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Mitochondrial quality control is finely tuned bymitophagy, the selective degradation
of mitochondria through autophagy, and mitochondrial biogenesis. Removal of
damaged mitochondria is essential to preserve cellular bioenergetics and prevent
detrimental events such as sustained mitoROS production, pro-apoptotic
cytochrome c release or mtDNA leakage. The array of tools available to study
mitophagy is very limited but in constant development. Almost a decade ago, we
developed a method to assess mitophagy flux using MitoTracker Deep Red in
combination with lysosomal inhibitors. Now, using the novel tandem-fluorescence
reporter mito-QC (mCherry-GFP-FIS1101−152) that allows to differentiate between
healthy mitochondria (mCherry+GFP+) and mitolysosomes (mCherry+GFP−), we
have developed a robust and quantitative method to assess mitophagy by flow
cytometry. This approach has been validated in ARPE-19 cells using PINK1/Parkin-
dependent (CCCP) and PINK1/Parkin-independent (DFP) positive controls and
complementary techniques. Furthermore, we show that the mito-QC reporter
can be multiplexed, especially if using spectral flow cytometry, to simultaneously
study other cellular parameters such as viability or ROS production. Using this
technique, we evaluated and characterized two prospective mitophagy inducers
and further dissected their mechanism of action. Finally, using mito-QC reporter
mice, we developed a protocol to measure mitophagy levels in the retina ex vivo.
This novel methodology will propel mitophagy research forward and accelerate the
discovery of novel mitophagy modulators.
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Introduction

Mitophagy is a subtype of selective autophagy that leads to the degradation and
recycling of whole mitochondria. It can be further subdivided in two main pathways:
PINK1/Parkin-dependent or receptor-mediated mitophagy. PINK1/Parkin-dependent
mitophagy is traditionally triggered by loss of mitochondrial membrane potential
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(ΔΨm) (Narendra et al., 2010). The PINK1 kinase is recruited to
the outer mitochondrial membrane (OMM) where, in homeostatic
conditions, is translocated through the intermembrane space,
processed by the peptidase MPP and sent back to the cytosol
for degradation via proteasome (Hasson et al., 2013).
Mitochondrial depolarization (loss of ΔΨm) uncouples
PINK1 translocation, and it accumulates in the OMM.
PINK1 then phosphorylates basally-ubiquitinated OMM
proteins at UbiquitinSer65 and the analogous residue of Parkin,
an E3 ligase that will further poly-ubiquitinate OMM proteins
(Narendra et al., 2008). These events lead to a positive feedback
loop that amplifies the targeting signals for mitophagy. Adaptor
proteins with a ubiquitin-binding domain, such as CALCOCO2/
NDP52, OPTN or SQSTM1/p62 (Lazarou et al., 2015), will
recognize ubiquitinated proteins and recruit autophagy
initiation machinery (Nguyen et al., 2016).

Receptor-mediated mitophagy is ubiquitin-independent and
can also be triggered by hypoxia or developmental cues (Esteban-
Martinez et al., 2017a). It is mediated by adaptor proteins that
contain both a mitochondria-targeting sequence (MTS) and a LC3-
interacting domain (LIR), namely BNIP3, BNIP3L/NIX,
FUNDC1 or FKBP8 (Teresak et al., 2022). In recent years, it has
been identified that other mechanisms such as cardiolipin
externalization or changes in OMM lipid composition can also
lead to direct recognition by LC3 (Teresak et al., 2022).
Nonetheless, all pathways lead to mitochondria being engulfed
into an autophagosome, which will later fuse with a lysosome to
ensure degradation of its cargo.

Our lab has previously described a method to assess mitophagic
degradation by flow cytometry using MitoTracker DeepRed
(Mauro-Lizcano et al., 2015; Esteban-Martinez et al., 2017b).
Even though it has been widely used and enables analysis of
mitophagy flux, it still has some limitations. For example, a
simultaneous induction of mitochondrial biogenesis might mask
small but robust increases on mitophagy and use of lysosomal
inhibitors is required (Esteban-Martinez et al., 2017b). The
development of tandem fluorescent reporters has changed the
way we analyze autophagy, as it allows us to monitor effective
degradation inside acidic lysosomes using a combination of pH-
sensitive (GFP, Keima) and pH-insensitive (mCherry) fluorescent
proteins fused to a targeting sequence. Different mitophagy
reporters such as MitoTimer, mtKeima or mito-QC have been
developed, the latter also allowing fixation for downstream
immunocytochemistry analysis (Jiménez-Loygorri et al., 2023;
Jimenez-Loygorri and Boya, 2024).

The mito-QC reporter consists of a fusion protein containing
mCherry-GFP-FIS1101−152, that targets the OMM. In steady-state
conditions, both mCherry and GFP fluoresce in the membrane of
healthy mitochondria (Figure 1A) (McWilliams et al., 2018). Upon
delivery of mitochondria to the lysosomes for degradation, acidic
pH quenches GFP and mitolysosomes can be identified as mCherry-
only puncta (Figure 1A). We have previously described the use of
mito-QC to assess mitophagy levels by confocal
immunofluorescence (Rosignol et al., 2020; Figueiredo-Pereira
et al., 2023; Jimenez-Loygorri and Boya, 2024), however this
procedure is time- and resource-consuming. In the present
manuscript, we describe a medium-throughput protocol to assess
simultaneously mitophagy and mitochondrial mass by flow

cytometry in vitro and in ex vivo retinal cultures and highlight
the possibility of performing more complex assays and targeted
screens by multiplexing with additional fluorescent probes.

Materials and methods

Herein, we present an optimized traditional and spectral flow
cytometry protocol that provides sensitive simultaneous readouts of
mitophagy and mitochondrial mass using tandem fluorescent
reporters like mito-QC. This assay can be performed in vitro or
using organotypic ex vivo culture and may be multiplexed to analyze
other parameters such as reactive oxygen species (ROS) production
or viability.

Cell lines

ARPE-19 cells (Dunn et al., 1996) stably expressing themito-QC
reporter were generated by retroviral transfection in the laboratory
of Dr. Ian G. Ganley as previously described (Montava-Garriga et al.,
2020) and maintained in DMEM: F-12 medium (Gibco, 41966029,
21765037) supplemented with 15% FBS (Merck, F7524), 2 mM L-
glutamine (Gibco, 25030081), and 1 U/mL Pen/Strep antibiotics
(Gibco, 15140122) in a humidified incubator at 37°C, 5% CO2. To
ensure stable expression of the reporter, selection was performed by
adding 800 ug/mL Hygromycin B (Gibco, 10453982) after
every passage.

Seeding and treatments

For flow cytometry or immunofluorescence experiments, 5-6 ×
104 cells per well were seeded in a 24-well plate the day before the
experiment and left to adhere overnight. For western blot analysis,
3 × 105 cells were seeded in a 6-well plate and left to adhere
overnight. Treatments were added for the indicated timepoints at
the following concentrations: 25 μM CCCP (Carbonyl cyanide
m-chlorophenyl hydrazone; 25 mM stock in DMSO; Merck,
C2759), 1 mM DFP (Deferiprone; 125 mM stock in sterile H2O;
Merck, 379409), 10 μM Fisetin (10 mM stock in EtOH; Merck,
F4043), 50 μM Phenanthroline (50 mM stock in DMSO; Merck,
131377), 20 mM SI (Sodium iodate; 333 mM fresh stock in DMEM;
Merck, S4007), 750 μM H2O2 (30% stock in DMEM; Fluka, 95300).

Cell sample preparation

1. Medium containing floating dead cells was collected in a
standard plastic flow cytometry tube.

2. Cells were washed with 500 μL of sterile PBS 1X to remove FBS
residue and PBS was also collected.

3. 150 μL of 0.05% Trypsin (Gibco, 11500636) was added per well
and cells were incubated for 5′ in an incubator at 37°C and 5%
CO2. Verify that cells have detached from the bottom of the
well using a brightfield microscope.

4. 500 μL of FBS-containing complete medium were added to
each well to inactivate Trypsin.
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5. Cells were collected in the flow cytometry tube and pelleted by
centrifugation at 1,000 g for 5′.

6. Supernatant was discarded and 100–200 μL of complete
medium was added to each tube. For selected experiments,
cells were incubated with 1 nM MitoTracker Deep Red
(Invitrogen, M22426), 1 μM MitoSOX Red (Invitrogen,
M36008), for 30′ min or 1:2,000 ViaDye Red (Cytek, R7-
60008), CellROX Deep Red 5 μM (Invitrogen, C10433) for 15′
at 37°C and 5% CO2.

7. Samples were resuspended by gentle shaking and, if necessary,
50 μL of 5XDAPI (4′,6-diamidino-2-phenylindole;Merck,D9542)
were added to each tube, reaching afinal concentration of 1 μg/mL,
for viable population selection. If required, e.g. working with UV-
autofluorescent compounds, there are far red-emitting nuclear
dyes available such as TO-PRO-3 (Thermo Fisher, T3605).

8. Tubes were kept in ice until flow cytometry analysis.

Retina dissection and ex vivo culture

C57BL/6J mice expressing the mito-QC reporter ubiquitously
were generated and provided by Dr. Ian G. Ganley (McWilliams
et al., 2018). Organotypic ex vivo retina culture was performed as
previously described (Gomez-Sintes et al., 2017). Briefly, mice were
sacrificed by cervical dislocation and both eyes were enucleated
using curved forceps. Using Vannas scissors, a circular incision was
made along the limbus and both cornea and lens were removed
using fine forceps. The optic nerve was sectioned and the
neuroretina was isolated by gently pulling from the RPE/choroid-
containing eyecup. Retinas were cultured in flotation in a 24-well
plate and maintained in DMEM supplemented with 1 μM Insulin
(Merck, I2643), 2 mM L-Glutamine, 100 U/mL penicillin and
0.1 mg/mL streptomycin. Treatments were added for the
indicated timepoints at the following concentrations: 25 μM

FIGURE 1
Mitophagy assessment in ARPE-19 cells by traditional flow cytometry using the mito-QC reporter. (A) Basis of the mito-QC reporter, whereby
mitochondria are taggedwith the chimeric proteinmCherry-GFP-FIS1101–152. Uponmitophagy induction, mitochondria will be delivered to the lysosome
where acidic pHwill quench GFP andmitolysosomes will be identified asmCherry-only puncta. (B) ARPE-19 cells stably expressing themito-QC reporter
treated with 25 μMCCCP or 1 mMDFP for the indicated timepoints. (C)Quantification of % ofmitophagyhigh population as defined in Supplementary
Figure S1. (D) Representative histogram of FITC-GFP mean fluorescence intensity (MFI), equivalent to mitochondrial mass, in cells from (C). (E)
Quantification of mitochondrial mass as shown in (D). Scale bar, 15 μm. All data are expressed as the mean ± s.e.m. Dots represent independent
experiments. P values were calculated using two-way ANOVA with Dunnett’s post hoc test. Diagrams were created using BioRender.
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CCCP (25 mM stock in DMSO), 1 mM DFP (125 mM stock in
sterile H2O).

Ex vivo retina sample preparation

1. Similarly, medium containing floating dead cells was collected
in a standard plastic flow cytometry tube.

2. Whole retinas were washed with 500 μL of sterile PBS 1X to
remove medium residue and PBS was also collected.

3. 300 μL of 5 mg/mL Trypsin in HBSS (Gibco, 14170-088) was
added per well and retinas were incubated for 5–10′ in an
incubator at 37°C and 5% CO2.

4. 900 μL of 10% FBS in HBSS were added to each well to
inactivate Trypsin and retinas were dissociated by gentle
pipetting using a p1000 tip (10–20 times).

5. Single cell suspension was collected in the flow cytometry tube
and pelleted by centrifugation at 1,000 g for 5′.

6. Supernatant was discarded and 200 μL of complete medium
was added to each tube.

7. Samples were resuspended by gentle shaking and 50 μL of 5X
DAPI was added to each tube, reaching a final concentration of
1 μg/mL, for viable population selection.

8. Tubes were kept in ice until flow cytometry analysis.

Conventional flow cytometer setup
and gating

Using a CytoFLEX S V4-B2-Y4-R3 Flow Cytometer (Beckman
Coulter), at least 10,000 events were acquired using mCherry-PI
(610/20), FITC-GFP (525/40), PB450-DAPI (450/45) and APC
(660/10) emission filters. Gating of the viable cell population was
performed as shown in Supplementary Figures S1, S3. Control cells
were used to set the threshold of mitophagyhigh population defined
by a mCherry/GFP ratio of ~5%. The percentage of DAPI− cells,
mitophagyhigh cells, FITC-GFPMFI and APCMFI were exported for
downstream analysis performed using CytExpert v1.2
(Beckman Coulter).

Spectral flow cytometer setup and gating

Using a Cytek Aurora equipped with five lasers (Cytek
Biosciences), at least 10,000 events were acquired. Similarly,
control cells were used to set the threshold of mitophagyhigh

population defined by a mCherry/GFP ratio of ~5%. Wild-type,
control cells and unstained cells were used to set the gates and
spectra for every probe (Supplementary Figure S5). Analysis was
performed using SpectroFlo (Cytek Biosciences) for raw data
unmixing and downstream analysis was performed using Flowjo
v10.10 (BD Biosciences).

Immunofluorescence

ARPE-19 were seeded on glass coverslips, treated as indicated
and fixed using 3.7% PFA containing 175 mM HEPES (Gibco,

15630) at pH 7.0 for 15 min. Cells were incubated with 1 µg/mL
DAPI in PBS pH 7.0 for 15 min, washed 3 times with PBS pH 7.0 and
mounted using or ProLong Diamond (Thermo Fisher, P36961).
Images were captured with a 0.5-µm z-step using a Leica TCS
SP8 confocal microscope equipped with a × 63 immersion objective.

Protein isolation, quantification and
western blot

Adherent cells were scraped in cold RIPA lysis buffer (Merck,
R0278) supplemented with protease and phosphatase inhibitors.
Protein concentration was determined using the Pierce BCA Protein
Assay (Thermo Fisher, 23225) following the manufacturer’s
instructions. Total protein extract (15–30 µg) was supplemented
with 4X Laemmli loading buffer (Bio-Rad, 1610747) and resolved
using Any kD Criterion TGX Precast Stain-free gels (Bio-Rad,
5678124). Proteins were transferred to 0.2 µm PVDF membranes
using a TransBlot Turbo Transfer System (Bio-Rad) and total
protein was quantified using Ponceau S staining (Merck, 78376).
Membranes were blocked with 5% non-fat milk in TBS-T (0.5%
Tween-20 (Bio-Rad, 1706531) in PBS) for 1 h. Membranes were
then incubated overnight at 4°C in primary antibodies diluted 1:
1,000 (Supplementary Table S1) in 5% BSA in TBS, and
subsequently for 1 h at room temperature in secondary
antibodies diluted 1:2,000 in TBS-T (Supplementary Table S1).
Membranes were developed using Pierce ECL Western Blotting
substrate (Thermo Fisher, 32106) or Amersham ECL Prime (Cytiva,
10308449) and x-ray film (AGFA) using a CURIX
60 Processor (AGFA).

Statistical analysis

Data shown in figures represents the mean ± s.e.m. of at least
three independent experiments with biological replicates.
Differences between groups were assessed using Student’s t-test
(two groups), one-way or two-way ANOVA (more than two
groups) with appropriate post hoc tests. A P-value under
0.05 was considered statistically significant and exact, corrected
P-values are shown. Raw data management was done in
Microsoft Excel and statistical analyses were performed using
GraphPad Prism 10.0 software.

Results

Mito-QC reporter provides sensitive
detection of mitophagy and mitochondrial
mass in vitro and ex vivo

The ARPE-19 cell line originated from the retinal pigment
epithelium of a healthy adult donor, and underwent spontaneous
immortalization (Dunn et al., 1996). ARPE-19 cells stably expressing
the mito-QC reporter were used for all experiments (Montava-
Garriga et al., 2020) and mitophagy levels were defined as the
population of cells with an increased mCherry/GFP ratio
(Supplementary Figure S1).
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We treated Park2-expressing ARPE-19 cells with CCCP and
DFP to validate the sensitivity of the reporter when analyzed by flow
cytometry. CCCP is a protonophore that disrupts ΔΨm by
uncoupling the proton gradient, and is traditionally used as an
inducer of PINK1/Parkin-mediated mitophagy (Narendra et al.,
2008). DFP is an iron chelator that inhibits HIF-prolyl
hydroxylases (PHDs), leading to HIF-1α stabilization, hypoxia-
like response and upregulation of downstream mitophagy
regulators such as BNIP3 or BNIP3L/NIX that engage in
receptor-mediated mitophagy (Allen et al., 2013). Both
compounds induced mitophagy at the 24 h timepoint, but only
CCCP induced a significant increase after 6 h (Figures 1B, C).

Simultaneously, this reporter allows for quantification of
mitochondrial mass defined by the mean fluorescence intensity
(MFI) of its GFP component. CCCP significantly decreased
cytosolic mitochondrial mass at both timepoints, but no changes
were observed with DFP (Figures 1D, E). These results point to
either a possible compensation by mitochondrial biogenesis to
maintain homeostasis during receptor-mediated mitophagy or,
since this pathway requires transcriptional activity to increase
BNIP3 and BNIP3L/NIX levels, that mitochondrial mass decrease
will be observed at a later timepoint. In parallel, we performed a
comparative analysis using spectral flow cytometry and obtained
similar results regarding mitophagy levels (Supplementary Figure
S2A) and mitochondrial mass (Supplementary Figure S2B) after
mitophagy induction with CCCP and DFP, indicating thatmito-QC
can also be measured using this novel technology.

In addition, we also analyzed mitophagy in organotypic ex vivo
retina culture from mito-QC mice (Figure 2A; Supplementary Figure
S3). Replicating our findings in vitro, CCCP was able to induce
mitophagy after 6 h of treatment but DFP was not (Figures 2B, C).
The mito-QC reporter can therefore be used as a medium-throughput
readout to assessmitophagy andmitochondrialmass in vitro and ex vivo.

Fisetin and phenanthroline induce
mitophagy but no mitochondrial biogenesis

To further validate the use of the mito-QC reporter, we tested
two compounds that we had previously found to significantly
increase mitophagy using MitoTracker DeepRed flux assay:
Fisetin and Phenanthroline (Mauro-Lizcano et al., 2015). Both
compounds induced a robust mitophagy increase at 6 h that was
exacerbated by 24 h (Figure 3A). With a similar kinetic to CCCP,
both compounds significantly reduced mitochondrial mass at both
timepoints analyzed suggesting no concomitant activation of
mitochondrial biogenesis (Figure 3B). To further dissect the
mechanism of action of these mitophagy inducers, we performed
immunoblotting against the mediators of iron depletion-induced
mitophagy and observed that Phenanthroline increased the protein
levels of HIF-1α and its downstream targets, the mitophagy
receptors BNIP3 and BNIP3L/NIX (Figure 3C). Fisetin decreased
BNIP3L/NIX levels at the 24 h timepoint, but this observation might
rather be representative of acute mitophagy as BNIP3L/NIX is a
resident protein at the OMM (Wilhelm et al., 2022). We also
evaluated PINK1 stabilization, phospho-UbiquitinSer65 and
ubiquitin adaptor (OPTN, SQSTM1/p62, CALCOCO2/NDP52)
levels but observed no differences with Fisetin nor
Phenanthroline treatment (Figure 3D), indicating that their
activity is PINK1/Parkin-independent.

Mitophagy is impaired in an in vitromodel of
retinal degeneration

We previously described high mitophagy levels in the
neuroretina and RPE (McWilliams et al., 2019; Jimenez-Loygorri
et al., 2024). Sodium iodate (SI) is commonly used as a

FIGURE 2
Mitophagy assessment in organotypic ex vivo retina culture. (A)Neuroretinas fromC57BL/6J mice expressing themito-QC reporter were dissected
and cultured ex vivo for 6 h in defined medium in the present of 25 μM CCCP or 1 mM DFP. Samples were dissociated into a single-cell suspension and
analyzed by FC. (B) Representative images of the photoreceptor-containing outer nuclear layer (ONL). (C)Quantification of the % ofmitophagyhigh cells in
neuroretina ex vivo culture as defined in Supplementary Figure S3. Scale bar, 25 μm. All data are expressed as the mean ± s.e.m. Dots represent
individual mice. P values were calculated using one-way ANOVA with Dunnet’s post hoc test. Diagrams were created using BioRender.
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pharmacological model of age-related macular degeneration
(AMD), both in vitro and in vivo (Chowers et al., 2017). Even
though AMD has been historically linked to mitochondrial
dysfunction (Fisher and Ferrington, 2018) and impaired
autophagy (Kaarniranta et al., 2023), evidence on the role of

mitophagy in AMD progression is scarcer (Jiménez-Loygorri
et al., 2023). Using mito-QC analysis by flow cytometry we
observed that treatment with SI for 24 h slightly increased
mitophagy levels (Figure 4A) concomitant with a moderate but
significant increase in mitochondrial mass (Figure 4B). Traditional

FIGURE 3
Phenanthroline and Fisetin are potent mitophagy inducers. (A) ARPE-19mito-QC cells were treated with 10 μM Fisetin (Fis) or 50 μMPhenanthroline
(Phen) for the indicated timepoints, quantification of % of mitophagyhigh population is shown. (B) Quantification of mitochondrial mass (GFP MFI). (C)
Immunobloting against proteins involved in receptor-mediated mitophagy (HIF-1α, BNIP3L/NIX, BNIP3) and mitochondrial markers (TOMM20,
TOMM40). Vinculin was used as a loading control. (D) Immunoblotting against proteins involved in PINK1/Parkin-dependent mitophagy (phospho-
UbiquitinSer65, PINK1, Parkin, OPTN, SQSTM1/p62, NDP52). Vinculin was used as a loading control. All data are expressed as the mean ± s.e.m. Dots
represent independent experiments. P values were calculated using two-way ANOVA with Dunnett’s post hoc test.
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flow cytometers additionally equipped with violet and red lasers
allow for multiplexing with additional dyes. We combinedmito-QC
readout with DAPI (λex = 350 nm; λem = 465 nm), for nuclear
exclusion viability assessment, and CellROX Deep Red (λex =
644 nm; λem = 665 nm), a fluorogenic probe with high sensitivity
for OH radical detection. SI decreased cell viability to ~70%
(Figure 4C) and stimulated ROS production (Figure 4D), in line
with previously published data (Chan et al., 2019).

Taking advantage of spectral flow cytometry which can detect
the whole emission spectrum under different excitation lasers and
dissect the contribution of every fluorophore, we also combined
mito-QC with traditional red-emitting fluorescent probes.
Treatment with H2O2 significantly decreased viability to ~40%,
measured using ViaDye Red (λex = 615 nm; λem = 740 nm)
which binds to intracellular proteins when the plasma membrane
is compromised (Figure 4E). While no changes were observed
regarding mitophagy levels (Figure 4F), mitochondrial mass was
decreased in H2O2-treated cells (Figure 4G). These observations
were concurrent with increased mitochondrial O2

− production,
measured using MitoSOX Red dye (λex = 396 nm; λem = 610 nm;
Figure 4H). Markedly, all results were replicated in wild-type ARPE-
19 cells using the same dyes (Supplementary Figures S4A, C) and
MitoTracker Deep Red (λex = 644 nm; λem = 665 nm) as a surrogate
to measure mitochondrial mass (Supplementary Figure S4B).
Spectral unmixing overcomes partial spectrum overlap and allows
for simultaneous measurement of mito-QC and probes with similar
fluorescence profiles.

Discussion

In the present manuscript we provide a standardized protocol to
assess mitophagy in cells and ex vivo dissociated tissue using the
tandem fluorescent mito-QC reporter via flow cytometry. Our
results with mito-QC validate the ability of CCCP and Fisetin to
stimulate mitophagy flux, as previously reported by our group using
the MitoTracker Deep Red approach (Esteban-Martinez et al.,
2017b), and now show that Phenanthroline also induces
mitophagy in ARPE-19 cells. Finally, we highlight the possibility
of simultaneously measuring other mitochondrial or intracellular
parameters using additional probes and conventional or spectral
flow cytometry. We also report that mitophagy is impaired in cell
type-relevant oxidative stress models (SI, H2O2). Furthermore, the
use of mito-QC bypasses the need for lysosomal degradation
inhibitors (Mauro-Lizcano et al., 2015) and the putative
confounding effects of drug or ROS interaction MitoTracker dye
(Xiao et al., 2016).

The analysis of mito-QC by flow cytometry has been crucial for
key findings such as the metabolic readaptation following iron
chelation (Long et al., 2022) or to understand the interplay
between BNIP3L/NIX-mediated mitophagy and pexophagy
(Wilhelm et al., 2022). While protocols to measure mitophagy by
flow cytometry using mt-Keima are readily available (Um et al.,
2018;Winsor et al., 2020), this is, to our knowledge, the first protocol
focused on the next-generation fixablemito-QC reporter. Compared
to mt-Keima, the possibility of fixing mito-QC opens the possibility

FIGURE 4
Oxidative stress reduces cell viability, differentially modulates mitophagy and stimulates ROS production. ARPE-19mito-QC cells were treated with
20 mM sodium iodate (SI) or 750 μM H2O2 for 24 h. (A) Simultaneous measurement of viability by nuclear exclusion assay using DAPI in SI-treated cells.
Viable population does not incorporate the dye and are identified as DAPI−. (B) Quantification of % of mitophagyhigh population in SI-treated cells. (C)
Quantification of mitochondrial mass (GFP MFI) in SI-treated cells. (D) Simultaneous measurement of reactive oxygen species (ROS) using CellROX
Deep Red dye in SI-treated cells. (E) Simultaneous measurement of viability using ViaDye Red in H2O2-treated cells. Viable population does not
incorporate the dye and are identified as ViaDye−. (F) Quantification of % of mitophagyhigh population in H2O2-treated cells. (G) Quantification of
mitochondrial mass (GFPMFI) in H2O2-treated cells. (H) Simultaneous measurement of mitochondrial ROS using MitoSOX Red dye in H2O2-treated cells.
All data are expressed as themean ± s.e.m. Dots represent independent experiments. P values were calculated using one-way ANOVAwith Dunnet’s post
hoc test.
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of implementing, for example, flow cytometry immunophenotyping
strategies to assess mitophagy in specific cell subsets within a
heterogenous sample. A novel tandem reporter called SRAI
(Signal-Retaining Autophagy Indicator) composed of a pH-
insensitive CFP variant (TOLLES) and a highly pH-sensitive YFP
variant (YPet) has recently been developed and utilized to measure
both mitophagy (Katayama et al., 2020) and ER-phagy (Jimenez-
Moreno et al., 2023) in vitro or using viral vector delivery in vivo.
There are also published guidelines on how to measure
mitochondrial turnover using MitoTimer (Hernandez et al.,
2013), but interpretation of data using MitoTimer should be
cautious as it does not directly report mitochondria degradation
within lysosomes (Gottlieb and Stotland, 2015).

While previous reports have raised concerns regarding the
evaluation of PINK1/Parkin-dependent mitophagy using the
mito-QC reporter (Liu et al., 2021), our results show that CCCP
induced detectable levels of mitophagy as early as 6 h in ARPE-19
mito-QC cells. Similarly, we have previously reported an increase in
mCherry+GFP− mitolysosomes in response to Antimycin +
Olygomycin (AO), another classical inducer of the PINK1/
Parkin-dependent mitophagy pathway (Rosignol et al., 2020).

Phenanthroline is a metal ion chelator commonly used as a ligand
in the chemical industry (Park et al., 2012). It had previously been
suggested that phenanthroline induces severe DNM1L/DRP1-
dependent mitochondrial fragmentation that leads to mitophagy
(Park et al., 2012). We have now further characterized its
mechanism of action showing that phenanthroline induces HIF-1α
stabilization and transcription of downstream mitophagy
receptors BNIP3L/NIX and BNIP3. Interestingly, in our
previous work we found that phenanthroline was not able to
induce mitophagy in neuroblastoma-derived SH-SY5Y cells
(Mauro-Lizcano et al., 2015) but a 10-fold increase was
observed in ARPE-19 cells, indicating that its effect might be
cell type-dependent. Phenanthroline has also been proposed as
a pro-survival agent against apoptosis (Maitra et al., 2021) and
parthanatos-mediated cell death (Chiu et al., 2012).

Fisetin is a natural flavonoid that acts as a potent SIRT1 NAD+-
dependent histone deacetylase activator (Jang et al., 2012). The
NAD+/NADH ratio is affected by mitochondrial function, and vice
versa (Lautrup et al., 2024). Fisetin has been described to increase the
NAD+/NADH ratio and induce mitophagy (Jang et al., 2012),
through a mechanism that was dependent on the ubiquitin
adaptor SQSTM1/p62 (Molagoda et al., 2021). Despite a robust
increase in mitophagy in SH-SY5Y (Mauro-Lizcano et al., 2015) and
ARPE-19 cells, we did not observe any changes in traditional
PINK1/Parkin-dependent or receptor-mediated mitophagy
effectors. The mechanism of action of Fisetin remains to be
elucidated, but it has shown neuroprotective effects in models of
neuroinflammation involving NLRP3 inflammasome activation
(Molagoda et al., 2021; Ding et al., 2022). Both compounds
showed no signs of cytotoxicity in vitro and warrant further
exploration in diseases involving impaired mitophagy.

Previous evidence in the literature was suggestive of impaired
autophagy in the SI model of AMD-associated geographic atrophy
(Chan et al., 2019). In the present manuscript we indeed observed
a slight increase in mitophagy but also a concomitant
accumulation of mitochondria in the viable population of cells
challenged with SI, replicating our previous findings using mito-

QC immunofluorescence (Jimenez-Loygorri et al., 2024). Primary
RPE cultures from patients with AMD similarly display marked
mitochondrial dysfunction (Ferrington et al., 2017) as well as
autophagy defects (Ye et al., 2016) that could be a result of
dysfunctional mitophagy. Boosting mitophagy could therefore
be a novel potential therapeutic strategy in the prevention and/
or treatment of AMD.

Finally, we also performed a comparison between widely
available standard flow cytometry and spectral cytometry,
exploring its added value. Polychromatic flow cytometry or
standard flow cytometry is based on the principle one detector,
one fluorochrome thanks to a series of dichroic filters. So, only a
portion of the emitting signal can be collected. Spectral flow
cytometry can collect the full fluorescence spectrum of every cell
allowing the separation and differentiation among their spectral
signatures, allowing more elaborate, multiplexed assays. This is
possible thanks to the spectral unmixing algorithm which
identifies the spectral signature of every fluorochrome plus the
autofluorescence of the cells and resolves the complete spectra of
every cell based on these parameters, allowing to differentiate the
contribution of each fluorochrome in a certain wavelength
(Robinson, 2022). Using this methodology, we were able to
combine mito-QC analysis with green- and red-emitting
intracellular probes that present partial spectral overlap with GFP
and mCherry (Supplementary Figure S5).

Mitophagy analysis by flow cytometry, usingmito-QC or similar
reporters, therefore represents an update to previously used
methodology, reducing time, cost and resources when compared
to traditional microscopy analysis. Herein we provide a standardized
protocol for mito-QC analysis using traditional and spectral flow
cytometry, multiplexing with an array of intracellular probes and
insight on mitophagy regulation using two inducers and models of
oxidative stress.

Summary blurb

mito-QC reporter analysis by flow cytometry is a reliable and
semi-high throughput method to measure mitophagy in vitro
and ex vivo.
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