox-LDL
Additionally,
endothelial reactive oxygen species formation, which drives ox-
LDL formation, was also decreased (Bayer and Alcaide, 2021).

treatment, a key factor in atherosclerosis.

Therefore, the reasons why MyD88 antagonists were largely
studied to combat inflammation and associated diseases such as
atherosclerosis are evident. Small molecules that mimic the BB-loop
in the Toll/IL-1 receptor (TIR) domain of MyD88 were found to
inhibit MyD88-mediated pro-inflammatory signaling (Saikh, 2021).
Clinical trials using MyD88-targeted therapy for chronic obstructive
pulmonary diseases have shown promising results. Dietary
supplementation with glycosaminoglycans such as chondroitin
sulfate has also been observed to inhibit MyD88-dependent
inflammatory signaling in chondrocytes. Medications in the
tricyclic family targeting neurotransmitter release and uptake, as
well as opioids, have been shown to modulate TLR activity and
MyD88 activity respectively (Bayer and Alcaide, 2021). These results
reinvigorated the idea that MyD88-targeted therapeutic intervention
of pro-inflammatory signaling could be feasible in attenuating severe
inflammatory diseases and opens a great opportunity in treating
chronic inflammatory diseases. All of these drugs showed varying
levels of activity on TLR/MyD88 signalling, and have varying
pharmacodynamic properties, therefore could be useful for
specific forms of cardiovascular diseases (CVD) depending on the
exact contributions of MyD88. However, while safety profiles have
already been established, further study would need to be done to
demonstrate utility in repurposing them for CVD, since
MyD88 antagonists may also impact the protective mechanisms
against macrophage infections.

Therefore, it is crucial to thoroughly study the molecular targets
due to the

for addressing chronic diseases influence of
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MyD88 cascades on TLR4 signal activation, which significantly
contributes to inducing trained immunity (Owen et al., 2022).
TLR/MyD88 signalling extends beyond immune cells, and most
of the work in preclinical models have used globally deficient mice.
However, upregulated TLR/MyD88 signalling has been shown to
alter endothelial cell function and contribute to the pathogenesis of
vascular disease, expanding the importance of this pathway to other
cardiovascular cell types (Guerrini and Gennaro, 2019).

For this reason, the lipidome- and transcriptome-associated
anti-inflammatory cascade and the implied partners were studied
in this study in the search of good alternatives in the protective
mechanism against atherosclerosis in macrophages.

Multi-omics studies involve large and complex datasets. To
simplify the functional analysis of RNA and lipids in context of
MyD88 depletion, we used two different software tools, LIPEA and
Reactome, to filter and visualize the most significant results and
focused here our further discussion. on the multi-omic profile of a
macrophage model in an anti-inflammatory state for atherosclerosis
protection. When looking at each molecular layer independently,
ie, the lipidome dysregulation in MyD88 macrophages, the
predominant role of plasmalogens upregulation in this anti-
inflammatory response is evident. Ether-linked lipids (PC/PE-O)
contribute 60% of the total upregulated lipids constituting the most
group.
glycerophospholipids with a vinyl-ether bond at the sn-1 position

prominent Plasmalogens are unique membrane
and enriched in polyunsaturated fatty acids at the sn-2 position.
Their physiological roles vary across different tissues, metabolic
processes, and developmental stages due to their lability to oxidation
and utilization by higher organisms (Braverman and Ann, 2012).
The high representation of this lipid class within the upregulated
lipids in MyD88-KO macrophages makes them a potential target of
the anti-inflammatory mechanism and response. The correlation
between plasmalogens and atherosclerosis can be understood in
terms of the role plasmalogens play in cellular functions and
oxidative stress, whereby antioxidant properties can protect cells
from oxidative stress by scavenging reactive oxygen species.
Plasmalogens also play a role in anti-inflammatory mechanisms,
being present in inflammatory cells are believed to regulate the
function of enzymes associated with inflammation. Lower levels of
plasmalogens have been associated with multiple inflammation
diseases. including in atherosclerosis (Ridker and Thomas, 2014;
Wallner et al,, 2018). As they are present in endothelial cells, and
endothelial dysfunction is an early event in atherosclerosis, changes
in their levels might impact endothelial function, which plays a
pivotal role in maintaining vascular health. Low plasmalogen levels
have been found in individuals with atherosclerosis, suggesting a
potential role for plasmalogens in the development or progression of
the disease. However, while there are strong associations between
plasmalogen levels and atherosclerosis, the exact mechanistic links
are not fully defined and further research is required to fully
elucidate the precise role plasmalogens play in atherosclerosis
and whether modulation of plasmalogen levels could be used as a
therapeutic strategy for cardiometabolic diseases, including
atherosclerosis (Paul et al., 2019; Braverman and Ann, 2012;
Deng and Angelova, 2021).

Studies carried out until the moment, have focus their attention
in the influence of dietary changes through increasing plasmalogens
levels in inflammation and disease as well as the in vitro effects of
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changes in the lipid profile in plasmalogens levels. As an example,
Wallner et al., 2018 in vitro showed the effects of oxidized
lipoproteins in plasmalogen levels in human monocyte derived
macrophages (Wallner et al., 2018; Paul et al,, 2019 demonstrates
that
macrophages was significantly improved when plasmalogen
of
lysoplasmalogen, highlighting the importance of plasmalogens in

phagocytic activity of plasmalogen deficient mutant

content  was  restored  through  supplementation
regulating macrophage phagocytic activity (Paul et al, 2019).
Plasmalogen enrichment via batyl alcohol supplementation
attenuated atherosclerosis in ApoE- and ApoE/GPx1-deficient
mice (Rasmiena et al, 2015). Lin D. and collaborators also
demonstrated that the supplementation with DHA/EPA enriched
ethanolamine plasmalogen (EPA-PlsEtn) dramatically reduced
atherosclerotic lesions by 78% (Ding et al., 2020). A reduction in
has

samples

arachidonate-containing  plasmalogens been noted in

extensively diseased carotid plaque compared to
minimally diseased ones (Ménégaut et al., 2019). In this context,
our findings of upregulated plasmalogens in MyD88 KO
macrophages concur well with the above previous findings on
their role as anti-inflammatory regulators. It would be interesting
whether of

plasmalogens will suffice acquisition of an anti-inflammatory

to prospectively investigate targeted increase
macrophage phenotype (that is without MyD-88 depletion), and
also generally how cell-reprogramming into therapeutic functions
can be achieved by modulating specific lipid content.

The pathway analysis determination of the transcriptome has
rendered important data regarding the potential disrupted pathways
during this inflammatory protective model, such as cellular response
to stimuli and stress and interferon signaling. From all the
significantly dysregulated genes in this model apolipoprotein E
(ApoE) is highlighted due to its role in lipid metabolism, and its
implications in inflammation, particularly in the context of
atherosclerosis. ApoE is 1 out of 5 of the most significant genes,
out of the total 3,381 differentially expressed in this model. APoE
affects 3 of the 25 significantly identified pathways which are:
nuclear signaling by ERBB4, transcriptional regulation by the
AP-2 (TFAP2) family of transcription factors and NRI1H3 &
NRI1H2 regulate gene expression linked to cholesterol transport
and efflux. ApoE is involved in clearing lipoproteins and cholesterol
efflux, potentially reducing the opportunity for foam cell formation
and subsequent inflammation contributing to atherogenesis. ApoE’s
anti-inflammatory properties might also influence the stability of
atherosclerotic plaques. A deficiency in ApoE can lead to increased
inflammation and oxidative stress, contributing to plaque instability
such as inhibiting T cell proliferation and dampening cytokine
production by macrophages (Yamazaki et al, 2019). However,
different apoE alleles can have distinct effects. Genetic variation
in ApoE can affect atherosclerosis risk. The €4 variant has been
associated with higher cholesterol levels and increased risk for
cardiovascular disease, whereas the €2 variant is often associated
with lower risk (Ringman et al, 2014). ApoE is significantly
overexpressed in MyD88-KO macrophages with a P-value of
3.07 x 107** and a FC of 4.8 (Supplementary Material). Overall,
the correlation between ApoE and atherosclerosis is well-
established, with the protein playing a multifaceted role in lipid
metabolism, inflammation, and atherogenesis. The presence and
function of ApoE are thus critical factors in the overall risk and
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development of atherosclerotic disease. Due to the expression
complexity of this gene, further studies will focus on the
identification of the corresponding alleles.

Multi-omics can provide valuable insights into the lipidome
alterations occurring together with gene expression patterns in
MyD88-KO macrophages during the anti-inflammatory state,
shedding light on the underlying mechanisms involved in
atherosclerosis protection. Noteworthy here is that the primary
lipid changes, (PCs, PC-Os and PE-Os) in MyD88-KO uniquely
underscore pathways of immune system, transport of small
and metabolism of
and death,
response, and metabolism of RNA and transcription are uniquely

molecules, vesicle-mediated transport

proteins. Complementary, cell-survival cellular
delineated by gene expression changes. This newly provided
knowledge on the specific function of plasmalogens in mediating
immune response and metabolism of proteins in anti-inflammatory
macrophages is of general importance to understand macrophage
reprogramming and strategies to drive this process for therapeutic
purpose. In addition, new strategies in multi-omic studies at high-
cell resolution are of vital importance to provide new insights in
disease  mechanisms in limited samples and tissue
microenvironments. Low-cell number multi-omic studies present
challenges in relation to sensitivity. However, this new approach
presents a coverage of 89 lipids in the lowest cell dilution analyzed
using the dual extraction protocol in HEK293 cells, corresponding to
lipids injected from 157 cells in negative ion mode and 79 cells in
positive ion mode. Even though these results can vary depending on
the studied cell type, as demonstrated in other studies, the results
highlight the sensitivity of this new approach (Gerichten
et al.,, 2023).

It is conceivable that proteins and other water-soluble molecules
can be extracted from the aqueous flow-through remaining after
RNA extraction, following optimisation based on the existing micro
RNEasy QIAGEN protocols (Micro Handbook, 2021). Given that,
essentially, the micro RNEasy extraction protocol was only modified
by the addition of chloroform, subsequent protein purification,
buffer exchange of the aqueous phase and optimization of
protein extraction are envisaged to enable also efficient proteome
extraction in combination with dual extraction of lipids and RNA.
Also, considering the advents in single cell proteomics, the proteome
analysis following such an integrated lipidome/transcriptome/
proteome analysis is envisaged to be feasible. We expect that the
future combination of the extraction of proteins and other
metabolites alongside the dual extraction and analysis of RNA
and lipids, coupled with high-end proteomics, metabolomics,
lipidomics and transcriptomics, will enable the prediction of
disease biomarkers and potential therapeutic targets (Akesson
et al., 2023).

Overall, this model for atherosclerosis protection can further
enhance our understanding of the specific role of MyD88 signaling
in the development and progression of atherosclerosis. Through this
multi-omic cellular approach, researchers can elucidate the
molecular pathways and regulatory networks involved in the
anti-inflammatory state of macrophages and identify novel
targets and biomarkers for the diagnosis, treatment, and
prevention of atherosclerosis. Enhancing plasmalogen levels could
possibly offer a promising and safe therapeutic approach for

mitigating atherosclerosis and lowering cardiovascular disease

frontiersin.org


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1450971

del Barrio Calvo and Bindila

risk, especially in situations characterized by increased oxidative
stress and inflammation. Future studies will be focused on the multi-
facetted role of ApoE and prospective analysis of plasmalogens
causal relationship and potential therapeutic implications of the
macrophages’ protective profile against atherosclerosis.
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