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Background: Fundus vessel segmentation is vital for diagnosing ophthalmic
diseases like central serous chorioretinopathy (CSC), diabetic retinopathy, and
glaucoma. Accurate segmentation provides crucial vessel morphology details,
aiding the early detection and intervention of ophthalmic diseases. However,
current algorithms struggle with fine vessel segmentation and maintaining
sensitivity in complex regions. Challenges also stem from imaging variability
and poor generalization across multimodal datasets, highlighting the need for
more advanced algorithms in clinical practice.

Methods: This paper aims to explore a new vessel segmentation method to
alleviate the above problems. We propose a fundus vessel segmentation model
based on a combination of double skip connections, deep supervision, and
TransUNet, namely DS2TUNet. Initially, the original fundus images are
improved through grayscale conversion, normalization, histogram
equalization, gamma correction, and other preprocessing techniques.
Subsequently, by utilizing the U-Net architecture, the preprocessed fundus
images are segmented to obtain the final vessel information. Specifically, the
encoder firstly incorporates the ResNetV1 downsampling, dilated convolution
downsampling, and Transformer to capture both local and global features, which
upgrades its vessel feature extraction ability. Then, the decoder introduces the
double skip connections to facilitate upsampling and refine segmentation
outcomes. Finally, the deep supervision module introduces multiple
upsampling vessel features from the decoder into the loss function, so that
the model can learn vessel feature representations more effectively and alleviate
gradient vanishing during the training phase.

Results: Extensive experiments on publicly available multimodal fundus datasets
such as DRIVE, CHASE_DB1, and ROSE-1 demonstrate that the DS2TUNet model
attains F1-scores of 0.8195, 0.8362, and 0.8425, with Accuracy of 0.9664, 0.9741,
and 0.9557, Sensitivity of 0.8071, 0.8101, and 0.8586, and Specificity of 0.9823,
0.9869, and 0.9713, respectively. Additionally, the model also exhibits excellent
test performance on the clinical fundus dataset CSC, with F1-score of 0.7757,
Accuracy of 0.9688, Sensitivity of 0.8141, and Specificity of 0.9801 based on the
weight trained on the CHASE_DB1 dataset. These results comprehensively
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validate that the proposed method obtains good performance in fundus vessel
segmentation, thereby aiding clinicians in the further diagnosis and treatment of
fundus diseases in terms of effectiveness and feasibility.

KEYWORDS

fundus vessel segmentation, double skip connections, deep supervision, transformer,
vessel feature extraction

1 Introduction

The retina is the sole part of the human organism where arteries,
veins, and capillaries are visible to the naked eye. Fundus images
contain richer contextual structural information compared to most
natural images, offering critical clinical insights for physicians.
Analyzing the shape, bifurcation, and other structural features of
blood vessels in color fundus (CF) images enables physicians to
diagnose diseases such as diabetic retinopathy, microaneurysms,
and hypertension (Fraz et al., 2012). Furthermore, research has
demonstrated that the vessel structure in optical coherence
tomography angiography (OCTA) images is specifically and
distinctly altered in patients with Alzheimer’s disease (AD) and
those with mild cognitive impairment (MCI) (Chua et al., 2020).
Hence, investigating morphological changes in blood vessels offers
substantial diagnostic value, particularly for observing and detecting
deeper branch vessels and microvessel details. To fully leverage this
diagnostic potential, accurate segmentation of fundus vessel
information is crucial, as it serves as a vital indicator for
diagnosing ocular diseases. As illustrated in Figure 1, the top row
presents the raw data of CF and OCTA images, while the bottom
row depicts their corresponding vessel segmentations.

However, segmenting fundus blood vessels faces substantial
challenges due to the complex structure of the vessel network in
fundus images, uneven gray scale distribution, low contrast between

blood vessels and background, and the influence of image noise.
Researchers have proposed a series of schemes for fundus vessel
segmentation. These schemes use both traditional and deep learning
approaches.

1.1 Traditional segmentation methods

Traditional segmentation methods rely on manual feature
selection, followed by vessel segmentation using appropriate
classifiers. Chaudhuri et al. (1989) initially suggested the
segmentation of fundus images using a Gaussian filter, which
encoded blood vessel features and matched these encoded
features using a two-dimensional Gaussian filter. This method
addressed the issue of low contrast between blood vessels and the
background. Azzopardi et al. (2015) introduced the B-COSFIRE
(Blood-Combination of Shifted Filter Responses) filter, which
selectively responded to blood vessels for automatic vessel
segmentation. This was achieved by calculating the weighted
average of the Gaussian filter outputs for directional selection
and ensuring translation without distortion through a simple
shift operation. The authors employed two B-COSFIRE filters,
symmetric and asymmetric, which segmented blood vessels by
summing the responses of the two filters and setting a threshold.
Li et al. (2012) developed a segmentation method that combined

FIGURE 1
Upper row: CF images and OCTA images. Bottom row: Corresponding label images.
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multi-scale matched filtering and dual thresholding. This method
strengthened vessel models by multiplying the responses from three
scales of matched filtering, resulting in effective vessel segmentation.

1.2 CNN-based segmentation methods

Compared to traditional segmentation algorithms, pixel-level
semantic segmentation algorithms based on deep learning can fully
extract semantic feature information. This allows them to make
accurate predictions for each pixel category, resulting in higher
precision and accuracy. Shelhamer et al. (2017) pioneered the Fully
Convolutional Network (FCN). They adapted the classification
network to a fully convolutional form, which marked the first
successful application of deep learning to image semantic
segmentation. This surpassed the state-of-the-art technology in
the field of semantic segmentation at that time. Ronneberger
et al. (2015) designed U-Net based on FCN to better fuse image
features. This design achieved faster processing speeds, required
fewer training images, and demonstrated greater suitability for
medical segmentation tasks, such as retinal blood vessels.
However, there is still room for improvement as feature
information can be easily lost during the down-sampling process,
resulting in inadequate blood vessel segmentation accuracy. In
response, several better algorithms based on U-Net have been
developed. Wu et al. (2019) created a new lightweight vessel
segmentation model, Vessel-Net, for fundus images. This model
incorporated an efficient initial residual convolution block into the
U-Net structure. By merging the benefits of U-Net and residual
modules, it boosted feature representation and significantly
improved segmentation performance. Jin et al. (2019a)
introduced DU-Net (Deformable U-Net) for vessel segmentation
of fundus images. They applied deformable convolution to the
U-Net architecture. This approach adaptively adjusted the
receptive field according to differences in vessel morphology and
scale. It used an up-sampling operator to increase the resolution of
the output image by combining encoder and decoder features. This
combination allowed for the extraction of contextual information
and precise localization, resulting in accurate segmentation of retinal
blood vessels. Mou et al. (2021) suggested adding an attention
module to each encoder and decoder of U-Net. These two
attention modules were used to enhance inter-class
discrimination and intra-class response, respectively. They also
raised the use of 1 × 3 and 3 × 1 convolution kernels to capture
boundary features. Experimental results on multiple datasets
verified the effectiveness of this method. Kwon (2021) put
forward an advanced adversarial training method to resist the
interference of unknown adversarial examples. The authors used
the Fast Gradient Sign Method (FGSM) to generate a fixed range of
adversarial examples for training. Experiments established that
U-Net models trained on different adversarial examples yielded
better segmentation results on unknown adversarial examples. Fu
et al. (2016) introduced DeepVessel, which integrated deep learning
with Conditional Random Fields (CRFs) to enhance retinal vessel
segmentation by capturing fine structures, though this approach
added to the model’s computational demands. Alom et al. (2019)
expanded on traditional U-Net models with the Recurrent Residual
U-Net, incorporating recurrent layers and residual connections to

improve feature refinement, allowing for deeper network training
and better segmentation performance. Li et al. (2020) introduced
MAU-Net, which utilized multi-scale feature extraction and
attention mechanisms to improve segmentation accuracy,
particularly for vessels of varying sizes. Gu et al. (2019) presented
CE-Net, which enhanced boundary accuracy by integrating context
encoding within an encoder-decoder framework, making it
particularly effective in refining segmentation results and
improving the delineation of retinal vessels. Jin et al. (2019b)
developed DUNet, leveraging deformable convolutions that
adapted to the shape and size of retinal vessels, leading to more
accurate segmentation of complex vessel morphologies. Mou et al.
(2019) created CS-Net, which used channel and spatial attention
mechanisms to enhance vessel segmentation, effectively capturing
fine details and improving overall accuracy. Guo (2023) introduced
the DPN (Detail-Preserving Network) for retinal vessel
segmentation, avoiding traditional encoder-decoder architectures
like U-Net by maintaining high-resolution feature maps with Detail-
Preserving Blocks. This design significantly enhances both
segmentation accuracy and speed, especially on the DRIVE
dataset. Alvarado-Carrillo and Dalmau-Cedeño (2022) proposed
a Width Attention-based CNN that focuses on vessel thickness
during segmentation, excelling in capturing thin and irregular
vessels but potentially facing challenges with complex vessel
networks. Liu et al. (2023) developed ResDO-UNet, incorporating
deep residual connections into the U-Net architecture to improve
gradient flow and feature learning, resulting in higher segmentation
accuracy, albeit with increased computational costs. Kumar et al.
(2023) introduced IterMiUnet, a lightweight CNN designed for
blood vessel segmentation. They adopted an iterative mechanism
to refine results, making it suitable for resource-constrained
environments. However, it may have slower inference times.
These methods exhibited advancements in retinal vessel
segmentation by tackling key challenges such as feature
refinement, multi-scale processing, and attention mechanisms.

1.3 CNN-transformer segmentationmethods

Various Transformer (Vaswani et al., 2017) architectures,
known for their ability to capture global attention, were used to
compensate for the limitations of convolutional inductive bias (Cao
et al., 2023). However, due to the quadratic complexity of self-
attention and the lack of convolution-like inductive bias, models
based on the original Transformer could only achieve optimal
results on large-scale datasets (Dosovitskiy et al., 2021). In
addition to the limitations of dataset size, although some studies
(Wang et al., 2022; Zheng et al., 2021) showed that Transformer
could outperform CNN and had the potential to fully replace
convolutional blocks, it did not consistently outperform CNN in
all tasks. Zhang et al. (2023) pointed out that segmentation tasks
required not only improved global context modeling but also a focus
on low-level details. Therefore, segmentation networks based solely
on Transformer tended to yield suboptimal results. Chen et al.
(2021) introduced TransUNet (Transformer and U-Net) for medical
image segmentation, applying the Transformer model originally
developed for natural language processing. It combined the
advantages of the Transformer and U-Net and achieved favorable
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results in various medical applications such as multi-organ
segmentation and heart segmentation. Yang and Tian (2022)
extended TransUNet with TransNUNet, enhancing the
upsampling stage with a convolutional attention module. This
modification allowed the model to focus more effectively on
relevant features while suppressing irrelevant ones, improving
segmentation accuracy by selectively attending to critical areas of
the image. And Haonan et al. (2022) rethought U-Net’s skip
connections by incorporating a channel Transformer to connect
multi-scale channel information to the decoder, although spatial and
boundary information challenges remained. Wang et al. (2023)
developed a cross-convolution Transformer for medical image
segmentation. The novel cross-convolution self-attention
mechanism integrated local and global context, modeling both
long-range and short-range dependencies to enhance the
understanding of semantic features. This study also proposed a
multi-scale feature edge fusion module to fuse edge features of
images, improving the problem of blurred target edge contours. In
2023, Tragakis et al. (2023) introduced the full-convolution
Transformer, the first fully convolutional Transformer
architecture in the field of medical image segmentation. This
model effectively learned long-range semantic information
through an innovative convolutional attention module and
created a hierarchical local-to-global context structure using the
fully convolutional Wide-Focus module. Global and local
information were crucial for image segmentation tasks. By
combining CNN with Transformer, the strengths of both
architectures were fully utilized. Specifically, convolution
operations captured detailed features in local regions, while the
Transformer structure provided overall context and structural
information. This fusion of local features and global context
improved segmentation performance.

Nevertheless, the limitations of traditional segmentation
methods and deep learning segmentation algorithms in dealing
with the task of accurately segmenting vessel structures cannot be
overlooked. From a technical point of view, traditional segmentation
methods tend to rely on expert experience and specific parameter
settings to extract features when segmenting blood vessel
information. These methods are more suitable for data with high
image quality and clear vessel structure. They struggle with scenes
that have minimal contrast variation and are unable to fully access
the rich vessel information contained in fundus images. Deep
learning algorithms are powerful in capturing vessel features, but
the current shortage of medical image data inevitably leads to issues
of model overfitting and insufficient generalization. Moreover, from
an application perspective, the aforementioned methods are
predominantly applied to unimodal images. One method may
excel in handling vessel segmentation tasks in the CF images, yet
its vessel representation ability may not be effectively extended to the
OCTA images.

Therefore, based on the above analysis, to address the issues of
insufficient segmentation of fundus vessel details and weak
generalization of existing algorithms, we put forward a novel
vessel segmentation model called DS2TUNet based on the
TransUNet, to achieve accurate segmentation of vessel structures
and boost the generalization performance of the vessel segmentation
model. This motivation drives the following contributions of
this paper:

(1) The dual downsampling operation generates two sets of
sampled features for the double skip connection module.
ResNetV1 downsampling focuses on local feature
extraction using residual connections, while dilated
convolution downsampling captures global information by
expanding the receptive field. The Transformer integrates
both local and global features, enhancing vessel extraction.

(2) The double skip connection module combines these
intermediate features and passes the concatenated map to
the decoder’s upsampling layer. This enriches feature fusion,
retains detailed information, and improves segmentation
accuracy compared to layer-by-layer passing alone.

(3) The deep supervision module supervises training through
segmentation results from different layers. It mitigates
gradient vanishing and enhances segmentation accuracy,
particularly in complex vessel structures.

The remaining structure of this paper is as follows: Section 2
describes related works. Section 3 details the implementation of our
proposed method. Section 4 presents the materials and the
experiments and discussions. Section 5 concludes the research.

2 Related work

2.1 TransUNet

TransUNet employs the R50-ViT-B_16 model as its foundation
to enhance feature extraction and segmentation accuracy. This
module serves as a feature extractor, comprising ResNet50
(Carion et al., 2020) integrated with the ViT (Dosovitskiy et al.,
2021) (Vision Transformer). ResNet50 excels at extracting rich low-
level features from an image, capturing fine structure and texture
details that enhance its feature extraction capabilities. When an
image is input, high-level feature extraction is initially performed
using the ViT model to obtain global features. These high-level
features are then combined with the low-level features extracted by
ResNet50. The intermediate and low-level feature maps obtained by
the feature extractor are connected to the decoding module’s feature
maps through skip connections. This design leverages ResNet50’s
strengths in low-level feature extraction and ViT’s proficiency in
capturing high-level global features. By effectively fusing features at
different levels, it significantly enhances the performance and
accuracy of TransUNet.

The input image dimensions are transformed into a series of
sequences with positional information through a patch embedding
module. This transformation allows for parallel processing and
efficient utilization of global information. The input image
x ∈RH×W×C{ } is tokenized and transformed into a series of 2D
patch sequences xi

p ∈ RP2C | i � 1, . . . . . . , N{ }. Where H × W is
the image resolution, C is the number of image channels, P2 is
the size of each patch, and N � HW

P2 is the number of patches.
The Transformer module contains 12 layers of the Transformer

network, and each encoder layer consists of a multi-head self-
attention mechanism (MSA), a multi-layer-perceptron (MLP),
and a layer normalization (LN). The sequence outputs after MSA
and MLP are represented by Equations 1 and 2. The structure of the
Transformer layer is illustrated in Figure 2.
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z′l � MSA LN zl−1( )( ) + zl−1 (1)
zl � MLP LN z′l( )( ) + z′l (2)

where zl−1 is the output of the previous layer, zl is the output of layer
l and serves as the input to the next layer, and z′l is the output of the
MSA connected to the residual of zl−1.

TransUNet employs a hybrid CNN-Transformer architecture as
an encoder to achieve precise localization (Carion et al., 2020). The
structure is shown in Figure 3.

In the multi-head self-attention mechanism, multiple q, k, and v
vectors form matrix Q, K, and V, respectively. The parameters of each
combination are decomposed into different subspaces to compute the
attention weights. After several parallel computations, the results are
concatenated in the channel dimension and combined to obtain the
attention information in all subspaces. Where Q is the query matrix,K
is the key matrix, and V is the value matrix.

TransUNet introduces the cascaded upsampler (CUP), consisting
of multiple upsampling modules. Each module is tasked with
upsampling the feature map and fusing it with the feature map
from the subsequent level. This cascaded structure facilitates a
gradual increase in resolution and the fusion of information across

multiple scales. The feature sequence output from the Transformer is
reshaped by implementing the CUP with four upsampling blocks. The
reshaped feature maps are subsequently upsampled three times in
sequence to produce feature maps with varying dimensions. The
skip connection is employed to reach the fusion of features at
different resolution levels and to recover the low and intermediate-
level details lost during downsampling.

TransUNet allows each feature decoder to employ bilinear
interpolation as an upsampling method, which increases the
resolution of the feature maps to match the original input image
dimensions, thereby recovering the segmentation results.
Furthermore, the outputs of the feature encoder and feature
decoder are connected via skip connection to retain more details,
thereby augmenting segmentation accuracy.

2.2 ResNetV1

ResNet (Residual Network) is a widely adopted deep convolutional
neural network architecture, initially designed by He et al. (2016). The
version of ResNet implemented in TransUNet is ResNetV1. The core
concept of ResNetV1 is the introduction of “shortcut connections,”
which allows the network to directly learn the residuals between inputs
and outputs. A residual block typically comprises two or three
convolutional layers, each immediately followed by the Batch
Normalization and a ReLU activation function. The shortcut
connections can be either identity mappings, where the input is
directly added to the output, or dimension-matching connections
using 1 × 1 convolutional layers. The fundamental structure of
ResNetV1 consists of multiple residual blocks stacked on top of
each other. It is available in several variants, including ResNet-18,
ResNet-34, ResNet-50, ResNet-101, and ResNet-152. For instance,
ResNet-50 begins with a convolutional and pooling layer (Conv +
MaxPool), followed by four stages, each stage containing a different
number of residual blocks, and concludes with a global average pooling
layer and a fully connected layer. ResNetV1 is extensively utilized in
tasks such as image classification, object detection, and semantic
segmentation. Its simple and efficient architecture is straightforward
to implement across various deep learning frameworks.

3 The proposed methods

3.1 Structure of the improved model

On basis of the aforementioned technical research and
inspiration from the TransUnet architecture, this section officially

FIGURE 2
Transformer layer structure (Chen et al. 2021).

FIGURE 3
MSA structure.
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constructs a novel fundus vessel segmentation model. The structure
of the improved model is illustrated in Figure 4. First, through the
dual downsampling operation of ResNetV1 downsampling and
dilated convolution downsampling, two sets of feature maps with
different scales and receptive fields are extracted from the fundus
images. This allows for fully capturing the contextual information of
the complex fundus vessel structures, achieving better feature
representation. The final output hidden features from
ResNetV1 downsampling are then serialized and fed into the
Transformer encoder for processing and reassembling into a
complete feature map. The downsampling features are then fused
by double skip connections at the upsampling stage. Finally, a deep
supervision signal is added to each upsampling output feature and
weighted to compute the target loss. The high-resolution feature
maps are input to the segmentation header to obtain the final
segmentation result.

3.2 Methods

The construction of DS2TUNet is primarily introduced in three
parts: the dual downsampling operation, the double skip connection
module and the deep supervision module. The model improves
fundus image feature extraction by integrating ResNetV2. The
downsampled intermediate features are fed into the model’s
upsampling stage through the double skip connection module.
This process effectively integrates both global and local features.
Finally, the utilization of intermediate output features of the decoder

is further optimized through deep supervision, which strengthens
segmentation accuracy.

3.3 Dual downsampling operation

In TransUNet’s original downsampling structure, convolution
and pooling operations have a limited receptive field, often resulting
in a loss of contextual feature information. Introducing dilated
convolution, which inserts cavities between elements in the
convolution kernel, expands the receptive field without increasing
the number of parameters and computational complexity. By
replacing traditional standard convolutional operations, it
becomes possible to capture a broader range of contextual
information. This boost is particularly beneficial for handling
complex physiological structures like the fundus vasculature,
which exhibits long-distance dependencies. This is illustrated in
Figure 5, which shows standard convolution and dilated convolution
with a dilation rate of 2.

In our model, the original downsampling structure is retained,
and a dilated convolution downsampling structure is added in
parallel to obtain a broader range of contextual information for
feature enhancement. The added downsampling module is further
optimized using the ResNetV2 structure. The overall structure of
ResNetV2 is similar to ResNetV1, but the order within each residual
block is different. In ResNetV2, the positions of the Batch
Normalization (BN) and ReLU activation functions are moved to
before the convolutional layer from after it.

FIGURE 4
The DS2TUNet model structure.
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Residual operations are described in Equations 3 and 4

yResNetV1 � x + ReLU BN Conv x( )( )( ) (3)
yResNetV2 � x + Conv ReLU BN x( )( )( ) (4)

This augmentation is termed the “Pre-activation Residual Block,”
which helps facilitate gradient flow and mitigates the gradient vanishing
problem. The pre-activation design provides regularization by
normalizing the inputs to the convolutional layers. This normalization
reduces the internal covariate shift, which is the change in the distribution
of layer inputs during training. This reduction achieves amore robust and
generalized model that performs better on unseen data. The specific
structure of the residual block is shown in Figure 6, where “weight” refers
to the convolutional layer.

The architectural advancements in ResNetV2 enhance performance
and training stability, especially for deep networks. This makes
ResNetV2 a compelling choice for a variety of applications. The
improved dual downsampling operation augments the extraction of
global and local features of the fundus vasculature and provides input
data for subsequent double skip connections for feature fusion.

3.4 Double skip connection module

Skip connection is a feature of the traditional U-Net, where feature
maps from the encoder are passed directly to the corresponding level of
feature maps in the decoder. This connection helps preserve low-level
feature information and avoid information loss, which enhances the
recovery of microvessel details in fundus images and improves
segmentation accuracy. Additionally, skip connections allow
gradients to pass directly, thus improving gradient flow and
mitigating the gradient vanishing problem.

However, the relatively limited receptive field of this operation still
results in the loss of some contextual information. To address this issue
mentioned in the previous subsection, we generate additional feature
information using dilated convolution while preserving the original

downsampling features. After downsampling each layer, we obtain both
the original features and the dilated convolution features. These features
are passed to the corresponding layer through two skip routes and then
concatenated with features from the upsampling process along the
channel dimension. This process forms the double skip connection
module. The specific structure of the double skip connection module is
shown in Figure 7.

This approach not only helps retain detailed information but
also addresses the gradient vanishing issue often encountered in
deep architectures. Specifically, this module utilizes two skip routes.
Skip1 passes the original downsampling features from the traditional
U-Net, helping to preserve low-level feature information and retain
microvessel details during the decoding process. Skip2 delivers
features generated by dilated convolution, which expands the
receptive field and captures more contextual information, aiding
in the accurate identification of microvessels. These two sets of
features are then concatenated along the channel dimension with the
upsampling features, creating a rich feature fusion.

Assuming the original feature map obtained at layer l in the
encoder isXl, the feature map obtained by dilated convolution isDl,
and the feature map obtained at layer L − l in the decoder is YL−l,
then the skip connection can be represented by Equation 5.

YL−l � Upsample YL− l+1( )( ) +Xl +Dl (5)

One of the key advantages of the double skip connection module
is its impact on gradient flow. By providing dual pathways for
feature propagation, the module mitigates the vanishing gradient
problem more effectively than single skip connection. The dual
pathways allow for a smoother gradient flow, especially in deep
networks, thereby enhancing the stability and convergence speed of
the training process. The visual representation of this module in
Figure 7 clearly illustrates the flow of features through the double
skip connection. The original features (skip1) and dilated features
(skip2) are merged with the upsampling features to form a
comprehensive feature map that is rich in both local and global

FIGURE 5
Different convolutional structures.
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information. It excels in preserving micro-level details while
capturing macro-level structures. This is critical for tasks like
fundus vessel segmentation, where both small capillaries and
larger vessels must be accurately segmented.

To validate the impact of the double skip connection module,
ablation studies were conducted on fundus image datasets. These
studies compared the performance of the DS2TUNet model with
and without the double skip connections. The results showed a
marked improvement in segmentation performance when the
double skip connections were employed, which underscores the
module’s contribution to the model’s overall performance.

Introducing double skip connections further utilizes global
contextual information to enable the model to better understand
and process complex structures in images, particularly fundus vessel
structures with complex topologies and long-distance dependencies.
This allows themodel to better adapt to different types of images and
structures, thereby enhancing its generalization ability across
various datasets.

FIGURE 6
Residual block structures of ResNet.

FIGURE 7
Double skip connection module structure.
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3.5 Deep supervision module

The model utilizes an end-to-end network structure to calculate
the loss by introducing deep supervision. The target loss function
consists of two components: the deep supervision auxiliary loss
(LDS) and the main segmentation loss (LMS). The model
incorporates deep supervision signals at each layer of the
upsampling output results. It applies convolution operations to
adjust the channel number of the upsampling output and uses
bilinear interpolation to adjust its size. The loss is then computed
with the ground truth at different layers.

The model’s basic loss function is computed using cross-
entropy loss:

LCE � − 1
N

∑
N

i�1
yi log ŷi( ) + 1 − yi( )log 1 − ŷi( )( ) (6)

where N is the number of pixels in the input image, ŷi is the
predicted output probability of the pixel, and yi is the true value
pixel. LMS is the loss value computed using the cross-entropy loss
function for the main segmentation result.

The LDS is computed from the loss function:

LDS � ∑
3

i�1

1
2i
LCEi (7)

where the hyperparameter 1
2i is the weight coefficient of the deep

supervision auxiliary loss. Since the deeper the layer in upsampling,
the greater the risk of gradient vanishing, larger weights are assigned
to the deeper layers in the upsampling. Combining Equations 6 and
7, the final objective function is formulated as shown in Equation 8.

L � LDS + LMS (8)

4 Results and discussions

4.1 Fundus image datasets and
experimental settings

The fundus image datasets utilized in the experiment comprises
two types: the public CF datasets, including DRIVE and CHASDE_
DB1, and the public OCTA dataset ROSE-1, as well as a clinical
dataset provided by the Affiliated Eye Hospital of Nanjing Medical
University with patients diagnosed with Central Serous
Chorioretinopathy (CSC). Patients’ privacy information has been
meticulously desensitized. All images have corresponding labeled
images. The public datasets are divided into training and testing sets,
while the clinical dataset is exclusively designated for testing to
further validate the model’s effectiveness. The DRIVE dataset
consists of 40 pairs, with 20 pairs in the training set and 20 pairs
in the testing set. The CHASE_DB1 dataset contains 28 pairs, with
200 pairs in the training set after data augmentation and 8 pairs in
the testing set (Su et al., 2023). The ROSE-1 dataset includes 30 pairs,
with 200 pairs in the training set after data augmentation and
10 pairs in the testing set. The CSC dataset consists of 20 pairs,
all of which are allocated for testing.

Table 1 presents the epoch, input size, learning rate, batch size,
and optimizer settings employed during training for different

datasets. Due to the hardware constraints of the training device,
the specific settings are tailored to optimize model performance
within these limitations.

The implementation of each module in the proposed method is
based on the Python programming language, with the PyTorch
framework selected as the development platform for training and
testing DS2TUNet. The NVIDIA 4080 graphics card provides the
primary computing support.

4.2 Evaluation metrics

To evaluate the segmentation performance of the proposed
method, we performed qualitative and quantitative analysis.
Qualitative analysis involves comparing the loss curves during
the training of different models and directly comparing the vessel
segmentation results to assess segmentation quality. Quantitative
analysis directly compares the values of the following evaluation
metrics: Accuracy (ACC), Specificity (SP), Sensitivity (SE) and F1-
score. Accuracy indicates the proportion of correctly segmented
pixels in the entire image. Specificity indicates the proportion of
correctly segmented background pixels. Sensitivity indicates the
proportion of correctly segmented blood vessel pixels. F1-score
measures the similarity between the segmentation results and the
ground truth. The related metrics are calculated as presented in
Equations 9–12.

ACC � TP + TN

TP + TN + FP + FN
(9)

SP � TN

TN + FP
(10)

SE � TP

TP + FN
(11)

F1 � 2TP
2TP + FP + FN

(12)

where TP (True Positive) represents pixels correctly predicted as
vessel, TN (True Negative) represents pixels correctly predicted as
non-vessel, FP (False Positive) represents pixels incorrectly
predicted as vessel, and FN (False Negative) represents pixels
incorrectly predicted as non-vessel.

4.3 Discussion on the dilation rate of the
double skip connection module

Dilated convolution extends the receptive field without
adding additional parameters or increasing computational
complexity. This helps in capturing both global and detailed
information, making it suitable for segmenting complex
structures like fundus blood vessels. However, it can suffer
from the gridding effect, which may lead to sparse feature
maps and information loss, affecting the capture of fine
structures. Therefore, a suitable dilation rate needs to be
carefully selected to balance the extension of the receptive
field with the effectiveness of feature extraction. By comparing
the results of the base model and models with dilation rates of 2,
3, 5, and 7, the impact of dilated convolutions on overall
performance can be understood. The dilation rates of 2, 3, 5,
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and 7 are selected for the comparison experiments because a
dilation rate of 1 is practically equivalent to a standard
convolution. These rates include small, medium, and large
dilations. They enable a comprehensive assessment of how
dilated convolutions impact model performance. Before the
experimental analysis, the meanings of relevant terms involved
in the process are explained in advance. BM means base model,
and DR is an abbreviation for dilation rate, and the number
immediately following it represents the size of the dilation rate,
e.g. DR-2 means a dilution rate of 2. The fundus images used for
the experiment is from the DRIVE dataset.

4.3.1 Qualitative analysis
Figure 8 shows the loss curves of model with different dilation

rates. It can be seen that adding an additional downsampling process
does not significantly affect the convergence speed of the model. The
loss curves of all models including BM and models with different
dilation rates configurations decrease rapidly in the first few epochs,
which indicates that the model can effectively learn the
characteristics of the data in the initial training phase. Moreover,
after about 20 epochs, the loss values of all models tend to be stable

and maintain low fluctuations in subsequent training. Although the
model loss curves of different dilation rates almost overlap, in
practical applications, these small differences may have a
significant impact on specific evaluation metrics of the model
such as SE and SP. This situation can be demonstrated in the
quantitative analysis that follows.

Figure 9 illustrates the comparison of the actual segmentation
results of the models with different dilation rates. To highlight the
differences in segmentation outcomes, we not only provide the
segmentation results of the entire fundus images but also zoom
in to showcase local details in both typical thick-vessel regions and
fine-vessel regions.

It is evident that the base model struggles to accurately
capture the continuity of blood vessels, resulting in noticeable
gaps and fragmented vessel structures. Additionally, it either
fails to detect some blood vessels or over-segments the image,
which results in misclassifying background areas as blood
vessels. Conversely, models with dilation rates of 3 and
5 demonstrate a significantly improved ability to maintain
vessel continuity and accurately delineate blood vessel
boundaries. These models reduce instances of both under-

TABLE 1 Parameter settings for different datasets during training phase.

Datasets Epoch Input size Learning rate Batch size Optimizer

DRIVE 300 512 × 512 0.005 4 Adam

CHASE_DB1 300 512 × 512 0.005 4 Adam

ROSE-1 300 304 × 304 0.005 8 Adam

FIGURE 8
Training loss curves for models with different dilation rates.
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segmentation and over-segmentation, providing more precise
and reliable segmentation output. Models with dilation rates of
2 and 7, while performing better than the base model, still exhibit
some issues. The dilation rate of 2 results in minor blood vessel
breakages and occasional over-segmentation, whereas the
dilation rate of 7 produces smoother but less precise
segmentation, sometimes merging adjacent vessels or missing
finer vessel details.

4.3.2 Quantitative analysis
As shown in Table 2, the use of dilated convolution enhances the

model’s performance. Bold values in the table indicate the maximum
value for this evaluationmetric for the models listed. Themeaning of
the bold values in subsequent tables remains the same. By
comparing the base model with models using different dilation
rates, substantial advancements in segmentation performance are
observed. Considering the evaluation metrics, the dilation rate of
3 emerges as the most suitable configuration for the
following reasons:

Firstly, the model with a dilation rate of 3 exhibits a substantial
amelioration in SE, achieving a value of 0.7986. This represents an
increase of approximately 2.85% compared to the base model. This
indicates a significant boost in the model’s ability to accurately
identify true positives. Additionally, the ACC of the model with a
dilation rate of 3 shows a slight improvement, increasing by about
0.2% over the base model.

While the F1-score for the model with a dilation rate of 3 is
slightly lower than that of the model with a dilation rate of 7 by about

0.02%, it still shows a notable upgrade of about 1.38% over the base
model. Furthermore, the model with a dilation rate of 3 maintains
high SP, only around 0.14% below the base model, with a value of
0.9831, which proves its effectiveness in accurately identifying
true negatives.

In conclusion, the integration of dilated convolution into the
model architecture significantly enhances model’s performance in
segmenting fundus vessels. Both qualitative and quantitative
analysis indicate that choosing an appropriate dilation rate is
crucial. Considering that too large a dilation rate will lead to a
gridding effect in the model, which results in the loss of local feature
information, the final dilation rate used in this model is chosen to be
3. This configuration balances maintaining vessel continuity and
minimizing segmentation errors.

4.4 Discussion on ablation experiments for
each module of the model

To verify the effectiveness of DS2TUNet, we performed ablation
experiments on each module of the model. M1 denotes the
TransUNet model, also known as the base model in this paper.
M2 represents the base model combined with the double skip
connection module with a dilation rate of 3. M3 signifies the
base model combined with the deep supervision module.
M4 denotes the DS2TUNet model, which combines both the
double skip connection module with a dilation rate of 3 and the
deep supervision module. The datasets used for the ablation
experiments are DRIVE and CSC. The CSC is utilized for
ablation experiments involving two sets of model weights: one set
trained on the DRIVE as W1 and the other trained on the
CHASE_DB1 as W2.

The reason for performing ablation experiments on the clinical
dataset CSC is that clinical data of CSC patients contain specific
imaging features and clinical manifestations, such as subretinal fluid
accumulation, which may be underrepresented in publicly available
datasets. Performing ablation experiments on these data allows for a
better understanding of the model’s dependence on disease-specific
features and ensures that it provides reliable diagnostic support in
real-world clinical applications.

FIGURE 9
Comparison of model segmentation results with different dilation rates. (A) CF image (B)Ground Truth (C) BM (D) DR-2 (E) DR-3 (F)DR-5 (G) DR-7.

TABLE 2 Comparison of test evaluation metrics for models with different
dilation rates.

Model F1-score ACC SE SP

BM 0.7979 0.9635 0.7701 0.9845

DR-2 0.8111 0.9654 0.7945 0.9826

DR-3 0.8117 0.9655 0.7986 0.9831

DR-5 0.8115 0.9656 0.7960 0.9824

DR-7 0.8119 0.9652 0.7960 0.9825
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4.4.1 Qualitative analysis
The general trend of all models during the training period was

experimentally found to be similar to the previous subsection, so the
training curves is not shown at this stage. Figure 10 shows the
segmentation results after adding different modules. The first row
represents the segmentation results of DRIVE. The second and third
rows represent the segmentation results of CSC clinical images using
W1 weights. The fourth and fifth rows represent the segmentation
results of the same CSC clinical images using W2 weights. The
purpose of the third and fifth rows is to highlight that the model still
performs well on clinical data with blood issues, such as uneven
contrast, inappropriate exposure, and severe lesions.

From the Figure 10, it can be observed that the M4 model can
completely segment the coarse blood vessel structure and also
capture local details to segment the microvessels. The M3 model
is more capable of segmenting the coarse blood vessels but tends to
ignore some details. The M2 model can segment the microvessels
well but is slightly less capable of segmenting the thick blood vessels.
It can also be noticed that all models using W2 weights are able to
segment coarser vessels but lose a lot of fine vessel information
compared to models using W1. This is due to the fact that the
CHASE_DB1 dataset itself is highlighting coarse vessel information.

4.4.2 Quantitative analysis
The experimental results on the DRIVE and CSC datasets are

presented in Tables 3 and 4 below. From the data in Table 3, it is
evident that the inclusion of the double skip connection module and
the deep supervision module significantly elevates the performance
of the model, especially in terms of F1-score and SE. The M2 model
with the introduction of the double skip connection module has
been analyzed in detail in the previous experimental section. The
M3 model, with the deep supervision module, performs better than
the base model. This indicates that the deep supervision module
ameliorates the model’s learning ability and stability. It efficiently

conveys gradient information during training, which boosts the
model’s capability to detect fine structures like blood vessels. The
final DS2TUNet model shows a more comprehensive augmentation,
with F1-score, ACC, and SE improving by 2.16%, 0.29%, and 3.7%,
respectively, while SP decreases by only 0.22%.

The results of the ablation experiments of the clinical dataset
CSC under both sets of weights in Table 4 also further confirm the
validity of the model modules as well as the overall stability. Under
W1 weights, the M4 model gets optimal results in F1-score, ACC
and SE. The performance of each improved model in SP also
highlights the effectiveness of each module. With W2 weights,
the M4 model achieves the best results in all evaluation metrics.

The ablation experiments indicate that although the addition of
individual module provides advancement over the base model, the
combination of double skip connections and deep supervision
delivers the most significant enhancement across all metrics. This
synergy likely stems from the complementary strengths of the
modules, where double skip connections facilitate better feature
propagation, and deep supervision ensures more accurate gradient
flow during training.

In summary, the integration of skip connections and deep
supervision into the base model substantially promotes the
model’s performance of vessel segmentation in clinical dataset.

FIGURE 10
Segmentation results of ablation experiments on the CF datasets. (A) CF image (B) Ground Truth (C) M1 (D) M2 (E) M3 (F) M4.

TABLE 3 Results of ablation experiments on the DRIVE dataset.

Model F1-score ACC SE SP

M1 0.7979 0.9635 0.7701 0.9845

M2 0.8117 0.9655 0.7986 0.9831

M3 0.8005 0.9650 0.7894 0.9836

M4 0.8195 0.9664 0.8071 0.9823
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The results highlight the crucial role of modular developments in
advancing deep learning models for medical image analysis.

4.5 Discussion of segmentation
performance of different models

In the previous sections, we discussed the effectiveness of various
modules integrated into the DS2TUNet model, particularly the
double skip connections and deep supervision. We have shown
through both qualitative and quantitative analyses that these
modular developments significantly enhance the model’s
performance in segmenting blood vessels from fundus images.

4.5.1 Qualitative analysis
To intuitively compare the segmentation performance of

different models, we present the visualization results of several
models, including U-Net (Ronneberger et al., 2015), R2UNet
(Alom et al., 2019), Attention U-Net (Schlemper et al., 2019),
and the proposed method, in Figure 11. The top row represents
the segmentation results of DRIVE. The bottom row represents the
segmentation results of CHASE_DB1.

As the original model, U-Net produces unsatisfactory
segmentation results. Many thin vessels are missing in the
segmentation masks generated by U-Net, particularly in CHASE_
DB1 dataset. Additionally, the localization of thick vessels is often
inaccurate, as seen in the DRIVE dataset, with numerous
misclassifications. R2U-Net, which utilizes a recurrent
convolutional structure to accumulate features, captures more
detailed information, but this detail tends to be fragmented,
resulting in poor continuity, especially for thin vessels on

CHASE_DB1. Attention U-Net improves on this by embedding a
gated attention mechanism that enhances vessel information
propagation while suppressing irrelevant features, yielding better
segmentation outcomes than U-Net and R2U-Net.

The proposed method further improves segmentation for both
thick and thin vessels over Attention U-Net. When comparing thin
vessel segmentation across all three datasets, the proposed method
captures more detailed thin vessel features with improved continuity.
For thick vessels, it achieves more accurate localization and
segmentation. Overall, the proposed method demonstrates greater
robustness and consistently produces segmentation results that are
closest to the ground truth across all three datasets.

4.5.2 Quantitative analysis
To evaluate the effectiveness of the DS2TUNet model, we

perform a quantitative analysis with several established
segmentation models using the DRIVE and CHASE_
DB1 datasets. Tables 5 and 6 present the detailed evaluation
metrics of the DS2TUNet model against its counterparts. The
results exhibit how DS2TUNet stands in terms of its ability to
accurately and reliably segment blood vessels compared to other
models. This comparative analysis helps to understand the practical
benefits and potential areas for improvement in DS2TUNet’s
performance, offering a comprehensive view of its effectiveness in
real-world applications.

By comparing different models on the DRIVE dataset, our
model certificates significant performance across several key
metrics. Relative to the listed methods, our model accomplishes
the highest ACC value of 0.9664, approximately 0.54% better than
the top-ranked model. Our model excels in SE, reaching 0.8071,
about 0.18% higher than the other model, showcasing its strong

TABLE 4 Results of ablation experiments on the CSC dataset.

Model F1-score ACC SE SP

W1 W2 W1 W2 W1 W2 W1 W2

M1 0.7607 0.7640 0.9375 0.9323 0.7943 0.7675 0.9783 0.9599

M2 0.7649 0.7730 0.9408 0.9362 0.7824 0.7602 0.9840 0.9659

M3 0.7722 0.7676 0.9406 0.9355 0.8059 0.7436 0.9799 0.9679

M4 0.7747 0.7757 0.9415 0.9688 0.8072 0.8141 0.9807 0.9801

FIGURE 11
Segmentation results of different models on CF image datasets. (A) CF image (B) Ground Truth (C) U-Net (D) R2U-Net (E) Attention U-Net (F)Ours.
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capability to correctly identify blood vessels. Additionally, our model
also performs well in the SP, achieving a result of 0.9823 slightly
lower than Schlemper’s result. Other models also show impressive
performance. For example, Guo’s model attains an optimal F1-score
of 0.8289. Although our model’s F1-score of 0.8195 is slightly lower
than some other models, it still maintains a considerable competitive
edge. The above data highlights the effectiveness and reliability of
our model in the task of vessel segmentation on the DRIVE dataset.

Similarly, based on the comparison of different models on the
CHASE_DB1 dataset, our model exhibits notable performance
across various metrics. It reaches the highest F1-score of 0.8362,
outperforming other models listed with an improvement of roughly
1.26% over the next best model. In terms of ACC, our model also
excels with a value of 0.9741, significantly higher than other models,
with an increment of about 0.61% over the closest model. The SE of
our model is 0.8101, which is competitive, though slightly lower than

TABLE 5 Comparison of different models in DRIVE dataset.

Model F1-score ACC SE SP

Ronneberger et al. (2015) 0.8142 0.9531 0.7537 0.9820

Fu et al. (2016) --- 0.9533 0.7603 0.9776

Yan et al. (2018a) --- 0.9542 0.7653 0.9818

Alom et al. (2019) 0.8171 0.9556 0.7792 0.9813

Li et al. (2020) 0.8192 0.9557 0.7890 0.9799

Feng et al. (2020) --- 0.9528 0.7625 0.9809

Lv et al. (2020) 0.8216 0.9558 0.7941 0.9798

Du et al. (2021) 0.8204 0.9556 0.7814 0.9810

Li et al. (2016) --- 0.9527 0.7569 0.9816

Schlemper et al. (2019) 0.8218 0.9610 0.7819 0.9834

Alvarado-Carrillo and Dalmau-Cedeño, (2022) 0.8269 0.9575 0.7966 0.9810

Liu et al. (2023) 0.8229 0.9561 0.7985 0.9791

Guo, (2023) 0.8289 0.9571 0.7934 0.9810

Kumar et al. (2023) 0.8262 0.9568 0.8053 0.9789

Ours 0.8195 0.9664 0.8071 0.9823

TABLE 6 Comparison of different models in CHASE_DB1 dataset.

Model F1-score ACC SE SP

Ronneberger et al. (2015) 0.7936 0.9604 0.7621 0.9824

Orlando et al. (2016) 0.7332 --- 0.7277 0.9712

Yan et al. (2018a) --- 0.9610 0.7633 0.9809

Alom et al. (2019) 0.7810 0.9622 0.7459 0.9836

Li et al. (2020) 0.8037 0.9620 0.7798 0.9822

Lv et al. (2020) 0.7892 0.9608 0.8176 0.9704

Du et al. (2021) 0.7813 0.9590 0.8195 0.9727

Li et al. (2016) --- 0.9581 0.7507 0.9793

Schlemper et al. (2019) 0.8180 0.9680 0.7954 0.9841

Alvarado-Carrillo and Dalmau-Cedeño, (2022) 0.8098 0.9653 0.8042 0.9826

Liu et al. (2023) 0.8236 0.9672 0.8020 0.9794

Guo, (2023) 0.8021 0.9650 0.7645 0.9846

Kumar et al. (2023) 0.7875 0.9591 0.8443 0.9704

Ours 0.8362 0.9741 0.8101 0.9869
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Kumar’s result, which reports the highest SE of 0.8443. This
difference of nearly 3.42% is offset by our model’s superior
performance in other metrics. Additionally, our model achieves
the highest SP, i.e. 0.9869. These results underscore our model’s
effectiveness and reliability in vessel segmentation tasks on the
CHASE_DB1 dataset.

In summary, our model exhibited notable robustness and
reliability in vessel segmentation tasks, attaining strong F1-score,
ACC, and leading SE and SP across both datasets. These combined
results highlight the model’s capability to perform precise fundus
vessel segmentation, making it a valuable tool for fundus
image analysis.

4.6 Segmentation effects on the
OCTA dataset

OCTA images are acquired using optical coherence
tomography, which mainly depict the structure of the vessel
network with high resolution and obvious vessel contrast and are
suitable for detailed analysis of the microstructure of the retinal
vasculature and its lesions. CF images, on the other hand, are
acquired by conventional fundus photography, and their vessel
details are not as clear as those of OCTA, which is only suitable
for routine fundus examination. Therefore, it is necessary to
segment the blood vessels in OCTA images. The experiments

FIGURE 12
Segmentation results of ablation experiments on the ROSE-1 dataset. (A) OCTA image (B) Ground Truth (C) M1 (D) M2 (E) M3 (F) M4.

TABLE 7 Results of ablation experiments on the ROSE-1 dataset.

Model F1-score ACC SE SP

M1 0.8323 0.9559 0.7947 0.9817

M2 0.8345 0.9563 0.8043 0.9805

M3 0.8390 0.9548 0.8553 0.9709

M4 0.8425 0.9557 0.8586 0.9713

FIGURE 13
Segmentation results of different models on ROSE-1 dataset. (A) OCTA image (B) Ground Truth (C) U-Net (D) Res-Unet (E) CE-Net (F) CS-Net
(G) Ours.

TABLE 8 Comparison of different models in ROSE-1 dataset.

Model F1-score ACC SE SP

Ronneberger et al. (2015) 0.7116 0.8955 0.8125 0.9783

Zhang et al. (2018) 0.7461 0.9098 0.9170 0.9578

Gu et al. (2019) 0.7511 0.9121 0.9167 0.9605

Jin et al. (2019b) 0.7505 0.9118 --- ---

Mou et al. (2019) 0.7608 0.9152 0.8641 0.9754

Yan et al. (2018b) 0.7663 0.9179 --- ---

Ma et al. (2020) 0.7697 0.9182 --- ---

Ours 0.8425 0.9557 0.8586 0.9713
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performed above are based on the CF datasets. To further investigate
the generalization ability of the model, we conduct experiments on
the OCTA dataset ROSE-1. The experiments include ablation
experiments of different modules in the model and performance
comparison experiments with different models.

4.6.1 Ablation experiments
The model nomenclature for this part of the ablation

experiments is the same as that of the ablation experiments on
the CF dataset. The segmentation results are shown in Figure 12. The
result of the quantitative analysis is shown in Table 7. By comparing
with the ground truth, we observe that the segmentation results of
models M2 and M3 show advancements after integrating different
modules, which alleviates issues of vessel omission and over-
segmentation seen in the initial model. Additionally, it is evident
that the final model M4 yields results most closely aligned with the
ground truth.

As shown in Table 7, except for the SP value where the basic
model performs best, the improved models outperform in all other
indicators. The data of M2 and M3 can reflect that the performance
of the model segmentation OCTA dataset is elevated after adding the
double skip connection module and the deep supervision module.
The M2 model performed well in ACC, with a maximum of
0.9563 among all models. The M3 model is 6.06% higher than
the basic model M1 in terms of SE. The final model M4 achieved the
maximum value on F1-score and SE. Through ablation experiments,
we further illustrate the effectiveness of each module and the
effectiveness of the overall model for vessel segmentation of the
OCTA dataset from a quantitative perspective.

4.6.2 Performance comparison experiments
To evaluate the ability of the proposed DS2TUNet to segment

fundus vessels in OCTA images, this section compares the proposed
method with four advanced methods on the ROSE-1 dataset,
including U-Net (Ronneberger et al., 2015), Res-Unet (Zhang
et al., 2018), CE-Net (Gu et al., 2019), and CS-Net (Mou et al.,
2019). Res-Unet enhances U-Net by adding a weighted attention
mechanism and modifying the skip connections to improve fundus
vessel segmentation in color fundus images. The segmentation
results of fundus vessels are shown in Figure 13. The quantitative
results of the experiments are as follows Table 8.

Upon observation, the first three comparison methods produce
more white specks, indicating a higher occurrence of vessel
disconnection and poor continuity in the segmented fundus
vessels. Compared to the first three methods, CS-Net achieves
better vessel continuity, likely due to its attention to the
elongated tubular structure of vessels and its design incorporating
this prior knowledge. CS-Net employs 1 × 3 and 3 × 1 kernel
convolutions in the attentionmechanism to capture vessel junctions.
By comparing the magnified regions within the green boxes, the
proposed method results in fewer vessel disconnections and
produces clearer vessel terminations.

According to the comparative analysis of various models on the
ROSE-1 dataset, our model demonstrates superior performance
across critical metrics. It achieves the highest F1-score of 0.8425,
outperforming all other models by approximately 7.28%.
Additionally, our model achieves an ACC of 0.9557. This score is
about 3.75% higher than that of the best listed model. In terms of SE

and SP, our model performs slightly lower compared to some of the
other models in the table, which indicates that the model still has
room for improvement. These metrics highlight the model’s robust
capacity for precise blood vessel segmentation and underscore its
reliability and effectiveness in vessel segmentation tasks on the
ROSE-1 dataset.

In conclusion, the DS2TUNet, model not only performs well in
the task of fundus vessel segmentation on the CF, datasets, but also
shows strong performance on the OCTA, dataset. This highlights
the generalization ability of the model, making it an important tool
for multimodal retinal image segmentation.

5 Conclusion and future work

In this study, we put forward DS2TUNet, a novel deep learning
model for fundus vessel segmentation that integrates the dual
downsampling operation, the double skip connection module,
and the deep supervision module. Our approach leverages the
advantages of dilated convolutions, ResNetV2, and Transformer
to augment feature extraction and improve segmentation accuracy.

By incorporating dilated convolutions, DS2TUNet effectively
captures both local and global features, addressing the complexity of
retinal vessel structures. The dual downsampling operation, which
combines standard and dilated convolutions, significantly boosts
contextual information without increasing computational
complexity. The double skip connection module improves feature
fusion and preserves detailed information across different resolution
levels. It mitigates the loss of contextual information during
downsampling, resulting in more precise segmentation results.
The deep supervision module ensures efficient gradient flow
during training, which reduces the risk of gradient vanishing and
enhances model stability. This module contributes to the accurate
detection of both coarse and fine vessel structures. DS2TUNet
outperforms several state-of-the-art models on the DRIVE and
CHASE_DB1 datasets, achieving the highest ACC and SP, which
demonstrates its robustness and reliability in fundus vessel
segmentation tasks. Additionally, the model shows strong
generalization ability when tested on OCTA dataset, highlighting
its applicability to various types of retinal images and its utility in
clinical settings.

The proposed DS2TUNet model addresses key challenges in
fundus vessel segmentation by effectively balancing the extraction of
local and global features and preserving detailed information
through its innovative network architecture. This study
contributes to the advancement of retinal image analysis,
providing a reliable tool for diagnosing and monitoring various
ocular diseases. Future research can explore the following directions:
enhancing the training dataset with more diverse and augmented
images to improve model generalization and robustness and
integrating DS2TUNet into real-world clinical environments to
validate its practical utility and performance.
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