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Macroautophagy/autophagy is an intracellular degradation pathway that has an
important effect on both healthy and diseased pancreases. It protects the
structure and function of the pancreas by maintaining organelle homeostasis
and removing damaged organelles. A variety of pancreas-related diseases, such
as diabetes, pancreatitis, and pancreatic cancer, are closely associated with
autophagy. Genetic studies that address autophagy confirm this view. Loss of
autophagy homeostasis (lack or overactivation) can lead to a series of adverse
reactions, such as oxidative accumulation, increased inflammation, and cell
death. There is growing evidence that stimulating or inhibiting autophagy is a
potential therapeutic strategy for various pancreatic diseases. In this review, we
discuss the multiple roles of autophagy in physiological and pathological
conditions of the pancreas, including its role as a protective or pathogenic factor.
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1 Introduction

Intracellular components are not constant but rather are in a state of dynamic
equilibrium. Organelles and proteins are constantly produced, while dysfunctional or
redundant components are removed. At least two intracellular cycling pathways are
known: the ubiquitin‒proteasome system and the autophagy system (Shrestha et al.,
2020). The former degrades ubiquitin-labelled proteins; target proteins are degraded by
the proteasome in combination with many enzymes (Zhang et al., 2020). The latter,
autophagy, involves the digestion of cytoplasmic components and organelles through
lysosomes (Lee A. et al., 2022). In addition, autophagy helps to remove misfolded and
aggregated proteins and plays an important role in tissues with high protein synthesis
rates, such as the pancreas (Hinzman et al., 2022; Ramachandran et al., 2021; She
et al., 2021).

Even without any external stimulation, autophagy, which is called basic autophagy,
still occurs in pancreatic cells (Antonucci et al., 2015). Basic autophagy occurs at a low
level and is rapidly activated in response to cellular stress, such as hunger (Chediack
et al., 2012), oxidation (Pérez et al., 2015), endoplasmic reticulum (ER) stress (Yazıcı
et al., 2023; Lugea et al., 2011), or destructive stimulation (Ito et al., 2009; Telbisz et al.,
2002). This response is usually beneficial, helping pancreatic cells cope with
environmental stress and avoid death. However, in the absence of autophagy, this
protective mechanism is not activated. For example, blocking pancreatic autophagy has
been shown to increase the sensitivity of mice to bacterial lipopolysaccharide, and more
severe vacuolization and inflammation of pancreatic cells have been observed (Xia et al.,
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2020). This finding suggests that the activation of autophagy
limits pancreatic injury. However, autophagy is not always
beneficial, and recent studies have shown that excessive
autophagy can aggravate pancreatic damage. There is evidence
that, compared with that in WT mice, excessive microtubule-
associated protein 1 light chain 3 (LC3) in acinar cells in
transgenic GFP-LC3 mice destabilizes the autophagy
homeostatic state and exacerbates pancreatitis damages
(Mareninova et al., 2020).

This article reviews the important role of autophagy in
mediating pancreatic homeostasis; discusses the relationship
between autophagy and pancreas-related diseases, including
pancreatitis, diabetes and pancreatic cancer; and discusses genetic
studies that have addressed autophagy.

2 Brief introduction to autophagy
function and classification

Autophagy is the biological process by which lysosomes or
vacuoles degrade organelles, proteins and other cellular
components. The whole process is complex and orderly and is
strictly controlled by the synergistic action of at least 30 autophagy-
related genes (ATGs) and their products (Zhang et al., 2019). Small-
molecule degradation products, such as amino acids and fatty acids,
can be recycled (Tang et al., 2022). There are three known types of
autophagy: microautophagy, chaperone-mediated autophagy, and
macroautophagy (Figure 1). The latter is the most classic type of
autophagy. The bilayer membrane structure (also known as the
separation membrane or phagocytic mass) appears near the ER. The

FIGURE 1
Schematic diagram of the three types of autophagy regulation: macroautophagy, chaperone-mediated autophagy and microautophagy.
Abbreviations: AMBRA1, autophagy and beclin 1 regulator 1; Atg, autophagy-related gene; FIP200, focal adhesion kinase family-interacting protein of
200 kD; Hsc70, heat-shock cognate 70; Lamp2A, lysosomal-associated membrane protein 2a; LC3, microtubule-associated protein 1 light chain 3;
SNAP29, synaptosome-associated protein 29; Stx17, syntaxin 17; ULK1, unc-51-like autophagy-activating kinase 1; VAMP8, vesicle-associated
membrane protein 8; Vps, vacuolar protein sorting.
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plasma membrane, ER, Golgi apparatus, recycling endosomes and
mitochondria are possible sources of the autophagy membrane (Puri
et al., 2014). With the elongation, bending and closure of the
membrane structure, autophagosomes are formed.
Autophagosomes fuse with lysosomes to form autolysosomes,
where the contents are degraded. The second most common type
of autophagy is microautophagy, in which lysosomes sag inwards
and directly engulf and absorb target cargo (Schuck, 2020). The third
type of autophagy, chaperone-mediated autophagy, does not involve
membrane recombination; substrate protein containing a specific
amino acid sequence (KFERQ) enters the lysosomal membrane via a
process mediated by a molecular chaperone (Hsc70) (Diceglie et al.,
2021). The most classic and most intensively studied of the above
types is macroautophagy, which is referred to as autophagy.

In fact, autophagy has long been considered nonselective. Later
studies revealed that autophagy can selectively degrade proteins and
organelles (Yang et al., 2019). Damaged organelles rely on
autophagy clearance, and different autophagy subtypes can be
defined by their degradation products, such as ER-phagy
(removal of ER), mitophagy (removal of mitochondria),
ribophagy (removal of ribosome), pexophagy (removal of
peroxisome), ribophagy (removal of ribosomes) and lipophagy
(removal of lipid droplets). Through the above processes,
autophagy plays a crucial role in maintaining cell homeostasis
and supporting various biological functions in cells.

3 Measurement of autophagy activity

The methods used to measure autophagy include static and
dynamic methods. The former is still accepted as an index of
autophagy activity. Static measurements included Western blot,
immunohistochemistry and immunofluorescence analyses of
autophagy-related proteins (such as p62 and LC3-II) (Wang
Y. et al., 2020; Broggi et al., 2021), transmission electron
microscopy (He et al., 2022), assessments of TOR and
ATG1 kinase activity (Klionsky et al., 2008), and fluorescence
microscopy (Santiago-O’Farrill et al., 2020). LC3-II is generated
through lipidation of LC3-I and is subsequently recruited to the
autophagosome membrane. Upon fusion of the autophagosome
with the lysosome, the autolysosome is formed and LC3-II is
delipidated back to LC3-I. Hence, LC3-II is commonly utilized as
a marker for autophagy. Additionally, P62 is another autophagy
marker, similar to LC3, as it interacts directly with LC3 and
undergoes selective degradation within autolysosomes. The
expression of autophagy-associated proteins and the state of
autophagosomes reflect the transient level of autophagy. A
higher LC3-II content, lower p62 content and higher
autophagosome content are indicative of higher autophagy
levels. However, autophagy is a complex and dynamic process,
and sometimes static analysis alone is not enough to truly judge
the level of autophagic flux in cells (Liu X. Y. et al., 2022). When
the fusion of autophagosomes with lysosomes is inhibited, an
accumulation of autophagosomes is noted; nevertheless,
autophagic flux is diminished (Lerner et al., 2016). Similarly,
rapamycin can increase the expression level of the p62 gene and
decrease the level of the p62 protein (Cristofani et al., 2018). In
contrast, dynamic measurements tend to analyse autophagic flux,

which can more accurately reflect the whole process of autophagy
(Chen and Gibson, 2022). For researchers to demonstrate that
autophagy is activated, autophagy must be blocked. However,
instead, autophagy should be activated to prove that autophagy is
blocked. There is no absolute standard for defining the state of
autophagy. Therefore, multiangle and dynamic measurements of
autophagic flux are helpful for evaluating the autophagy status of
cells, tissues or organisms.

4 “Zymophagy” - a new selective
autophagy pathway

Zymophagy is a cell rescue mechanism that occurs in acinar cells
in response to zymogenic activation (Figure 2) (Wang Q. et al., 2022;
Ropolo et al., 2019). Activated forms of zymogens are identified,
isolated, and targeted for elimination, thereby decreasing pancreatic
injury (Wang et al., 2019; Vaccaro et al., 2022). This protective
pathophysiological process may involve complex regulatory
mechanisms, but many questions remain unanswered. For
example, how does zymophagy occur? How are the activated
zymogen granules labeled for zymophagy? Which organelles
are involved?

In acinar cells, zymogen ubiquitination is involved in the
early zymophagy process. TRIM33 (an E3 ligase) reportedly
participates in the ubiquitin modification of trypsin and
activates zymophagy (Wang Q. et al., 2022). Following
ubiquitination, trypsin binds to vacuole membrane protein 1
(VMP1), a key player in the initiation of autophagy, and is
subsequently sequestered to prevent enzymatic damage.
VMP1 functions in conjunction with BECN1/Beclin1 to
orchestrate this cellular process (Vaccaro et al., 2008; Grasso
et al., 2009; Wang S. et al., 2022).

VMP1 was first identified in rats with experimental acute
pancreatitis (AP) and has since been the subject of extensive
research as a crucial player in zymophagy (Dusetti et al., 2002).
In a healthy state, the expression of VMP1 triggers autophagy, but
not zymophagy and not pancreatitis. Studies have shown that
knocking down VMP1 inhibits the formation of autophagosomes
triggered by rapamycin and starvation (Vaccaro et al., 2008).
Deletion of VMP1 in mouse acinar cells led to tissue
inflammation within 8 days, while knockout of Atg5 and Atg7
took longer to induce inflammation (Wang S. et al., 2022). In an
acute pancreatitis model induced by stimulation with the
cholecystokinin receptor, a change in the localization of
VMP1 was observed, as VMP1 translocated from the base of
acinar cells to a region rich in zymogen granules (Grasso et al.,
2011). Compared with wild-type mice, ElaI-Vmp1 mice
(pancreatic acinar-specific transgenic mice) exhibited
significantly reduced cellular inflammation and necrosis after
pancreatitis was induced with caerulein (Grasso et al., 2011). In
contrast, in the absence of VMP1, acinar cells fail to respond
appropriately to spontaneously and prematurely activated
zymogen in the pancreas, potentially leading to acinar cell
damage and pancreatitis (Wang S. et al., 2022). The reports
highlight the positive impact of the VMP1-mediated autophagy
pathway and zymophagy, shedding light on the pancreas’ self-
protection mechanisms in both normal and diseased states.
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5 Autophagy and pancreatic
homeostasis

Here, we explore pancreatic autophagy in the context of energy
deficiency and the direct relationship between autophagy and
organelle homeostasis to analyse the role of autophagy in
different physiological and pathological conditions in the pancreas.

5.1 Energy deficiency and autophagy

Autophagy was originally discovered during starvation and is
used by cells as a survival strategy when energy is scarce (Wang F.
et al., 2020). In a long-term fasting study in birds, autophagy was
induced in a variety of digestive organs, and the pancreatic mass
decreased by more than 20% (Chediack et al., 2012). In another
study, fasting increased the expression of the pancreatic 9cRA
protein, which in turn supported the role of FoxO1 in pancreatic
β cells, including reducing oxidative stress, promoting autophagy
and reducing DNA damage, partly by inducing Atg7 mRNA (Yoo
et al., 2023). Hunger during pregnancy affects not only the pregnant
woman but also the foetus. Studies have shown that the
consumption of a low-protein diet by mothers enhances neonatal
pancreatic autophagy and induces ER stress in β cells (Yang et al.,
2020). Although these results fill some gaps, the following questions

remain unanswered: What role does β-cell ER stress play in this
process? How much crosstalk occurs between ER stress and
autophagy, and how does the level of pancreatic autophagy
change when the foetus returns to a normal diet after birth?
Future research may help in fully understanding the mechanisms
underlying the nutritional limitations of autophagy in foetuses.

Generally, hypoxia has been considered one of the means of
inducing autophagy (Liu et al., 2019). However, a study using islet
cells showed that this is not the case. Hypoxia increases ROS and
downregulates the expression of autophagy-related proteins in
pancreatic β-cells, and the antioxidant NAC reverses this trend
(Wu et al., 2022). Autophagy in pancreatic β cells may play a
protective role in hypoxia. Similarly, in pancreatic stellate cells,
autophagic flux does not increase due to hypoxia, possibly because
cells meet their energy needs in other ways; autophagy is not
necessary (Estaras et al., 2022). In fact, it is worth exploring
whether more severe oxygen deprivation activates autophagy in
pancreatic stellate cells.

5.2 ER homeostasis and autophagy

Acinar cells have a very high biosynthesis rate; many proteins
are produced in the ER and Golgi apparatus. ER strictly controls the
quality of proteins to ensure their correct folding and modification.

FIGURE 2
Schematic diagram showing VMP1-mediated zymophagy. (A) VMP1 activates and binds to BECN1, triggering zymophagy to remove activated
zymogens and repair the pancreas. (B) In the absence of VMP1, activated zymogens accumulate in acinar cells, leading to pancreatic damage and
pancreatitis.
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Under pathological conditions of impaired ER function, the
excessive accumulation of unfolded or aggregated proteins leads
to ER stress (Zhu et al., 2019). ER stress triggers a series of signalling
pathways that relieve ER stress; for example, the unfolded protein
response (UPR) is activated, which downregulates general
translation and upregulates the transcription of genes that
mediate ER stress (Huiting et al., 2018). ER stress and the UPR
activate ER-phagy continuously. One study revealed that cell cycle
progression gene 1 (CCPG1) is a receptor that mediates ER
autophagy (Smith and Wilkinson, 2018a). It binds to
ATG8 family proteins and RB1CC1/FIP200 independently and
separately, which promotes ER autophagy. CCPG1 drives ER
degradation, prevents the excessive accumulation of ER lumen
proteins in pancreatic acinar cells, alleviates further UPR
production, and ultimately protects the pancreas (Smith and
Wilkinson, 2018b; Smith et al., 2018). Accordingly, when these
steady-state pathways cannot resolve ER stress, acinar cells tend to
undergo apoptosis (Jia et al., 2019).

5.3 Mitochondrial homeostasis
and autophagy

Healthy mitochondria are essential for the synthesis, storage and
secretion of trypsin in pancreatic cells. In mammals, there are two
types of mitochondrial autophagy: PTEN-induced kinase 1
(PINK1)-dependent and -independent autophagy (Zhao et al.,
2020; Xu et al., 2021). PINK1 is a serine/threonine kinase
expressed in mitochondria that plays an important role in
initiating mitochondrial autophagy (Li et al., 2019). PINK1-
independent autophagy can directly induce mitochondrial
degradation, which is mediated by BNIP3/BNIP3L/FUNC1
(Wang Y. et al., 2022).

PINK1 and the E3 ubiquitin ligase Parkin are involved in
mitochondrial autophagy. Under basic conditions, PINK1 is
transferred to the mitochondrial inner membrane, where it is
then rapidly cleaved and degraded by the protease presenilin-
related rhomboid-like (PARL) (Kim et al., 2022; Sonn et al.,
2022). PINK1 in dysfunctional mitochondria accumulates in the
outer membrane and is activated by autophosphorylation at
Ser228 to recruit and activate Parkin (Rasool et al., 2018). After
Parkin activation, many protein substrates are ubiquitinated, and
autophagy receptors (such as OPTN and NDP52) are recruited (Li
et al., 2022). Two ubiquitin positive feedback circuits regulate
PINK1/Parkin-mediated mitochondrial autophagy:
phosphorylated ubiquitin or the ubiquitin-like Atg8 protein
family (Padman et al., 2019). Then, autophagy signal activation
initiates mitochondrial autophagy and clears damaged
mitochondria.

Although PINK1 has been widely studied as a major regulator of
mitochondrial autophagy, recent studies have shown that
PINK1 does not play an important role in basic mitochondrial
autophagy. In Pink1-KO mice, only pancreatic islet tissue exhibited
changes in basal mitophagy due to the loss of Pink1; other tissues
were not affected (McWilliams et al., 2018). The possible reason is
that the regulation of mitochondrial autophagy is complex and
environment dependent and that there is a PINK1-independent
pathway involved in basic mitochondrial autophagy. There is a

compensatory increase in PINK1-independent mitochondrial
autophagy in response to PINK1 deletion. Notably, the increased
level of basic mitochondrial autophagy in islets may be due to the
activation of compensatory autophagy signals and help to relieve
metabolic pressure (McWilliams et al., 2018). However, the
following questions remain: What is the precise function of
PINK1 in mammalian mitochondria? How does the
compensatory mechanism of PINK1-independent mitochondrial
autophagy work?

5.4 Lysosomal homeostasis and autophagy

The central role of lysosomes in autophagy has long been
known. Autophagy depends on the effective fusion of lysosomes
and autophagosomes to remove damaged or ageing proteins (Gao
et al., 2020). Once the lysosome itself is damaged, the damage can be
sensed by galactose lectin, which is subsequently recruited to the
lysosome to repair or remove the damaged lysosomal membrane
(Hu et al., 2022). Galactose lectins include galactose lectin-3 (Gal-3)
and galactose lectin-9 (Gal-9). At the molecular level, Gal-9 and
lysosome-associated membrane protein 2 (LAMP-2) have been
shown to play important roles in maintaining lysosomal
homeostasis and pancreatic autophagy, as well as in preventing
pancreatic disease (Sudhakar et al., 2020). Gal-3 has been shown to
be associated with pancreatic cancer autophagy. For example, Gal-3
deficiency leads to a decrease in LC3 levels in pancreatic cancer cells
(da Silva Filho et al., 2020). LAMP-2 is a major membrane protein
component and is involved in the occurrence and maintenance of
lysosomes (Mareninova et al., 2015). Pathological changes in
lysosomal membrane proteins can lead to lysosomal dysfunction.
In addition, LAMP-2 is a key protein that mediates autophagy-
related lysosome formation, and its depletion impairs autophagic
flux (Li et al., 2018).

6 Autophagy and pancreatic physiology

The importance of autophagy in maintaining pancreatic
homeostasis in the physiological environment has been elucidated
in experimental animals via genetic changes in autophagy (Table 1).
These experimental models involving deletion of autophagy-related
genes may provide insights into the mechanistic role of autophagy in
pancreatic health and disease.

The premature activation of trypsinogen by lysosomal hydrolase
is a characteristic event and key step in the occurrence of
pancreatitis, and one of the important influencing factors is the
inhibition of digestive enzyme secretion. In acinar cells, the secretion
of zymogen granules is regulated by vesicle-associated membrane
proteins (VAMPs), including VAMP2 and VAMP8 (which mediate
early secretion and mid-late secretion, respectively). A sharp
decrease in VAMP8 leads to the accumulation of intracellular
trypsin and the loss of endosomes, which are potential
mechanisms of pancreatitis (Pilliod et al., 2022). Vamp8−/− mice
were protected from CCK-8-induced zymogen accumulation and
acinar damage, suggesting that CCK-8-induced pancreatitis inhibits
VAMP8-related zymogen secretion rather than VAMP2-related
zymogen secretion (Messenger et al., 2017). It is reasonable to
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TABLE 1 Genetic studies investigating the relationship between autophagy and pancreatic physiology in vivo.

Model Intervention autophagy
flux

Observations References

Mice Atg5−/− ↓ Zymogen activation decreased and mitigated pancreatitis injury
induced by caerulein

Ohmuraya and Yamamura (2008)

Mice Atg5−/− ↓ Destruction of pancreatic endocrine cells Yang et al. (2014)

Mice Atg5−/− ↓ Pancreatic cell necrosis; inflammation; acinus-ductal metaplasia and
hypertrophy; and pancreatic atrophy and degeneration

Diakopoulos et al. (2015)

Mice Atg7−/− ↓ Islet degeneration and impaired glucose tolerance; Increased number
of acinar cell zymogen particles; and persistent cell death

(Ebato et al., 2008), (Iwahashi et al.,
2018)

Mice Atg7−/− ↓ Induced acinar cell dedifferentiation to form ductal progenitor cells
and promote acinar regeneration

Antonucci et al. (2015)

Mice Atg7−/− ↓ Significantly increased sensitivity to endotoxin-induced pancreatitis Xia et al. (2020)

Mice Atg7−/− Rip3−/− ↓ Loss of Rip3 further accelerated the internal and external secretion
dysfunction caused by Atg7 loss

Zhou et al. (2017a)

Mice Becn1−/− ↓ The mouse pancreas was almost completely lost Mehanna et al. (2023)

Mice Ctsb−/− Ctsd−/− ↓ CP phenotype and impaired autophagy of pancreatic acinar cells Sendler et al. (2018)

Mice Errγ−/− ↓ Pancreatic acinar cells were deficient in energy, with disrupted
autophagy and REDOX homeostasis

Choi et al. (2022)

Mice Fam134b−/− ↓ Compared with WT mice, knockout mice were more susceptible to
starvation-induced pancreatic damage

Keles et al. (2020)

Mice GFP-LC3TG ↑ Exacerbated autophagy damage in experimental pancreatitis Mareninova et al. (2020)

Mice Gnptab−/− ↓ Pancreatic inflammation and the dysregulation of cholesterol
metabolism

Mareninova et al. (2021)

Mice Hmgb1−/− ↓ Pancreatic inflammation; elevated serum amylase; acinar cell death;
and interstitial oedema

Kang et al. (2014)

Mice Igf1r+/− ↑ The ageing of pancreatic β-cell was inhibited, accompanied by
improved glucose tolerance

Iwasaki et al. (2023)

Mice Irf2−/− ↑ The exocytosis of pancreatic acinar cells was impaired, and the
pancreas became resistant to pancreatitis induction

Mashima et al. (2011), Mashima et al.
(2020)

Mice Lamp-2−/− ↓ Accumulation of pancreatic autophagy vacuoles Eskelinen et al. (2002)

Mice Lat1−/− ↓ Lat1 knockout slowed the recovery of exocrine function after AP
induction, an effect that was sex-dependent

Hagen et al. (2022)

Mice Lmna−/− ↑ ER stress with pancreatic exocrine dysfunction and CP-related
phenotypes

Elenbaas et al. (2018)

Mice miR-155 coding
adenovirus

↓ Inhibited pancreatic autophagy in AP and reduced inflammation Wan et al. (2019)

Mice Munc18c+/− ↑ Reduced caerulein-induced pancreatic injury Dolai et al. (2018)

Mice Pkd3−/− ↑ Ameliorated caerulein- and L-arginine-induced pancreatic injury Yuan et al. (2021)

Mice Pink1−/− ↑ Basal mitophagy changed in pancreatic islets McWilliams et al. (2018)

Mice Prkci−/− ↓ Promoted immune cell infiltration and cell apoptosis in the pancreas Inman et al. (2022)

Mice Rab7−/− ↓ Delayed endosome and autophagosome maturation and impaired
lysosome function

Takahashi et al. (2017)

Mice Rab9TG ↓ Pancreatic inflammation; acinar cell necrosis; and apoptosis Mareninova et al. (2022)

Rat Snap23 encoding
adenovirus

↓ Disrupted autophagosome and lysosome fusion but not
autophagosome development; helped prevent pancreatitis

Dolai et al. (2021)

Mice Spink3−/− Spink3+/− ↑ Complete loss of Spink3 resulted in acinar cell death and impaired
pancreatic integrity, and no significant acinar cell regeneration was
observed; a small presence was enough to prevent pancreatitis

Ohmuraya et al. (2012), Ohmuraya et al.
(2005), Romac et al. (2010)

(Continued on following page)
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believe that maintaining VAMP8-dependent pro-enzyme secretion
helps to reduce the accumulation and activation of proenzymes
during pancreatitis, which is one of the potential strategies for
reducing pancreatitis injury. Furthermore, the intravenous
injection of a miR-155-encoded adenovirus has been shown to
alleviate pancreatic injury by reducing the accumulation of
autophagosomes in AP mouse cells (Wan et al., 2019). Similarly,
in Atg5-deficient mice, zymogen activation was reduced in the
pancreatic acini due to a lack of autophagy, thereby alleviating
caerulein-induced pancreatitis injury (Ohmuraya and Yamamura,
2008). Furthermore, another study has shown that pancreatic
damage induced by caerulein or alcohol is limited in mice
intravenously injected with encoding adenovirus for
synaptosome-associated protein of 23 (SNAP23) (Dolai et al., 2021).

A trypsin inhibitor, serine protease inhibitor Kazal type 3
(SPINK3) is essential for the integrity of the pancreas, and its
absence leads to excessive autophagy in acinar cells (Ohmuraya
et al., 2012). Spink3−/− mice die of pancreatic autophagy within a few
days after birth, surviving less than 15 days (Ohmuraya et al., 2005).
Although SPINK3 plays an important role in maintaining acinar
autophagy and cell homeostasis, a low level of this protein seems to
be sufficient to prevent pancreatitis. A small amount of
SPINK3 expression in Spink3+/− mice did not affect the increased
sensitivity to experimental pancreatitis (Romac et al., 2010). The
pancreas of adult mice undergo significant changes when the UbiA
prenyltransferase domain-containing protein 1 (Ubiad1) is
systemically knocked out. These changes include pancreatic
atrophy and loss of acinar cells, and are accompanied by
enhanced autophagy (Nakagawa et al., 2019). Laminin is
associated with pancreatitis because mice without lamin A/C
(LMNA) in the pancreas exhibit ER stress, pancreatic exocrine
dysfunction and a series of CP-related phenotypes (Elenbaas
et al., 2018).

Although the above results suggest that autophagy contributes to
the occurrence of pancreatic injury, a large amount of evidence
shows that autophagy plays an indispensable role in maintaining
pancreatic homeostasis. For example, endocrine cell destruction and
a range of similar tissue manifestations, such as inflammation,
necrosis, acinar-ductal metaplasia and hypertrophy, and
pancreatic atrophy and degeneration, were observed in mice with

a deletion of pancreas-specific Atg5 (Yang et al., 2014; Diakopoulos
et al., 2015). Consistent with these findings, Atg7-deficient mice also
exhibited impaired endocrine systems and reduced insulin secretion
(Ebato et al., 2008). In addition, protective and anti-inflammatory
effects of autophagy in the pancreas have been confirmed. An
increase in the number of acinar cell zymogen granules and
persistent cell death were observed in Atg7-deficient mice with
pancreatic autophagy deficiency, and these mice exhibited
significantly increased sensitivity to endotoxin-induced
pancreatitis (Iwahashi et al., 2018; Chen et al., 2022). It has been
reported that the deletion of receptor interacting protein 3 (Rip3, a
necroptotic signalling factor) exacerbates the acinar loss caused by
Atg7 deficiency and is related to immune cell infiltration (Zhou et al.,
2017a). The pancreas-specific knockdown of syntaxin17 (Stx17)
exacerbates the symptoms of caerulein-induced pancreatitis,
which is associated with the disruption of protective autophagy
(Wang et al., 2023). In addition, Farnesoid X receptor (FXR) plays a
protective role in pancreatitis by restoring pancreatic autophagy
through the enhancement of Oxidative stress-induced growth
inhibitor 1 (OSGIN1, a tumor suppressor) (Zheng et al., 2022).
Pancreatic loss of Fxr increases the sensitivity of mice to acute and
chronic pancreatitis induced by caerulein, but GW4064 (an agonist
of FXR) limits pancreatic damage (Zheng et al., 2022). The
Overexpression of interleukin-22 (IL-22, an inflammation-related
factor) significantly alleviates pancreatic necrosis, apoptosis and
tissue inflammation induced by caerulein (Feng et al., 2012).
Notably, Atg7 deletion also triggers a regeneration mechanism
that induces acinar cells to dedifferentiate into ductal progenitor
cells, which contributes to the recovery of acinar tissue function
(Antonucci et al., 2015). However, LAT1 promotes the regeneration
of pancreatic cells after AP in a sex-dependent manner (Hagen
et al., 2022).

Many zymogen granules were observed in the cytoplasm of
Irf2−/− mouse acinar cells, indicating that IRF2 is a key factor in
mediating zymogen-related exocytosis, at least in acinar cells
(Mashima et al., 2011). In addition, Irf2−/− acinar cells can
partially resist the induction of pancreatitis, an effect that is
related to the significant upregulation of the calcium-binding
proteins S100 g and Anxa10 (Mashima et al., 2020). Another
study also revealed that Munc18c+/− mice lacked basolateral

TABLE 1 (Continued) Genetic studies investigating the relationship between autophagy and pancreatic physiology in vivo.

Model Intervention autophagy
flux

Observations References

Mice Stx17 encoding
adenovirus

↓ Aggravated symptoms of caerulein-induced pancreatitis Wang et al. (2023)

Mice Tfeb−/− Tfe3−/− ↓ Spontaneous occurrence of pancreatitis Wang et al. (2019)

Mice Ubiad1−/− ↑ Pancreatic atrophy and acinar cell disappearance Nakagawa et al. (2019)

Mice Vamp8−/− ↓ Resistant to caerulein- or alcohol-induced pancreatitis Messenger et al. (2017)

Mice Vmp1−/− ↓ Pancreatic inflammation; acinar cell death; and fibrosis Wang et al. (2022b)

Mice Vmp1TG ↑ Induced autophagosome formation in pancreatic cells Ropolo et al. (2007)

AP, acute pancreatitis; Atg5, autophagy related 5; Atg7, autophagy related 7; Becn1, Beclin1; CP, chronic pancreatitis; Ctsb, cathepsin B; ctsd, cathepsin D; Errγ, oestrogen-related receptor γ;
Hmgb1, high mobility group box 1; Igf1r, insulin like growth factor receptor; Irf2, interferon regulatory factor-2; Lamp-2, lysosome-associated membrane protein 2; Lmna, Lamin A/C; Pkd3,

protein kinase D 3; Pink1, PTEN-induced kinase 1; Prkci, protein kinase C iota; Rip3, receptor interacting protein 3; Snap23, synaptosome-associated protein 23; Spink3, serine protease inhibitor

Kazal type 3; Stx17, Syntaxin17; Tfeb, transcription factor EB; Ubiad1, UbiA prenyltransferase domain-containing protein 1; Vamp1, vesicle-associated membrane protein 1; Vamp8, vesicle-

associated membrane protein 8.
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exocytosis of zymogen granules and exhibited mild pancreatitis
under caerulein overstimulation (Dolai et al., 2018). The above
results suggest that zymogen granule exocytosis may play a more
important role in the occurrence of pancreatitis than the increase in
the number of autolysosomes. Further exploration of the exocytosis
of these zymogen granules will help in obtaining a more
comprehensive understanding of pancreatitis.

The absence of protein kinase D3 (Pkd3) in the pancreas
promotes autophagy and limits injury in experimental
pancreatitis (Yuan et al., 2021). The inhibition of typical
(LC3-mediated) autophagy and activation of atypical (RAB9-
mediated) autophagy were observed in mice overexpressing
RAB9, which resulted in pancreatitis-like damage
(Mareninova et al., 2022). RAB9-mediated atypical autophagy
cannot completely replace LC3-mediated classical autophagy, at
least in pancreatic cells. In fact, VMP1 also affects the
homeostasis of pancreatic acinar cells. VMP1 was
conditionally overexpressed in mouse pancreatic acinar cells,
which induced the production of many vacuoles in acinar cells
(Ropolo et al., 2007). However, mice with Vmp1 deletion in
pancreatic acinar cells rapidly develop pathological changes
similar to those observed in human chronic pancreatitis
(Wang S. et al., 2022).

Caerulein-induced autophagy deficiency in acinar cells is due
to a decrease in the number of lysosomes, which may be related to
the fact that caerulein induces mTOR and promotes the
degradation of the transcription factor EB (TFEB) (Wang et al.,
2019). A decrease in nuclear TFEB in acinar cells was observed in a
mouse model of pancreatitis, an effect consistent with what has
been observed in human pancreatitis. Tfeb−/− mice exhibit
spontaneous severe pancreatitis and pancreatic fibrosis, and
worsen caerulein-induced experimental pancreatitis (Wang
et al., 2019). In contrast, mice overexpressing TFEB
demonstrate a protective effect against alcohol-induced
pancreatic tissue damage (Wang S. et al., 2020). Because
lysosomal biogenesis depends on TFEB, activating TFEB to
enhance lysosomal activity is likely a possible strategy for the
prevention and treatment of pancreatitis.

The role of LAMP-2 in autophagy has been studied in Lamp-
2-deficient mice (Eskelinen et al., 2002). LAMP-2 deficiency
directly or indirectly leads to the accumulation of autophagic
vacuoles in multiple tissues, including the pancreas. Similarly,
mice lacking protein kinase C iota (PRKCI, a serine/threonine
protein kinase) in the pancreas exhibit autophagic destruction of
acinar cells, which promotes pancreatic immune cell infiltration
and apoptosis (Inman et al., 2022). Similarly, pancreatic-specific
Rab7 deletion hinders the progression of autophagy to
autophagic lysosomes and affects endosome maturation and
endocytosis, which leads to more severe tissue inflammation
(Takahashi et al., 2017). The relationship between cathepsin
and autophagy has also been reported recently. The results
showed that neither cathepsin B (CTSB) nor cathepsin D
(CTSD) alone could cause autophagy damage (Sendler et al.,
2018). However, mice with simultaneous deletions of Ctsb and
Ctsd exhibited impaired autophagy, indicating that both co-
regulate pancreatic autophagy (Sendler et al., 2018). Similarly,
trypsin activity increases during AP in Ctsb- and cathepsin L
(Ctsl)-knockout mice (Chen et al., 2022).

Bmp4 is a protein that regulates insulin synthesis, processing,
and transport. The results from transgenic mice showed that
autophagy is also involved in the response of the pancreas to
hunger (Yasunaga et al., 2011). Interestingly, starvation for 36 h
induces pancreatic damage in Fam134b−/− mice but not in WT mice
(Keles et al., 2020). Senescence is related to the functional
degradation of tissues and cells. A recent study reported that the
deletion of Igf1r in the pancreas of mice inhibits pancreatic β-cell
senescence, accompanied by improved glucose tolerance (Iwasaki
et al., 2023). In addition, Gnptab−/− mice spontaneously develop
pancreatitis and cholesterol metabolism disorders (Mareninova
et al., 2021). Consistent with these findings, energy deficiency in
pancreatic acinar cells and loss of autophagy and redox homeostasis
were observed in oestrogen-related receptor γ (Errγ) conditional
knockout mice (Choi et al., 2022).

7 Autophagy and pancreatic pathology

In numerous animal models of pancreatic disease, the
modulation of autophagy, whether through pharmacological or
genetic interventions, is linked to alterations in disease severity or
progression (Table 2).

7.1 Diabetes

The pancreas is a key organ for regulating carbohydrate
metabolism, especially glucose metabolism. The pancreas
secretes two hormones that are essential for the regulation of
blood sugar: insulin and glucagon. Glucagon is the main hormone
that increases blood sugar, while insulin is the only hormone with a
hypoglycaemic effect in animals (Gong et al., 2019). Islet β-cells are
the only source of insulin in the blood, and their dysfunction or
loss can lead to diabetes (Le et al., 2022). Studies have shown that
diabetes can in turn induce pancreatic tissue cell senescence (Xue
et al., 2022). The pathogenesis of diabetes is complex, causing
damage to the pancreas itself, and is accompanied by changes in
multiple systems throughout the body, including nutritional and
metabolic disorders, tissue ageing, hormone level changes (Ruze
et al., 2023).

Islet amyloid polypeptide (IAPP) is secreted by islet β cells,
and its misfolding or aggregation is related to β cell loss and
stress. Human IAPP (hIAPP) transgenic mice exhibited
pregnancy-induced ER stress and autophagy damage (Gurlo
et al., 2019). This study revealed the pathogenesis of
gestational diabetes mellitus associated with autophagy. Db/
db mice, characterized by a lack of leptin receptors,
spontaneously develop type 2 diabetes and oxidative stress
damage in the islets (Xing et al., 2020). Cyanidin-3-O-
glucoside (C3G, a plant extract) restores pancreatic function
in diabetic mice by activating partial autophagy of mitochondria
(Ye et al., 2021). Compared with those of control mice, mice
overexpressing Fat-1 exhibited greater levels of basic autophagy
in β cells and reduced diabetic damage induced by
streptozotocin (Hwang et al., 2015).

The role and mechanism of islet β-cell apoptosis in diabetes
have been widely studied. However, the role and mechanism of
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islet β-cell autophagy in diabetes are still unclear. (Grasso et al.,
2009) used streptozotocin (STZ), which is a drug that selectively
targets and destroys islet β cells, to establish an experimental
diabetes model. According to their results, autophagy is
triggered in the early cellular events of diabetes in STZ-
induced rats, VMP1 activation occurs in islet cells and the
interaction of VMP1-BECN1 stimulates this process (Grasso
et al., 2009). Notably, STZ may stimulate islet cells to produce
ROS through autophagy, because ROS regulate the activity of
ATG4, a key factor in autophagy (Grasso et al., 2009; Lee A. R.
et al., 2022). These results suggest that autophagy may
contribute to STZ-induced β-cell damage; however, the role
of autophagy in diabetes appears to be contradictory.
Autophagy may also play a protective role during diabetes,
limiting rather than exacerbating cell death. Autophagy plays
an active role by removing damaged organelles and ageing cells.
For example, autophagy helps clear diabetes-induced damaged
mitochondria (Wang et al., 2017). When autophagy is disrupted,
cell homeostasis and stress responses become uncontrolled
(Muralidharan et al., 2021).

Controlling autophagy is a very promising strategy for the
treatment of diabetes. Increasing the level of autophagy can
effectively reduce oxidative stress and apoptosis in experimental
diabetic animals (Zhu X. et al., 2021; Wang et al., 2018; Liu C. et al.,
2022). Oxidative stress is considered the key factor in diabetic injury,
and autophagy protects cells from oxidative stress by degrading
oxidative stress products. Therefore, drugs like dioscin (Zhong et al.,
2022) and Rehmanniae Radix (Yan et al., 2023) can strongly reduce
diabetic damage by activating autophagy. In addition, the activation
of autophagy can relieve pressure on the ER and improve
mitochondrial function (Zhong et al., 2022). Moreover, the

protection of cells from apoptosis reduces the inflammatory
response and dysfunction.

7.2 Pancreatitis

7.2.1 Increase in autophagosomes but inhibition of
autophagy flux

Since Chiari proposed the scientific hypothesis of pancreatitis, it
has been generally accepted that pancreatitis is caused by the
abnormal activation of zymogens within the pancreas (Dolai
et al., 2021; Huang et al., 2020). The pathogenesis of pancreatitis
is complex. Early cellular events include dysfunctional autophagy,
the pathological exocytosis of zymogen granules, and the activation
of trypsin and IKKβ (Saluja et al., 2019). A recent study reported a
common component involved in these three events, namely, soluble
N-ethylmaleimide-sensitive factor attachment receptor (SNARE)
proteins, which include Munc18c and STX17 (Dolai et al., 2021).
These proteins are located in the plasma membrane under
physiological conditions and are then transferred to
autophagosomes during pathological conditions, where they
mediate pathological basolateral exocytosis and IKKβ-mediated
autolysis (Dolai et al., 2018; Dolai et al., 2021).

Experimental pancreatitis models constructed with
cholecystokinin, caerulein, alcohol and Coxsackie virus have been
used to simulate human pancreatitis and explore the aetiology of the
disease (Han et al., 2022; Kim et al., 2019). In these models, vacuoles
accumulate in acinar cells, mainly autophagosomes or
autolysosomes, usually with large volumes (Mareninova et al.,
2021). The accumulation of large vacuoles in acinar cells
observed via histology or transmission electron microscopy

TABLE 2 Pharmacological and genetic studies examining the relationship between autophagy and pancreatic pathology in vivo.

Model Intervention Observations References

AP/CP (Mice) Fxr−/− Knockout mice were more sensitive to acute and chronic pancreatitis induced by caerulein and
pancreatic tissue oedema and necrosis

Zheng et al. (2022)

AP (Mice) IL-22TG Significantly improved caerulein-induced AP and reduced pancreatic necrosis, apoptosis and tissue
inflammation

Feng et al. (2012)

Pancreatitis
(Mice)

Tfeb−/− Spontaneous occurrence of severe pancreatitis and pancreatic fibrosis Wang et al.
(2020c)

Pancreatitis
(Mice)

Tfeb−/− Tfe3−/− Aggravated pancreatic injury Wang et al. (2019)

Diabetes (Rat) Dioscin Reduced pancreatic damage was correlated with autophagy regulation Zhong et al. (2022)

Diabetes (Mice) Rehmanniae Radix Improved function was correlated with increased levels of autophagy Yan et al. (2023)

Diabetes (Mice) Fat-1TG Enhanced beta cell basal autophagy and alleviated streptozotocin-induced diabetes Hwang et al.
(2015)

Diabetes (Mice) hIAPPTG β-cell ER stress and impaired autophagy occurred during pregnancy Gurlo et al. (2019)

Diabetes (Mice) SGY-P Reduction in pancreatic β-cell apoptosis was correlated with the regulation of autophagy Xing et al. (2020)

Diabetes (Mice) C3G The pancreatic protective effect of C3G treatment was related to mitophagy Ye et al. (2021)

PC (Mice) KrasG12D Persistent pancreatic inflammation and an increased incidence of cancer Chang et al. (2017)

PC (Mice) Pdx1-Cre KrasG12D/+

Hmgb1−/−
Accelerated the progression of pancreatic ductal adenocarcinoma Song et al. (2018)

AP, acute pancreatitis; CP, chronic pancreatitis; Fxr, farnesoid X receptor; hIAPP, human islet amyloid polypeptide; Hmgb1, high mobility group box 1; IL-22, interleukin-22; Pdx1, pancreatic

and duodenal homeobox gene 1; Tfeb, transcription factor EB; SGY-P, sangguayin preparation; C3G, cyanidin-3-O-glucoside; PC, pancreatic cancer.
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provides strong evidence for the diagnosis of pancreatitis. The
number and size of autophagic vacuoles and the levels of the
autophagy-associated proteins p62 and LC3-II are increased in
WT mice (Mareninova et al., 2020). These results reflect the
impaired autophagic flux in pancreatitis, findings that are
consistent with what has been observed in human disease (Biczo
et al., 2018). Several studies have further revealed the relationship
between autophagy and pancreatitis; for example, in GFP-LC3
transgenic mice with induced pancreatitis, more intense
autophagosome accumulation was observed, which was associated
with more severe tissue damage (higher serum amylase levels) (Biczo
et al., 2018). Researchers have also shown that bone morphogenetic
protein in the pancreas is associated with the production of vacuoles
in acinar cells and elevated LC3-II levels (Cao et al., 2013).

7.2.2 Regulating autophagy: a good method for
treating pancreatitis

Based on the above analysis, autophagy dysregulation is a key
event in pancreatitis. Therefore, one reasonable strategy is to restore
blocked or disrupted autophagy to an efficient and unobstructed
state. The formation and degradation of autolysosomes are critical
for autophagosome clearance, and lysosomal abnormalities have
been found in both experimental pancreatitis models and human
pancreatitis patients (Mareninova et al., 2021; Şentürk et al., 2019;
Chen et al., 2020). Therefore, increasing the number and function of
lysosomes, promoting the fusion of autophagosome and lysosome,
and enhancing the degradation of autolysosome may contribute to
alleviating pancreatic injury. The rationality of this view is supported
by several studies (Wang et al., 2023; Zheng et al., 2022; Li et al.,
2020). Notably, moderate levels of autophagy, rather than blindly
activating autophagy, are beneficial. In fact, the inhibition of
overactivated autophagy also helps to combat pancreatitis (Feng
et al., 2012). Overall, although the mechanism of autophagy in
pancreatitis is unclear, regulating autophagy is one of the most
promising strategies for the treatment of this disease.

7.3 Pancreatic cancer

Pancreatic cancer is a highly lethal tumour characterized by
strong proliferation, high invasion and multiple drug resistance
(Boukrout et al., 2021). Autophagy plays a dual role in pancreatic
cancer and is highly involved in its occurrence and development
(Wei et al., 2019). On the one hand, autophagy, as a protective
mechanism, is used to maintain cell homeostasis and genomic
stability and prevent normal cells from transforming into
malignant cells (Rahman et al., 2022). Without autophagy, toxic
and harmful components (such as damaged organelles and
damaged proteins) cannot be removed from pancreatic cells,
leading to oxidative stress and subsequent DNA damage (Zhou
et al., 2017b). On the other hand, autophagy is involved in the
occurrence of pancreatic cancer and serves as a survival strategy for
tumour cells to help them respond to environmental stress
(Iovanna, 2017; Molejon et al., 2018).

The occurrence of pancreatic cancer is closely related to the
presence of the Kras oncogene. Krasmutations are associated with
the epithelial–mesenchymal transition (EMT) process and
mediate cell carcinogenesis and cancer metastasis. An

increasing number of studies have shown that autophagy plays
a pivotal role in the malignant transformation of pancreatic cells
mediated by Kras mutation. It has been reported that the
overexpression of VMP1 exacerbates the tumour-promoting
effect of Kras, an effect that can be reversed by chloroquine
(an autophagy inhibitor) (Iovanna, 2017). Increased expression
of the PRKCI in KrasG12D transgenic mice (often used as an
experimental animal model of pancreatic carcinogenesis), a
finding that is consistent with what has been observed in
human disease (Scotti et al., 2012). The deletion of pancreatic
PRKCI blocks the autophagy of acinar cells and the transition
from pancreatic intraepithelial neoplasia to pancreatic cancer
(Inman et al., 2022). Notably, despite the presence of
carcinogenic Kras expression, the transformation of pancreatic
cells to eventual pancreatic cancer is limited (Todoric et al., 2017).
These findings show that additional regulatory pathways are
involved in the development of pancreatic cancer. This
complex process includes a series of specific factors, such as
p53 mutation (Yang et al., 2014), p62 accumulation (Todoric
et al., 2017), lncRNA regulation (Shafabakhsh et al., 2021), the
antioxidant stress response (Gong et al., 2016) and the activation
of inflammatory signalling pathways (Iovanna, 2016).

KCH (Pdx1-Cre;KrasG12D/+;Hmgb1−/−) mice were developed as a
model of accelerated pancreatic ductal adenocarcinoma progression
(Song et al., 2018). Oral JTC801 (a compound with strong anticancer
activity) effectively limits tumour growth and changes the
expression of autophagy-related markers (Song et al., 2018).
High-fat, high-calorie diet (HFCD) feeding significantly increased
the incidence of cancer in KrasG12D-expressing mice, an effect that
was associated with persistent pancreatic inflammation and
autophagy disorders (Chang et al., 2017).

In both animal and human specimens, cancer tissue has greater
autophagy activity than does surrounding tissue (Hirayama et al.,
2009). When pancreatic cell lines are exposed to hypoxia, autophagy
helps to increase cell survival (Owada et al., 2017). Similarly,
pancreatic cancer also depends on autophagy for survival in the
absence of nutrients (Yuan et al., 2022; Zhou et al., 2022). In other
words, pancreatic cancer cells can use autophagy to cope with
nutritional limitations caused by strong cell proliferation. In
addition, autophagy is also a means by which pancreatic cancer
cells escape immunosuppression (Zhu X. G. et al., 2021) and the
action of drugs (Liu et al., 2014). However, further studies are
needed to clarify whether these tumours promote autophagy-
related processes via unique or shared potential mechanisms.

It is thought that the role of autophagy in different stages of
tumorigenesis is dynamic. In pancreatic cells, autophagy disorders can
cause genomic disorders and PanIN lesions (Yang et al., 2014).
However, more precancerous lesions do not transform into more
pancreatic cancer cells but rather into fewer cells. Blocking autophagy
in pancreatic cancer not only suppresses the survival of cancer cells
but also helps to disrupt autophagy in pancreatic cancer stem cells,
thus enhancing the therapeutic efficacy of anticancer drugs (Leng
et al., 2021). Therefore, autophagy is an important target for the
treatment and prevention of pancreatic cancer. However, little is
known about the specific mechanisms by which autophagy acts as
both a tumour suppressor and a tumour enhancer in pancreatic
cancer, and elucidating these mechanisms will be helpful for
improving treatment strategies for individuals with pancreatic cancer.
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8 Conclusion and future prospects

Autophagy plays an important role in the physiology and
pathology of the pancreas and plays different roles in different
stages (Figure 3). Basic autophagy and moderate autophagy in
response to environmental stress are considered protective and
protect pancreatic cells from dysfunction and apoptosis. Extreme
levels of autophagy (overactivation or autophagy disorder) can
become destructive and may mediate more severe cell death and
tissue damage. Numerous questions remain unresolved, particularly
regarding the impact of other forms of autophagy, such as
microautophagy and chaperone-mediated autophagy, on
pancreatic function. Equally important, additional types of
selective autophagy need to be considered, including fat
autophagy, ribosomal autophagy and peroxidase autophagy. For
example, ferritin autophagy has been shown to help promote the
survival of pancreatic cancer and help it acquire therapeutic
resistance (Jain and Amaravadi, 2022).

In fact, autophagy in the pancreas is pluripotent, and its
mechanism may be closely and complexly related to the life
processes of other cells. Future research will help in better
understanding pancreatic autophagy and adjusting treatment
strategies.
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FIGURE 3
The role of autophagy in the pancreas. Left, moderate autophagy acts as a protective factor in the pancreas. Right, extreme autophagy can act as a
pathogenic agent in the pancreas.
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Glossary

AMBRA1 autophagy and beclin 1 regulator 1

AP acute pancreatitis

ATG autophagy-related gene

Becn1 Beclin1

CP chronic pancreatitis

CTSB cathepsin B

Ctsd cathepsin D

ER endoplasmic reticulum

ERRγ oestrogen-related receptor γ

FIP200 focal adhesion kinase family-interacting protein of 200 kD

FXR farnesoid X receptor

Gal-3 galactose lectin-3

hIAPP human islet amyloid polypeptide

HMGB1 high mobility group box 1

HSC70 heat-shock cognate 70

IGF1R insulin like growth factor receptor

IL-22 interleukin-22

IRF2 interferon regulatory factor-2

LAMP-2 lysosome-associated membrane protein 2

LC3 microtubule-associated protein 1 light chain 3

LMNA Lamin A/C

PKD3 protein kinase D 3

PINK1 PTEN-induced kinase 1

Prkci protein kinase C iota

RIP3 receptor interacting protein 3

SNAP23 synaptosome-associated protein 23

SPINK3 serine protease inhibitor Kazal type 3

STX17 Syntaxin17

TFEB transcription factor EB

UBIAD1 UbiA prenyltransferase domain-containing protein 1

ULK1 unc-51-like autophagy activating kinase 1

VAMP1 vesicle-associated membrane protein 1

VMP1 vacuole membrane protein 1
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