
Multi-resolution visual Mamba
with multi-directional selective
mechanism for retinal disease
detection

Qiankun Zuo1,2,3, Zhengkun Shi2, Bo Liu4, Na Ping2,
Jiangtao Wang2, Xi Cheng2, Kexin Zhang2, Jia Guo1,2,3*,
Yixian Wu5 and Jin Hong6*
1Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan, China,
2School of Information Engineering, Hubei University of Economics, Wuhan, China, 3Hubei Internet
Finance Information Engineering Technology Research Center, Hubei University of Economics, Wuhan,
China, 4School of Mathematics and Computer Science, Nanchang University, Nanchang, China, 5School
of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China, 6School of
Information Engineering, Nanchang University, Nanchang, China

Introduction: Retinal diseases significantly impact patients’ quality of life and
increase social medical costs. Optical coherence tomography (OCT) offers high-
resolution imaging for precise detection and monitoring of these conditions.
While deep learning techniques have been employed to extract features from
OCT images for classification, convolutional neural networks (CNNs) often fail to
capture global context due to their focus on local receptive fields. Transformer-
based methods, on the other hand, suffer from quadratic complexity when
handling long-range dependencies.

Methods: To overcome these limitations, we introduce the Multi-Resolution
Visual Mamba (MRVM) model, which addresses long-range dependencies with
linear computational complexity for OCT image classification. The MRVM model
initially employs convolution to extract local features and subsequently utilizes
the retinal Mamba to capture global dependencies. By integrating multi-scale
global features, the MRVM enhances classification accuracy and overall
performance. Additionally, the multi-directional selection mechanism (MSM)
within the retinal Mamba improves feature extraction by concentrating on
various directions, thereby better capturing complex, orientation-specific
retinal patterns.

Results: Experimental results demonstrate that the MRVM model excels in
differentiating retinal images with various lesions, achieving superior detection
accuracy compared to traditional methods, with overall accuracies of 98.98\%
and 96.21\% on two public datasets, respectively.

Discussion: This approach offers a novel perspective for accurately identifying
retinal diseases and could contribute to the development of more robust artificial
intelligence algorithms and recognition systems for medical image-assisted
diagnosis.
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1 Introduction

The human body relies on the eyes to perceive external
information. However, the eyes are easily damaged because of
prolonged screen exposure, resulting in frequent vision problems
and serious interference with daily life Rauchman et al. (2022). In
today’s society, the popularity of electronic devices such as mobile
phones and computers makes it almost impossible to work and
study without using electronic screens, which undoubtedly poses a
direct challenge to vision. Long-term immersion in front of
electronic screens often leads to varying degrees of vision damage
Lanzani et al. (2024). Due to the large population base and uneven
distribution of medical resources, not everyone can receive high-
quality medical diagnosis and treatment in time, which increases the
risk of delayed illness andmakes some patients miss the best time for
treatment. According to the World Health Organization,
approximately 2.2 billion people in the world have vision
problems caused by eye diseases Bashshur and Ross (2020). It is
particularly noteworthy that nearly half of these vision impairments
could have been avoided or recovered through effective preventive
measures or early and timely intervention. Therefore, in the field of
clinical research, early detection and accurate diagnosis of eye
diseases Xu et al. (2022); Wan et al. (2023b); Wan et al. (2024b)
are particularly important. Accurate diagnosis of eye diseases can
not only reduce avoidable vision loss, but also improve the quality of
patients’ life.

With the continuous advancements in optimal theory and
technology Wan et al. (2023a); Wan et al. (2024a); Ji et al.
(2024), optical coherence tomography (OCT) technology has

emerged and rapidly penetrated into the medical field Bouma
et al. (2022). OCT has significant advantages such as high
resolution, efficient detection, and non-invasiveness. It can be
used for the detection and diagnosis of retinopathy and has now
become an indispensable routine method in eye examinations Xu
et al. (2023). Figure 1 shows eight examples of retinal disease,
namely, age-related macular degeneration (AMD), choroidal
neovascularization (CNV), central serous chorioretinopathy
(CSR), diabetic macular edema (DME), macular hole (MH),
Drusen, diabetic retinopathy (DR), and normal. However, due
to hardware and equipment factors, OCT images are often mixed
with unavoidable noise during the imaging process, which
undoubtedly increases the complexity and challenge of
diagnosis for doctors. Moreover, OCT is a grayscale imaging
technique. Since the characteristics of small lesions are not
clear enough at the grayscale level, these subtle changes are
often difficult to detect, which increases the risk of missed
diagnosis by doctors. At the same time, although the number
of patients with retinal eye diseases increases year by year, the
number of doctors with professional diagnostic capabilities is
relatively scarce. This contradiction is becoming increasingly
prominent, making it difficult to effectively meet the diagnosis
and treatment needs of a large patient population Daich Varela
et al. (2023). This technology can assist doctors in accurately
assessing patients’ conditions, effectively reducing doctors’
workload, while improving the accuracy of eye disease
screening and diagnosis. It has far-reaching significance for
optimizing the allocation of medical resources and improving
the quality of medical services.

FIGURE 1
Visualization of the eight retinal diseases.
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In the field of medical image processing, convolutional neural
networks (CNNs) have performed well in medical image
segmentation Li et al. (2024); Hong et al. (2022b); Zhang et al.
(2023), image generation You et al. (2022); You et al. (2024), and
image classification Yu et al. (2022); Zong et al. (2024); Zuo et al.
(2023a). By stacking multiple layers of convolution and pooling
layers, CNNs can effectively extract complex features and subtle
lesions in images Hong et al. (2022a), such as microaneurysms and
exudates, which are key signs of diseases such as diabetic
retinopathy. Combined with fully connected layers for feature
integration and classification, CNN models can accurately
distinguish different types of retinal diseases, providing
ophthalmologists with fast and objective preliminary diagnostic
references, thereby improving the diagnostic efficiency and
accuracy and speeding up patient treatment. However, CNN
models have difficulty modeling long-distance dependencies in
images and are sensitive to position translation, which limits
their application in certain complex retinal disease
classification tasks.

Due to its remarkable work in natural language processing, the
transformer network is now gradually entering the field of medical
image computing Zuo et al. (2024); Zuo et al. (2023b), bringing
improvements in performance of the task of retinal disease image
classification Parvaiz et al. (2023). Due to the unique self-attention
mechanism, the transformer-based network is able to deeply analyze
the complex relationship between each pixel and other pixels in the
image, thereby capturing small but important pathological features
in retinal disease images, such as subtle vascular abnormalities and
exudate distribution. This global information integration capability
enables the transformer network to more accurately identify
different types of retinal diseases during the classification process,
providing ophthalmologists with a more reliable and timely
diagnostic basis. Since the network does not consider the spatial
locality of the image, it may not capture detailed features as finely as
CNNs when processing high-resolution medical images and
requires larger data sets and computing resources to train, all of
which limit the application scenarios of transformer-based models
in medical image diagnosis.

Recently, the Mamba network, an innovative deep learning
architecture, has excelled in long-distance relationship modeling
Gu and Dao (2023); Zhu et al. (2024). Through its unique selection
state mechanism, it effectively captures the spatial dependencies
between distant regions in an image and ignores noise interference,
thereby improving the learning efficiency and prediction accuracy of
the model. Inspired by the above observations, we combined the
CNN and Mamba networks and proposed the multi-resolution
visual Mamba (MRVM) model for OCT image classification. The
MRVM model first extracts local features from OCT images using
convolution and then captures global long-range dependencies
through the retinal Mamba. Next, by integrating multi-scale
global features, the model enhances the classification accuracy
and overall performance. The multi-directional selection
mechanism (MSM) within the retinal Mamba improves feature
extraction by focusing on various directions, thereby boosting the
model’s ability to detect complex, orientation-specific retinal
patterns. Finally, the fused multi-scale features are sent to the
classifier to discriminate disease-related OCT images. The
proposed model has the potential to accurately detect retinal

diseases and can be extended to other medical image
classifications. The main contributions of this work are
summarized as follows.

• The proposed MRVM model first extracts local features of
OCT images through the convolution module and then
extracts global long-range dependent features through the
retinal Mamba, significantly improving the performance of
image analysis and recognition tasks.

• We devised the MSM in the retinal Mamba to enhance feature
extraction by focusing on multiple directions of the local
receptive feature map. This enables the model to more
effectively capture complex, orientation-specific patterns in
retinal images, improving the performance of image
classification and retinal disease detection.

• By fusing multi-scale global features, it can capture detailed
lesion characteristics of retinal images at different scales,
further improving the performance of OCT image
classification andmaking the model more robust and accurate.

The subsequent sections of this work are structured as follows:
In Section 2, we review the literature on retinal disease detection. We
detail the innovative MRVMmodel in Section 3 to introduce a novel
approach for detecting retinal disease using OCT images.
Subsequently, Sections 4 and 5 present the experimental setup
alongside comparative prediction outcomes utilizing alternative
methods. Lastly, Section 6 delves into the credibility of this work
and provides concise key findings.

2 Related works

The classification performance of retinal OCT images is also
constantly improving with the advancement of artificial intelligence.
These improved methods mainly focus on local feature learning and
global feature learning.

The first approach focuses on local lesion characteristics. It
deeply analyzes the key lesion signs in the image, such as changes in
the vascular morphology, edema of the optic disc, and abnormal
manifestations of the macular area, and accurately captures the
specific characteristics of these lesions to achieve accurate
classification of the retinal diseases. Rong et al. (2018) proposed
a CNN-based automatic classification method to effectively classify
OCT images through image denoising, mask extraction, and proxy
image generation. This CNN-based method performs well in
evaluation on different databases. Alqudah, (2020) developed a
more powerful CNN-based model to classify five types of retinal
diseases (including AMD, CNV, DME, Drusen, and normal) with an
overall accuracy of 95.3%. Karthik and Mahadevappa (2023)
replaced the residual connection with the contrast of derivatives
in the standard ResNet model. Experimental results on the two
public OCT datasets show at least 1% improvement in the accuracy
estimation. To reduce the model size, Sunija et al. (2021) designed
only six convolutional blocks with downsampling and weight
sharing mechanisms to classify four-label OCT images.
Compared with the existing ResNet-50 model, it uses 6.9% of the
learnable parameters but has a better classification performance.
Considering the previous methods may ignore useful discriminative
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information at different scales, Wang and Wang (2019) designed a
novel CNN-based method to automatically detect AME and AMD,
which shows good classification performance in cross-dataset
adaptability. In addition, Das et al. (2021) proposed a deep
multi-scale fusion convolutional neural network (DMF-CNN) to
extract and fuse different scale features for AMD/DME/normal
classification. The multi-label classification results show excellent
performance and good versatility on the UCSD and NEH datasets.

The second approach is modeling the global diseased areas,
which focuses on the overall information of the image,
comprehensively considers multiple visual elements and
structural features in the image, and does not need to identify
specific lesions separately but directly performs intelligent
analysis on the entire image so as to determine the label of
retinal diseases from a global perspective. Yu et al. (2021) applied
the vision transformer (VIT) to the task of retinal disease
classification. Their framework outperforms CNN models on two
publicly funded image datasets. Shen et al. (2023) incorporated the
clinical prior knowledge to guide the transformer-based network for
retinal disease prediction and achieved superior classification and
good generality on the public nAMD dataset. Hammou et al. (2023)
used the pre-trained state-of-the-art models as the prior knowledge
and fine-tuned these models to classify OCT videos. This method
has potential application in the real-time diagnosis of retinal
diseases. To improve the accuracy and interpretability of these
classification models, He et al. (2023) proposed a transformer-
based model with Swin-poly strategy to classify retinal OCT
images. They achieved state-of-the-art performance on the
OCT2017 dataset, which is superior to that of both vision
transformer (VIT) and convolutional neural network approaches.
A similar work is presented in Playout et al. (2022). Wen et al. (2022)
combined the transformer and CNN to train this hybrid model for

ophthalmic disease classification. This model extracts both local and
global contexts for lesion area extraction and understanding with
considerable accuracy improvement. In addition, they Laouarem
et al. (2024) designed a hybrid model to classify seven retinal
diseases by combining visual transformers and CNN. They
extracted multi-scale local features from OCT images by a
hierarchical CNN and achieved good results on three public
datasets. Hemalakshmi et al. (2024) proposed a SqueezeNet-Vit
model to extract local and global features for more accurate OCT
classification.

3 Methods

The proposed MVRMmodel is illustrated in Figure 2. The input
is an image with the size S × S, and the output is the retinal disease
label. There are three main blocks: the convolutional block, the
retinal Mamba block, and the classifier block. The convolutional
block is used to extract local structures buried in the image by using
local receptive fields and parameter sharing. The local receptive field
allows the convolution kernel to focus on only a small area, thereby
capturing local features. The retinal Mamba focuses on the long-
range dependencies and mines the overall lesion area association in
OCT images. Through the resampling modules, the three retinal
Mamba modules can generate multi-scale global–local features for
capturing the characteristics of the lesion area from all directions. By
cleverly integrating global features and local features, the proposed
model not only fully retains disease-related global information but
also significantly enhances its ability to keenly capture local subtle
differences. This fusion strategy effectively improves the accuracy
and robustness of classification tasks. Furthermore, by using the
category loss function to optimize and calculate these fused multi-

FIGURE 2
Architecture of the proposedMVRMmodel, consisting of the Conv block, retinal Mambamodule, samplingmodule, and classifier. The input is a two-
dimensional image, and the output is a vector representing the retinal disease label.
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scale features, the model can generate more refined and
representative representations for each retinal disease category.
These representations accurately reflect the core characteristics of
retinal diseases and can be used for analysis and decision-making on
other downstream tasks. The details of these blocks are described in
the following sections.

3.1 Convolutional block

In the convolution module, we designed three residual layers,
and the output sizes of these three residual layers are as follows:
(S/2) × (S/2) × C1, (S/4) × (S/4) × C2, and (S/8) × (S/8) × C3.
Adjacent residual layers are connected with 1 × 1 convolution
kernels with a sliding step of 2. After the third residual layer, a
1 × 1 convolution kernel is used to change the number of channels
from C3 to C. The input image size is S × S, and the output size is
(S/8) × (S/8) × C. The calculation formula can be expressed
as follows:

I1 � Residual I0( ). (1)
I2 � Residual I1( ). (2)

I3 � Conv1×1 Residual I2( )( ). (3)
Residual � Conv3×3, BN, ReLU,AvgPool, Conv1×1, BN, ReLU,AvgPool( )

+ shortcut Conv1×1( ).
(4)

where, Equations 1–3 are based on the Equation 4. In Equation
4, it contains 2 sub-convolution layers. The first sub-convolution
layer contains a 3 × 3 convolution (Conv) kernel with a step size of
2, a batch normalization layer (BN), a ReLU activation layer, and
an average pooling layer (AvgPool); the second sub-convolution
layer contains a 3 × 3 convolution kernel with a step size of 1, a
normalization layer, a ReLu activation layer, and a flat
pooling layer.

3.2 Retinal Mamba

This module extracts global disease-related patterns by
selectively modeling different parts of the OCT image. To
capture multi-scale patterns, we designed two resampling
modules to obtain multi-resolution feature maps and utilize the
retinal Mamba (RM) to learn the global lesion area relations from
multi-scale perspectives. The resampling module between retinal
Mamba modules consists of a batch-normalized 3 × 3 CNN layer
with a stride of 2 to halve the image resolution and double the
channel dimension. The multi-scale feature maps can be computed
by the following formula:

R1 � RM I3( ). (5)
R2 � Resampling RM R1( )( ). (6)
R3 � Resampling RM R2( )( ), (7)

where R1, R2, and R3 are the output of Equations 5–7, representing
feature maps at three different multi-resolutions. The feature map
sizes are S/8 × S/8 × C, S/16 × S/16 × 2C, and S/32 × S/32 × 4C,
respectively. Next, we use the average pooling to normalize the three

multi-resolution maps and concatenate these maps to fuse multi-
scale features. The fused feature Rf can be expressed by
the following:

Rf � AvgPool R1( ) ‖ AvgPool R2( ) ‖ AvgPool R3( ). (8)

The fused feature Rf in Equation 8 has the size 1 × 7C.

3.2.1 Enhanced Mamba
In the retinal Mamba, four paths are used to extract different

direction features from the retinal OCT image. Considering the rich
pattern correlations in different directions of time series and the
complexity of spatial location dependencies, the output of each
enhanced Mamba is added to fuse different directional features. The
structure of each enhanced Mamba is shown in Figure 3.

We designed the enhanced Mamba with two pathways. The first
pathway leverages a linear mapping (LM), a 1-D convolutional
module, and a selective state-space model (SSM) to learn long-range
sequence dependencies. The selective SSM can memorize long-term
historical information in the HIPPO matrix. The second pathway
generates two gates: the sigmoid-weighted linear unit (SiLU) and the
reversed SiLU (R-SiLU). The SiLU gate processes the longer-term
historical context, and the R-SiLU gate filters the complementary
historical information to more comprehensively preserve the
valuable long-term information. This designed enhanced Mamba

FIGURE 3
Detailed structure of the enhanced Mamba. It utilizes two gates
to capture sequence dependencies for global complementary
information. The input and output have the same dimension.
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facilitates a more nuanced and effective handling of long-term
sequence modeling tasks. The computation process is illustrated
in the Algorithm 1.

Input: Batch(R0): (b,l,d)
Output: Batch(R1): (b,l,d)

1: x11: (b,l,d) ← LM11(R0)

2: x21: (b,l,d) ← LM21(R0)

3: x12: (b,l,d) ← SiLU(Conv1D(x11))
4: A: (d,q) ← ParameterA

6: C: (b,l,q) ← LMC(x12)
7: Δ: (b,l,d) ← log(1 + exp(LMΔ(x12))) + ParameterΔ

8: �A, �B: (b,l,d,q) ← discretize(Δ, A, B)

9: y1: (b,l,d) ← SSM(�A, �B,C)(x12)

10: y2: (b,l,d) ← y1 · SiLU(x21) + x12 · (1 − σ(x21))
11: R1: (b,l,d) ← LMy2

(y2)
12: Return R1

Algorithm 1. Computation process of enhanced Mamba.

3.2.2 Selective state-space model
The selective SSM can help the retinal Mamba to capture global

dependencies in OCT images, capturing rich semantic disease-
related information. The structure of the selective SSM is shown
in Figure 4; it is a discretized version of the SSM, where the input is
xk and the output is yk. Both of them are the features at the k-th time
point. For the continuous condition, we map the one-dimensional
sequence x(t) ∈ RC to the output sequence y(t) ∈ RC through
latent historical representation h(t). The continuous SSM is
expressed as follows:

h t( ) � Ah t − 1( ) + Bx t( ), (9)
y t( ) � Ch t( ). (10)

Here, A ∈ RC×C represents the state matrix, which memorizes the
history information of latent representations. B and C project the
input sequence and the latent representation into the output
sequence. The problem of Equations 9, 10 lies in the unsuitable
adaptation for deep learning. To solve this problem, we discretize it
by introducing the time-scale factor Δ. The projection matrix B and
the state matrix A can be transformed into �B and �A, respectively.
The zero-order hold strategy is used to complete this task:

�A � exp ΔA( ), (11)
�B � ΔA( )−1 �A − I( ) · ΔB. (12)

After discretizing with the step size Δ in Equations 11, 12, the
SSM is defined with Equations 13, 14:

hk � �Ahk−1 + �Bx t( ), (13)
yk � Chk. (14)

Finally, we employ a convolution operation for convenient
optimization of the proposed model. The SSM computation is
expressed as follows:

�K � C�B,CAB, . . . ,C�A
l−1�B( ). (15)

y � x p �K, (16)
where, in Equation 15, �K indicates a dynamic convolutional kernel,
and l denotes the sequence length. In Equation 16, x and y are
matrices that share the same size l × d.

FIGURE 4
Structure of the selective state-space model.
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3.3 Classifier

The classifier is a five-layer perceptron network, including the
three hidden layers. The input layer receives the fused feature
Rf ∈ R1×7C. The three hidden layers have 5C, 3C, and C
neurons, respectively. The output layer contains m neurons
corresponding to retinal disease labels, and a softmax activation
function is used to convert the output into a probability distribution,
representing the predicted probability of each category. This
network is trained using a back-propagation algorithm, adjusting
weights and biases to reduce the error between the predicted
category and the actual category. During the training process, the
model learns to map the features of the input data to the
corresponding category labels, thereby achieving classification.
We utilized the cross-entropy objective to optimize the proposed
MVRM model.

Y′ � classifier Rf( ), (17)

L � − 1
N

∑
N

i�1
Yi′ · log Yi( ), (18)

where, in Equation 17, Y′ is a m-length vector, the largest value
index of Y′ is the predicted label; Y is a one-hot vector representing
the actual label. In Equation 18, L is the loss function, and N is the
training image number.

4 Experimental configuration

4.1 Dataset description

Due to the confidentiality and sensitivity of medical data, as well
as the high expertise and time costs required for medical image
annotation, the use of public datasets has become a common and
effective practice in the field of medical image analysis research.
Public datasets, such as OCT (optical coherence tomography) image
datasets, have been carefully collected and annotated by professional
teams to ensure the quality and accuracy of the data. To evaluate our
model’s effectiveness, we selected the two public OCT datasets: the
OCT-2017 and the OCT-C8. The OCT-2017 dataset1 covers four
types of retinal disease images: age-related wet maculopathy (CNV),
diabetic macular edema (DME), age-related dry maculopathy
(DRUSEN), and normal retinal images (NORMAL). The dataset
comes from 4,686 patients with different eye diseases and contains a
total of 84,484 images. There are 37,205 CNV images,
8,616 DRUSEN images, 11,348 DME images, and
26,315 NORMAL images in the training set. The testing set
contains 1,000 images, with 250 each of various lesions and
normal images, which are used to evaluate model performance.
The OCT-C8 dataset2 contains a total of 24,000 images with eight
categories. Each category has 2,300, 350, and 350 images for training,
validation, and testing, respectively. The largest resolution of the

OCT image is 384 × 496, and the smallest resolution of the OCT
image is 1536 × 496.

In order to develop a unified model framework, we resize every
OCT image into the same size: 512 × 512 pixels. The number of
images in the original dataset is too different. During the training
process, the accuracy of the category with the largest number will
greatly affect the overall accuracy of the model. To solve this
problem, this paper randomly selects an equal number from each
category and determines the ratio of training, validating, and testing
be 8:1:1. For the OCT-2017 dataset, we select 8,800 images for each
category, including the 7,040 training images, 880 validating images,
and 880 testing images. For the OCT-C8 dataset, we partitioned the
dataset into the 8:1:1 ratio. The training, validating, and testing
image numbers for each category are 2,400, 300, and 300,
respectively. The datasets used for this study are summarized in
Table 1. To accelerate the training speed and enhance the model’s
ability to converge toward optimal weights, we normalize the
image’s pixel values across its channels to a uniform range [0, 1].
This process ensures that the eigenvalues of the image data are
within a comparable range, facilitating a more stable and efficient
training process for neural networks. We also apply the image
augmentation techniques (i.e., random shuffling, crop, and
rotate) to enhance the generalization of the model’s performance.

4.2 Model training details

In the Conv block, S � 512, and C1 � 4, C2 � 8, C3 � C � 16,
there are L � 3 retinal Mamba modules. Our model was trained
using the TensorFlow framework on the Nvidia RTX4090 GPU. The
Adam optimizer was selected for its adaptive learning rate
adjustment capability, and the initial learning rate was set to
0.001 to promote rapid convergence while avoiding overfitting.
The batch size is set at 64 to balance memory usage and training
efficiency. The number of epochs was set to 150. After each round of
dataset training, the model performance was evaluated through the
validation set, and the learning rate or model structure was adjusted
in time to optimize the results. During the training process,
TensorBoard was used to monitor the changes in loss and
accuracy to ensure that the training process was stable and
effective. The trained model is evaluated on the testing set for
comparison and analysis.

4.3 Evaluation metrics

In the multi-category classification task, we use the mean
accuracy (mACC), mean sensitivity (mSEN), mean specificity
(mSPE), mean precision (mPRE), mean F1-score (mF1), and
overall accuracy (OACC). First, we compute the ACC, SEN, SPE,
and PRE for each category and then average them for all the
categories. During the evaluation, for each category, we treat it as
a binary classification, where the positive label is itself and the
negative label is the remaining categories. Therefore, TP represents
the count of samples that are correctly identified as belonging to the
positive category by the network’s predictions, matching their true-
positive labels. FP denotes the number of samples that are
incorrectly labeled as positive by the network’s predictions,

1 http://data.mendeley.com/datasets/rscbjbr9sj/2

2 http://kaggle.com/datasets/obulisainaren/retinal-oct-c8
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despite their true labels being negative. TN stands for the count of
samples that are accurately classified as negative by the network’s
predictions, aligning with their genuine negative labels. FN signifies
the number of samples that are erroneously classified as negative by
the network, whereas their true labels are positive.

mACC � 1
m

∑
m

i�1
ACCi � 1

m
∑
m

i�1

TPi + TNi

N
, (19)

mSEN � 1
m

∑
m

i�1
SENi � 1

m
∑
m

i�1

TPi

TPi + FNi
. (20)

mSPE � 1
m

∑
m

i�1
SPEi � 1

m
∑
m

i�1

TNi

TNi + FPi
. (21)

mPRE � 1
m

∑
m

i�1
PREi � 1

m
∑
m

i�1

TPi

TPi + FPi
. (22)

mF1 � 1
m

∑
m

i�1
F1i � 1

m
∑
m

i�1

2 · PREi · SENi

PREi + SENi
. (23)

whereN is the testing image number and ACCi means the accuracy
for the i-th category. Another OACC evaluates the overall
performance for all categories. In the confusion matrix, we define
TL as the diagonal of the matrix, and the OACC is expressed by

OACC � TL

N
. (24)

Equations 19–24 are used to evaluate the diagnosis
performance of different methods on the ADNI and
ABIDE datasets.

5 Results

5.1 Prediction results

Figure 5 shows the details during the training. The left graph
shows the curve of loss changing with epochs, and the right
subfigure shows the curve of overall accuracy changing with the
epochs. Both the training and validating losses show a stable
trend. The little gap between them indicates that our model is a
good fit model. The confusion matrix of the classification results
is shown in Figure 6. Our model shows accurate classification
performance on the OCT2017 dataset, with almost no errors in
each category. In the OCT-C8 dataset, our model also performs
well on most categories, except the CNV and DME categories.
Table 2 shows the classification performance of the model on two
different datasets (OCT2017 and OCT-C8). For each category,
the ACC, SEN, PRE, F1, and SPE of each category are calculated
according to the binary classification algorithm. For the OCT-
2017 dataset, the average accuracy (mACC) and overall accuracy
(oACC) of the model are 99.49% and 98.98%, respectively. For

TABLE 1 Experimental data details used in this study.

Dataset AMD CNV CSR DME MH Drusen DR Normal

OCT2017 Train — 7,040 — 7,040 — 7,040 — 7,040

Val — 880 — 880 — 880 — 880

Test — 880 — 880 — 880 — 880

OCT-C8 Train 2,400 2,400 2,400 2,400 2,400 2,400 2,400 2,400

Val 300 300 300 300 300 300 300 300

Test 300 300 300 300 300 300 300 300

FIGURE 5
Visualization of objective loss and over accuracy during the model’s training.
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the OCT-C8 dataset, the overall accuracy of the model is 96.21%.
Although the model achieved 100% of the indicators in the AMD
category, the sensitivity in the CNV and DME classifications was
relatively low (92.67% and 91.00%, respectively), resulting in a
slight decrease in the F1 values of these categories. The results of
these two datasets show that this model can maintain a high
classification performance when dealing with tasks of multi-
category classification.

5.2 Comparative analysis

To demonstrate our model’s superiority, we select seven
competing methods to test on our model and compare the
classification performance. These methods include the baseline
ResNet Talo et al. (2019), the CNN-based OctNet method Sunija
et al. (2021), the ViT model Dosovitskiy et al. (2020), the Swin
transformer model Liu et al. (2021), the CVM-Cervix model Liu

FIGURE 6
Confusion matrix of the predicted results on the OCT-2017 and OCT-C8 datasets using our model.

TABLE 2 Detection results of our model on the two datasets. (%).

Dataset Label ACC SEN PRE F1 SPE oACC

OCT2017 CNV 99.38 98.75 98.75 98.75 99.58 98.98

DME 99.63 99.09 99.43 99.26 99.81

DRUSEN 99.26 98.64 98.41 98.52 99.47

Normal 99.69 99.43 99.32 99.38 99.77

Average 99.49 98.98 98.98 98.98 99.66

OCT-C8 AMD 100.00 100.00 100.00 100.00 100.00 96.21

CNV 98.58 92.67 95.86 94.24 99.43

CSR 99.38 99.00 96.12 97.54 99.43

DME 98.29 91.00 95.12 93.02 99.33

DR 98.67 95.00 94.37 94.68 99.19

DRUSEN 99.00 98.00 94.23 96.08 99.14

MH 99.29 97.33 97.01 97.17 99.57

Normal 99.21 96.67 96.99 96.83 99.57

Average 99.05 96.21 96.21 96.19 99.46
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et al. (2022), the CTransCNN model Wu et al. (2023), and the
MedVit model Manzari et al. (2023). The last three hybrid models
combine the CNN and transformer to conduct image classifications.

Table 3 demonstrates the comparison of the performance of
different methods in multi-category classification tasks on the
OCT2017 and OCT-C8 data sets. The evaluation indicators in
the table include average accuracy (mACC), average sensitivity
(mSEN), average precision (mPRE), average F1 value (mF1),
average specificity (mSPE), and overall accuracy (oACC). On the
OCT2017 dataset, our model performs best on all metrics, reaching
an mACC value of 99.49% and an oACC value of 98.98%. On the

OCT-C8 data set, our model also demonstrates strong
generalization capabilities, outperforming other methods with an
mACC of 99.05% and an oACC of 96.20%. Furthermore, we
compare our model with the three hybrid models in terms of the
ACC and F1 for each category. Figures 7, 8 show the classification
performance of four methods (CVM-Cervix, CTransCNN,MedViT,
and Ours) on the OCT-2017 dataset and OCT-C8 dataset,
respectively. For the CNV category, our method slightly
outperforms other methods in both ACC and F1 values, but the
advantage is not obvious. For the DME category, our method
significantly outperforms other methods, especially on the

TABLE 3 Comparison of the multi-category classification using different methods. (%).

Dataset Method mACC mSEN mPRE mF1 mSPE oACC

OCT2017 ResNet50 Talo et al. (2019) 97.59 95.17 95.18 95.17 98.39 95.17

OctNet Sunija et al. (2021) 98.37 96.73 96.74 96.73 98.91 96.73

ViT Dosovitskiy et al. (2020) 98.93 97.87 97.87 97.87 99.29 97.87

Swin Transformer Liu et al. (2021) 99.16 98.32 98.32 98.32 99.44 98.32

CVM-Cervix Liu et al. (2022) 99.36 98.72 98.72 98.72 99.57 98.72

CTransCNN Wu et al. (2023) 99.32 98.64 98.64 98.64 99.55 98.64

MedViT Manzari et al. (2023) 99.39 98.78 98.78 98.78 99.59 98.78

Ours 99.49 98.98 98.98 98.98 99.66 98.98

OCT-C8 ResNet50 Talo et al. (2019) 98.08 92.33 92.36 92.34 98.90 92.33

OctNet Sunija et al. (2021) 98.32 93.29 93.31 93.30 99.04 93.29

ViT Dosovitskiy et al. (2020) 98.47 93.88 93.88 93.87 99.13 93.88

Swin Transformer Liu et al. (2021) 98.74 94.96 94.96 94.94 99.28 94.96

CVM-Cervix Liu et al. (2022) 98.91 95.63 95.63 95.61 99.37 95.63

CTransCNN Wu et al. (2023) 98.97 95.88 95.88 95.86 99.41 95.88

MedViT Manzari et al. (2023) 98.99 95.96 95.96 95.95 99.42 95.96

Ours 99.05 96.21 96.21 96.19 99.46 96.20

FIGURE 7
Comparison of different methods on the accuracy and F1 for each label (OCT-2017 dataset).
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F1 value. For the Drusen category, both ACC and F1 values of our
method are better than CVM-Cervix and CTransCNN, but slightly
lower compared to MedViT. For the normal category, our method
has significant advantages in both ACC and F1 values. We also
compare the ROC of these four methods, and the results are shown
in Figures 9, 10. Our model has the highest AUC value of 0.981 and
0.962 for OCT-2017 and OCT-C8, respectively. Our method has the
best classification performance in overall accuracy and high AUC
among these competing methods.

5.3 Ablation studies

To investigate the influence of different modules on the
evaluation performance, we focus on the convolutional module
(Conv), the multi-resolution (MR) strategy, the multi-path (MP)
in the retinal Mamba, and the enhanced Mamba (EM). The MR
removal means that we only keep the retinal Mamba in resolution-1.

TheMP removal means we remove the path-2, path-3, and path-4 in
the retinal Mamba network. Removing EM means we delete the
R-SiLU module in the enhanced Mamba.

Table 4 shows the impact of different modules (Conv, MR, MP,
and EM) on the classification performance of our model.
Specifically, the combination of all modules (Conv, MR, MP, and
EM) performed best on both OCT2017 and OCT-C8 datasets. After
removing the EM module, the classification performance shows an
approximately 0.1 percent decrease. The Conv and MR modules
both contribute to the improvement of our model’s classification
performance. We further remove the Mamba-related modules
(including MR, MP, and EM), and the oACC decreased by
approximately 2.1 percentage and 1.2 percentage points on the
OCT-2017 dataset and OCT-C8 dataset, respectively. This shows
that eachmodule plays an important role in the model, especially the
Conv module and MR module, which are particularly critical to
improving the overall performance. The lack of any module will lead
to a decrease in the classification performance.

FIGURE 8
Comparison of different methods on the accuracy and F1 for each label (OCT-C8 dataset).

FIGURE 9
ROC comparison of the four different methods for both datasets.
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5.4 Discussion

Our model demonstrates good classification performance and
generalization on two public datasets. Comparative analysis using
different competing methods also shows our model’s superiority.
The good performance of our model can be attributed to its great
ability in feature extraction at multi-scales. Both global
dependencies and local receptive fields can explore the
underlying complex disease-related cues. The gradient-weighted
class activation mapping (Grad-CAM) visualization can analyze
and understand activation regions of different classes. We use it to
show how our model captures the key cues in the retinal OCT
image classification. As shown in Figure 11, the use of the Grad-
CAM generates a heatmap with the size of the raw OCT image and
shows the key areas in the OCT image that contribute most to the
predicted label. To investigate our model’s robustness, we added a
certain degree of noise to the original OCT images and followed the
same training procedures. Table 5 shows the classification
performance of our model under multiple noise levels. For the

OCT2017 dataset, as the noise level increases from 0% to 10%, the
mACC and oACC decrease from 99.49% and 99.98% to 99.19%
and 98.38%, respectively. For the OCT-C8 dataset, the mACC and
oACC decrease from 99.05% and 96.21% to 98.93% and 95.71%,
respectively. Similarly, despite the slight performance degradation
caused by noise, the model still maintains high accuracy and
robustness under the influence of noise. Overall, the
performance of the model under different noise conditions
shows strong stability, especially under low-to-medium noise
levels (1% and 5%); the classification performance only
fluctuates slightly, indicating that the model has good resistance
to noise.

The main limitation of our model is the lack of multimodal
retinal images. Single-modality retinal OCT images may not capture
all pathological features of the retina. Single-modality retinal images
can only provide information on one aspect but lack a
comprehensive understanding of the global perspective. A single
modality may not be able to fully assess the progression of the
disease or other relevant pathological features. In the next study, we

FIGURE 10
Stick diagram of the oACC and AUC on both datasets.

TABLE 4 Impact of different MRVM modules on the detection performance. (%).

Model Conv MR MP EM OCT2017 OCT-C8

mACC oACC mACC oACC

Our model 7 ✓ ✓ ✓ 99.05 98.10 98.83 95.33

✓ 7 ✓ ✓ 99.16 98.32 98.93 95.71

✓ ✓ 7 ✓ 99.23 98.47 98.89 95.54

✓ ✓ ✓ 7 99.32 98.64 98.94 95.75

✓ 7 7 ✓ 98.69 97.39 98.83 95.33

✓ 7 7 7 98.44 96.88 98.75 95.00

✓ ✓ ✓ ✓ 99.49 98.98 99.05 96.21
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FIGURE 11
Activation heatmaps of different retinal OCT images using our model. The upper row is the raw OCT images, and the bottom row is the activation
heatmaps using the Grad-CAM method.

TABLE 5 Impact of different levels of noise on the classification performance. (%).

Dataset Noise level (%) mACC mSEN mPRE mF1 mSPE oACC

OCT2017 0 99.49 98.98 98.98 98.98 99.66 99.98

1 99.42 98.84 98.84 98.84 99.61 98.84

5 99.35 98.69 98.69 98.69 99.56 98.69

10 99.19 98.38 98.38 98.38 99.46 98.38

OCT-C8 0 99.05 96.21 96.21 96.19 99.46 96.21

1 99.04 96.17 96.16 96.15 99.45 96.17

5 99.00 96.00 96.00 95.98 99.43 96.00

10 98.93 95.71 95.71 95.69 99.39 95.71
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will add multimodal retinal images (i.e., fundus images) to more
precisely detect retinal diseases.

6 Conclusion

This paper presents the multi-resolution visual Mamba
(MRVM) model, designed to enhance OCT image
classification performance by addressing long-range
dependencies with linear computational complexity. The
MRVM model first utilizes convolution operations to extract
local features from OCT images and then leverages the retinal
Mamba to capture global dependencies. By integrating multi-
scale global features, the model not only improves classification
accuracy but also boosts overall performance and robustness. A
key innovation of the MRVM is its multi-directional selection
mechanism, which enhances feature extraction by focusing on
various directions to capture intricate, orientation-specific
retinal patterns. Experimental results demonstrate that the
MRVM model excels in distinguishing diverse retinopathy
images, achieving a significant accuracy improvement over
traditional methods—0.2 percentage points higher—with
overall accuracies of 98.98% and 96.21% on the OCT2017 and
OCT-C8 datasets, respectively. This advancement holds promise
for automatic retinal disease diagnosis and could be valuable in
clinical settings.
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