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Background: Sepsis is a common disease associated with neonatal and infant
mortality, and for diagnosis, blood culture is currently the gold standard method,
but it has a low positivity rate and requires more than 2 days to
develop. Meanwhile, unfortunately, the specific biomarkers for the early and
timely diagnosis of sepsis in infants and for the determination of the severity of
this disease are lacking in clinical practice.

Methods: Samples from 18 sepsis infants with comorbidities, 25 sepsis infants
without comorbidities, and 25 infants with noninfectious diseases were evaluated
using a serum metabolomics approach based on liquid chromatography‒mass
spectrometry (LC‒MS) technology. Differentially abundant metabolites were
screened via multivariate statistical analysis. In addition, least absolute
shrinkage and selection operator (LASSO) and support vector machine
recursive feature elimination (SVM-RFE) analyses were conducted to identify
the key metabolites in infants with sepsis and without infections. The random
forest algorithmwas applied to determine key differentially abundantmetabolites
between sepsis infants with and without comorbidities. Receiver operating
characteristic (ROC) curves were generated for biomarker value testing.
Finally, a metabolic pathway analysis was conducted to explore the metabolic
and signaling pathways associated with the identified differentially abundant
metabolites.

Results: A total of 189 metabolites exhibited significant differences between
infectious infants and noninfectious infants, while 137 distinct metabolites
exhibited differences between septic infants with and without comorbidities.
After screening for the key differentially abundant metabolites using LASSO and
SVM-RFE analyses, hexylamine, psychosine sulfate, LysoPC (18:1 (9Z)/0:0), 2,4,6-
tribromophenol, and 25-cinnamoyl-vulgaroside were retained for the diagnosis
of infant sepsis. ROC curve analysis revealed that the area under the curve (AUC)
was 0.9200 for hexylamine, 0.9749 for psychosine sulfate, 0.9684 for LysoPC (18:
1 (9Z)/0:0), 0.7405 for 2,4,6-tribromophenol, 0.8893 for 25-cinnamoyl-
vulgaroside, and 1.000 for the combination of all metabolites. When the
septic infants with comorbidities were compared to those without
comorbidities, four endogenous metabolites with the greatest importance
were identified using the random forest algorithm, namely, 12-oxo-20-
trihydroxy-leukotriene B4, dihydrovaltrate, PA (8:0/12:0), and 2-heptanethiol.
The ROC curve analysis of these four key differentially abundant metabolites
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revealed that the AUCwas 1 for all four metabolites. Pathway analysis indicated that
phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism,
and porphyrin metabolism play important roles in infant sepsis.

Conclusion: Serum metabolite profiles were identified, and machine learning was
applied to identify the key differentially abundant metabolites in septic infants with
comorbidities, septic infants without comorbidities, and infants without infectious
diseases. The findings obtained are expected to facilitate the early diagnosis of
sepsis in infants and determine the severity of the disease.
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Background

The immature neonatal adaptive immune system causes
newborns to rely primarily on their innate immune system to
combat the environmental microorganisms encountered after
birth. Consequently, newborns are highly susceptible to
infections, which leads to a higher mortality rate of
approximately 3 million neonatal deaths occurring annually
across the world, among which 40% of fatalities occur due to
infectious diseases (Liu et al., 2012). Neonatal sepsis is
responsible for 15% of perinatal deaths (Lawn et al., 2014).
According to a global data report from 2018, nearly three million
cases of sepsis in newborns are reported each year, with a mortality
rate ranging from 11% to 19% (Fleischmann-Struzek et al., 2018).
Premature infants are at an even greater risk of developing sepsis
and have higher mortality rates than full-term newborns. An
analysis of Chinese data between 2015 and 2018 revealed that the
incidence rate of neonatal sepsis in infants born before 34 weeks was
9.7 per thousand cases, with a case fatality rate of 22.6% (Jiang
et al., 2019).

In clinical practice, the presentations of neonatal sepsis
frequently deviate from the typical presentations of sepsis. Blood
culture is currently the gold standard for establishing a diagnosis of
neonatal sepsis, although it requires a minimum of 24–48 h. In
addition, due to factors such as blood collection volume and culture
methods, the positive rate of blood culture is often low in clinical
practice. Therefore, relying solely on blood culture results often leads
to delayed or missed diagnoses (De Rose et al., 2021). Due to the lack
of unique biomarkers to date, the early identification of neonatal
sepsis relies primarily on clinical laboratory tests such as C-reactive
protein (CRP), procalcitonin (PCT), and white blood cell (WBC)
(Bunduki and Adu-Sarkodie, 2020; Boscarino et al., 2023), which are
not feasible to simultaneously achieve high specificity and high
sensitivity. CRP is widely recognized as a biomarker in the diagnosis
of neonatal sepsis. However, its specificity and sensitivity vary
significantly across different clinical studies due to the
application of diverse cut-off values. Furthermore, CRP has a
short half-life limitation and may also be elevated in non-infected
neonates (Cantey and Bultmann, 2020; Jyoti et al., 2021). Compared
to CRP, PCT is considered as a better biomarker for neonatal sepsis
diagnosis because of its greater sensitivity and accuracy (Gopal et al.,
2023). Unfortunately, PCT spontaneously increases after birth in
healthy neonates, and there are more obvious changes in PCT in
preterm neonates; moreover, noninfective perinatal circumstances
may also increase the serum PCT concentration, limiting the clinical

use of PCT (Boscarino et al., 2023). WBC has very poor sensitivity,
and similar WBC values were found in healthy neonates, infected
neonates and neonates with other diseases (Hornik et al., 2012). The
early diagnosis of neonatal sepsis and the assessment of the severity
of this condition could facilitate the planning of a treatment plan
designed precisely according to patient requirements while
enhancing overall disease outcomes and prognosis. This would
also prevent the occurrence of potential adverse effects on
neonatal immune function and growth due to the excessive use
of antibiotics (Hou et al., 2022). Thus, it is necessary to identify
excellent biomarkers that could facilitate an improved diagnosis of
neonatal sepsis.

According to current research, a robust correlation exists
between inflammation and metabolism. In sepsis, the body’s
metabolic homeostasis is disrupted, which activates the
hypothalamic‒pituitary‒adrenal axis, resulting in increased
secretion of cortisol and catecholamines and extensive release of
cytokines. These changes subsequently impact various metabolic
pathways, including glycolysis, the tricarboxylic acid cycle, lipid
metabolism, and amino acid metabolism (Eckerle et al., 2017;
Mierzchala-Pasierb et al., 2020). Metabolomics allows for the
simultaneous detection of multiple metabolic molecules, thereby
enabling a further comprehensive assessment of the body’s
condition during infection and inflammation. In recent years,
research on the biological changes in metabolites in children with
severe infections has improved our knowledge of the complex and
dynamic mechanisms underlying sepsis (Fanos et al., 2014; Sarafidis
et al., 2017; Bjerkhaug et al., 2021). Mardegan et al. (2021) utilized
untargeted and targeted metabolomics to compare metabolic
changes between children with early-onset neonatal sepsis and
children without infection. They found significant disruption of
glutathione and tryptophan metabolic pathways in the case group,
and metabolites of the glutathione and tryptophan pathways are
promising new biomarkers of neonatal sepsis. Wang et al. (2023)
reported significant alterations in lipid metabolism in infants with
sepsis, with certain metabolites reported to exhibit substantial
potential for the early detection of this condition. However, these
authors failed to address the metabolic variances among infants with
varying degrees of disease severity. Early assessment of disease
severity holds paramount importance in developing strategies for
determining the prognosis and management of this condition in
infants or newborn patients.

In this context, the present study aimed to identify differentially
abundant metabolites in serum samples from infants with
septicemia using liquid chromatography/mass spectrometry (LC/
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MS) and then applied machine learning techniques to identify the
key differentially abundant metabolites. Machine learning
algorithms can efficiently process complex metabolomics data
and filter out representative metabolites to differentiate between
different groups. The objective of this study was to explore and
identify excellent biomarkers for the early diagnosis of neonatal
sepsis and to determine the severity of this condition for developing
precise treatment plans for these children to improve
their prognosis.

Methods

Patient recruitment

A total of 68 patients admitted to Xinhua Hospital between July
2022 and July 2023 were enrolled in the present study. Infants with
sepsis caused by bacterial infections and only four patients with
sepsis were admitted to the neonatal intensive care unit. The
comorbidity group (SI) comprised 18 children who were
diagnosed with sepsis along with comorbidities, including shock,
suppurative meningitis, coagulation disorder, and urinary tract
infection. The sepsis group (INF) included 25 children who were
diagnosed with sepsis without complications. All of these children
exhibited signs of infection and were confirmed to have sepsis
through a series of follow-up laboratory tests, including positive
blood cultures or elevated CRP and PCT levels (Shane et al., 2017).
In addition, 25 children without any infectious disease were enrolled
in the study to serve as the control group (CON). All patients were
less than 3 months of age and were matched for sex, weight, and age
on the day of enrollment. The exclusion criteria for participation in
the study were as follows: 1) infants who had received antibiotics for
more than 7 days prior to admission; 2) infants who had received
total parenteral nutrition support for more than 7 days prior to
admission; 3) infants diagnosed with infantile cholestasis or

congenital heart disease; 4) infants with confirmed or suspected
congenital metabolic diseases; and 5) mothers with a history of
gestational diabetes, intrahepatic cholestasis, or abnormal liver
function. The study procedure was approved by the Ethics
Committee of Xinhua Hospital (approval number XHEC-C-
2020–091–1). Informed written consent was obtained from the
parents of all enrolled patients prior to commencing the study.

Sample collection and preparation

Peripheral blood (2 mL) samples were collected
simultaneously under aseptic conditions, and within 2 h, each
of the collected peripheral blood samples was centrifuged at
3,000 rpm for 15 min at 4°C to obtain serum. The resulting
supernatant was then transferred to a 1.5 mL EP tube and stored
at −80°C until use. The sample preparation process involved the
addition of approximately 100 µL of serum to a methanol
solution (containing 5 μg/mL L-2-chloro-phenylalanine as the
internal standard) at a ratio of 1:3, followed by 2 min of vortexing.
Subsequently, centrifugation was performed at 13,000 rpm and
4°C for 10 min, and 200 µL of the resulting supernatant was
collected. Finally, equal volumes of serum from each sample were
pooled to obtain a quality control (QC) sample.

LC/MS analysis

Ultimate 3,000 ultra-high performance liquid chromatography
coupled with Thermo Orbitrap Elite mass spectrometry was
employed for the LC/MS analysis. The column employed was
Kinetex C18 (100 mm × 2.1 mm, 1.9 µm). The mobile phase
comprised solution A (0.1% formic acid solution) and solution B
(acetonitrile in 0.1% formic acid). The flow rate is set to 0.4 mL/min.
A column temperature of 25°C was maintained. The post time was

TABLE 1 Characteristics of the study participants (n = 68).

Descriptive variable SI(n = 18) INF(n = 25) CON(n = 25) X2/Z/F P

Male sex (%) 14 (77.8) 16 (64.0) 13 (52.0) 0.22 0.242

Age [days] 36 [49] 25 [56] 32 [39] 2.02 0.364

Premature (%) 2 (11.1) 2 (8.0) 3 (12.0) — 1.000

Gestational age (weeks) 38.5 ± 1.7 38.8 ± 1.2 38.5 ± 1.4 0.39 0.676

Birth weight (g) 3,126 ± 518 3,345 ± 385 3,235 ± 388 1.41 0.253

Weight1 [g] 4,510 [2,158] 4,390 [2,135] 4,100 [1745] 0.61 0.738

Breastfed (%) 5 (27.8) 6 (24.0) 10 (40.0) 0.45 0.502

N% (%) 54.6 ± 14.1 59.0 ± 17.6 26.62 ± 12.1a,b 33.91 <0.01

WBC [109/L] 10.29 [9.23] 17.8 [7.59]a 8.28 [3.96]b 23.11 <0.01

CRP [mg/L] 49 [68] 38 [58] 0 [0]a,b 48.10 <0.01

PCT [ng/mL] 0.67 [1.72] 3.04 [13.57] 0.08 [0.05]a,b 42.69 <0.01

The normally distributed numerical data are reported as means±standard deviations. The non-normally distributed data are reported as median [interquartile range]. Categorical data are

reported as the number of cases (percentage).

The presence of “a” indicates that the observed difference is statistically significant compared to the SI, group, while the presence of “b” indicates that the observed difference is statistically

significant compared to the INF, group.
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set to 5 min, and the sample volume of 3 µL was used. In the mass
spectrometry analysis, both positive ion mode and negative ion
mode were used with specific optimization parameters. In the
positive ion mode, the following parameters were used: heater
temperature, 300°C; sheath gas flow rate, 45 arb; aux gas flow
rate, 15 arb; sweep gas flow rate, 1 arb; spray voltage, 3.0 kV;
capillary temperature, 350°C; S-Lens RF level, 30%. The scan range
was 200 to 1,500. In the negative ion mode, the following parameters

were used: heater temperature, 300°C; sheath gas flow rate, 45 arb;
aux gas flow rate, 15 arb; sweep gas flow rate, 1 arb; spray voltage,
2.5 kV; capillary temperature, 350°C; S-Lens RF level, 60%. The scan
range was 200 to 1,500. The compound components in the samples,
as detected by LC/MS, were extracted and preprocessed using
Compound Discovery 3.0 software from Thermo Scientific,
United States. This process involved baseline filtering, peak
identification and integration, retention time correction, peak

FIGURE 1
PCA plots and heatmap of the identified differential metabolites. (A) PCA plots of the differential metabolites among the three groups. (B) Heatmap
illustrating the differential metabolites among the three groups.

FIGURE 2
The score plot based on OPLS-DA model. (A) OPLS-DA score map in negative ion mode; (B) Permutation test with OPLS-DA model in negative
mode; (C) OPLS-DA score map in positive ion mode; (D) Permutation test with the OPLS-DA model in positive ion mode.
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alignment, and mass spectrometry fragment assignment.
Subsequently, the data were further edited in Excel software.
After preprocessing, a data matrix was obtained that contained
information on the mass-to-charge ratio (m/z), retention time (RT),
and normalized peak intensity of the metabolites. This matrix was
used for the final analysis to deduce the structural information of
the compounds.

Machine learning

The machine learning analysis was conducted using R software
(version 4.4.0; AutoDesk, United States). Least absolute shrinkage
and selection operator (LASSO) screening to identify the
characteristic metabolites was performed using the glmnet
package in R. Feature screening with support vector machine

FIGURE 3
The key differentially abundant metabolites between the DIS group and the CON group identified using LASSO and SVM-RFE. (A) The key
differentially abundant metabolites identified using LASSO; (B) LASSO cross-validation diagram; (C) The key differentially abundant metabolites identified
through SVM-RFE along with the SVM-RFE error diagram; (D) SVM-RFE accuracy diagram; (E) Venn diagram depicting the diagnostic biomarkers
obtained through the intersection of the results from the two algorithms.

TABLE 2 Key differentially abundant metabolites between the DIS group and the CON group.

HMDB_ID Name m/z RT [min] Endogenous P

HMDB0032323 Hexylamine 102.13 1.59 YES <0.005

HMDB0013046 Psychosine sulfate 271.66 8.99 YES <0.001

HMDB0010397 LysoPC(20:5 (5Z,8Z,11Z,14Z,17Z)/0:0) 542.32 8.86 NO <0.001

HMDB0002815 LysoPC(18:1 (9Z)/0:0) 522.35 8.89 YES <0.001

HMDB0014118 Trifluoroacetic acid 112.99 1.01 NO <0.001

HMDB0014838 Eplerenone 413.20 7.02 NO <0.001

HMDB0029642 2,4,6-Tribromophenol 326.76 1.25 YES <0.001

HMDB0041367 25-Cinnamoyl-vulgaroside 565.33 9.12 YES <0.001

HMDB0038714 Kelampayoside A 238.08 17.27 NO <0.001
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recursive feature elimination (SVM-RFE) was conducted using the
e1071 package and doParallel package. The random forest algorithm
was applied to rank and screen the important metabolites. Finally,
the results were visualized using the plot function in R.

Statistical analysis

The clinical data were recorded and edited using Microsoft Excel
and then analyzed using SPSS Statistics 26 (version 26.0.0.0, IBM,
United States). The metabolomics results were detected through
orthogonal corrected partial least squares discriminant analysis
(OPLS-DA) and principal component analysis (PCA) performed
using Simca-P software (version 11.0; Umetrics, Sweden). The
OPLS-DA permutation test was conducted using positive and
negative ion models with 200-fold cross-validation. The
metabolites with variable importance in projection (VIP) > 1 and
P < 0.05 were considered for the follow-up analysis. Pathway
analysis of the differentially abundant metabolites was performed
using the MetaboAnalyst online analysis website. Group
comparisons were conducted for the clinical data through t‒test,
analysis of variance (ANOVA) and Mann‒Whitney U test.
Categorical variables were compared between the groups using
chi-squared tests or Fisher’s exact tests. In all analyses, p <
0.05 was set as the threshold for statistical significance. The
violin plots and ROC curves were generated using GraphPad
Prism 8 (version 8.0.1, GraphPad Software, United States).

Results

Characteristics of the study population

A total of 68 children were enrolled in the present study,
including 18 children with concurrent infections and
complications (SI), 25 children with infection and no
complications (INF), and 25 children without any infection
(CON). Table 1 summarizes the characteristics of all 68 study
participants. Among the 43 infected children, 15 had positive
blood culture results, including 9 in the SI group and 6 in the
INF group. Among the 18 patients in the SI group, 13 had urinary
bacteria, 5 had suppurative meningitis, and 1 had coagulation
dysfunction. No significant differences were noted among the
three groups regarding the sex composition ratio, age at blood
collection, preterm birth rate, gestational age, or birth weight
(P > 0.05). Laboratory tests revealed that the neutrophil
percentage (N%) and the levels of CRP and PCT were
significantly higher in both the SI group and INF group than in
the control group (P < 0.05). In addition, the WBC was higher in the
INF group than in the SI group (P < 0.05).

Metabolomic profiling of serum samples

The serum samples were analyzed based on untargeted
metabolomics technology and the obtained data were

FIGURE 4
Violin plots depicting the key differentially abundant metabolites between the DIS group and the CON group (*p < 0.05; **p < 0.01; ***p < 0.001).
(A) Hexylamine; (B) Psychosine sulfate; (C) LysoPC (18:1 (9Z)/0:0); (D) 2,4,6-Tribromophenol; (E) 25-Cinnamoyl-vulgaroside.
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processed. In negative ion mode, we extracted a total of
2,491 features, while in positive ion mode, we extracted
4,349 features. The differences in the metabolite detection
results among the three groups were described through
principal component analysis and a heatmap (Figure 1). PCA
revealed significant clustering within the three groups, with a
distinct separation between the DIS group (including the SI
group and the INF group) and the CON group. OPLS-DA was
subsequently performed to identify the metabolites that resulted
in these significant differences. The OPLS-DA score maps of the
SI group and the INF group were generated using positive and

negative ion models with 200-fold cross-validation (Figure 2). In
the resulting OPLS-DA score map, a distinct separation could be
noted between the groups. The cumulative R2X = 0.67\R2Y =
0.997\Q2 = 0.468 in negative ion mode and R2X = 0.47\R2Y =
0.882\Q2 = 0.921 in positive ion mode indicated that the model
was reliable. Next, using the screening criteria of P < 0.05 and
VIP > 1 by OPLS-DA model, 189 metabolites exhibiting
significant differences between the DIS group and the CON
group were identified. These metabolites were then analyzed
further, revealing 137 key metabolites exhibiting variations
between the SI group and the INF group.

FIGURE 5
ROC curves of the key differentially abundant metabolites between the DIS group and the CON group. (A) Hexylamine; (B) Psychosine sulfate; (C)
LysoPC (18:1 (9Z)/0:0); (D) 2,4,6-Tribromophenol; (E) 25-Cinnamoyl-vulgaroside; (F) Combination of all five metabolites.

FIGURE 6
The key differentially abundant metabolites identified by applying the random forest algorithm between the SI group and the INF group. (A) The
Random Forest error diagram; (B) Five metabolites with the highest importance.

Frontiers in Cell and Developmental Biology frontiersin.org07

Bian et al. 10.3389/fcell.2024.1491065

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1491065


Key differentially abundant metabolites
between the DIS group and the CON group

LASSO and SVM-RFE were employed in a total of 189 distinct
metabolites between the DIS group and the CON group. According
to the results of LASSO, 18 significantly differentially abundant
metabolites demonstrating minimal error in the cross-validation
were retained as predictors (Figures 3A, B). The SVM-RFE screening
identified a total of 11 distinct metabolites with minimal cross-
validation error and the highest accuracy (Figures 3C, D).
Subsequently, the intersection of the results from these two
machine learning algorithms yielded a final set of nine
differentially abundant metabolites, which were then subjected to
further analysis (Figure 3E; Table 2). After excluding the exogenous
metabolites, five metabolites were retained as biomarkers for
neonatal sepsis diagnosis: hexylamine, psychosine sulfate, LysoPC
(18:1 (9Z)/0:0), 2,4,6-tribromophenol, and 25-cinnamoyl-
vulgaroside.

Compared with the CON group, the DIS group exhibited a
significant increase in the serum levels of 2,4,6-tribromophenol.
Conversely, a notable decrease was noted in hexylamine, psychosine
sulfate, LysoPC (18:1 (9Z)/0:0), and 25-cinnamoyl-
vulgaroside (Figure 4).

ROC analysis of the key differentially
abundant metabolites between the DIS
group and the CON group

ROC analysis was performed for the five key differentially
abundant metabolites identified in the previous step. Hexylamine,
psychosine sulfate, and LysoPC (18:1 (9Z)/0:0) exhibited area under
the curve (AUC) values > 0.9. The AUC for 25-cinnamoyl-
vulgaroside was > 0.8, while that for 2,4,6-tribromophenol was >
0.7. Notably, when all five metabolites were considered collectively,
the combined AUC was 1 (Figure 5).

Key differentially abundant metabolites
between the SI group and the INF group

The random forest algorithm was applied to identify key
differentially abundant metabolites from 137 differentially
abundant metabolites between the SI group and the INF
group. First, the number of trees was determined, and it was
observed that upon reaching 250 trees, the model’s error rate
stabilized. Therefore, 250 decision trees were used for model

construction (Figure 6A). Using this model comprising
250 decision trees, five key differentially abundant metabolites
with the highest importance were identified between the two
groups (Figure 6B). After excluding the exogenous metabolites,
four key differentially abundant metabolites were retained as
biomarkers capable of distinguishing the SI group from the INF
group: 12-oxo-20-trihydroxy-leukotriene B4, dihydrovaltrate, PA
(8:0/12:0), and 2-heptanethiol (Table 3).

Analysis of the key differentially abundant
metabolites between the SI group and the
INF group

Among the four key differentially abundant metabolites between
the SI group and the INF group, 12-oxo-20-trihydroxy-leukotriene
B4, dihydrovaltrate, PA (8:0/12:0), and 2-heptanethiol exhibited
significant upregulation in the SI group compared to the INF
group (Figures 7A–D). ROC analysis of these four key
differentially abundant metabolites revealed that AUC for all four
metabolites was 1 (Figures 7E–H).

Metabolite pathway analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis of the identified differentially abundant metabolites was
performed to elucidate the differences in the metabolic pathways
between the DIS group and the CON group and between the SI
group and the INF group. The 189 differentially abundant
metabolites identified between the DIS group and the CON group
were subjected to KEGG pathway analysis, which revealed significant
differences (P < 0.05) in phenylalanine, tyrosine, and tryptophan
biosynthesis; phenylalanine metabolism; and porphyrin metabolism
between the two groups (Figure 8A). Moreover, KEGG pathway
analysis of the 137 different metabolites between the SI group and
the INF group revealed significant differences (P < 0.05) in
phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine
metabolism; porphyrin metabolism; glycine, serine, and threonine
metabolism; and cysteine and methionine metabolism (Figure 8B).

Discussion

Neonatal sepsis is one of the most common diseases and is
reportedly associated with high mortality. Early diagnosis of this
condition is crucial for providing timely intervention and improving

TABLE 3 Key differentially abundant metabolites between the SI group and the INF group.

HMDB_ID Name m/z RT [min] Endogenous P

HMDB0012553 12-Oxo-20-trihydroxy-leukotriene B4 383.20 11.10 YES <0.001

HMDB0034492 Dihydrovaltrate 425.22 11.57 YES <0.001

HMDB0115483 PA (8:0/12:0) 481.29 17.33 YES <0.001

HMDB0015651 Isometheptene 142.16 4.24 NO <0.005

HMDB0032303 2-Heptanethiol 133.11 2.80 YES <0.001
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patient prognosis (Gopal et al., 2023). Moreover, the currently
commonly used clinical laboratory tests are of little value in
determining the severity of the disease, which is not conducive to
the early control of this disease or improvement in terms of the
occurrence of complications (Gopal et al., 2023). Therefore,
potential biomarkers for the early identification of patients with
sepsis and those at high risk for poor prognosis in this disease are
urgently needed.

Our study employed untargeted metabolomics technology to
analyze peripheral blood metabolites in infants with sepsis and
comorbidities, infants with sepsis alone, and infants without any
infection. Currently, reports on themetabolomics of infant sepsis are
limited, and studies using machine learning to identify the key
differentially abundant metabolites for use as biomarkers in the
diagnosis of infant sepsis are even rarer. In this research,
Hexylamine, psychosine sulfate, LysoPC (18:1 (9Z)/0:0), 2,4,6-

FIGURE 7
Violin plots and ROC curves for the identified key differentially abundant metabolites between the SI group and the INF group (*p < 0.05; **p < 0.01;
***p < 0.001). (A) Violin plot for 12-oxo-20-trihydroxy-leukotriene B4; (B) Violin plot for dihydrovaltrate; (C) Violin plot for PA (8:0/12:0); (D) Violin plot for
2-heptanethiol; (E) ROC curve for 12-oxo-20-trihydroxy-leukotriene B4; (F) ROC curve for dihydrovaltrate; (G) ROC curve for PA (8:0/12:0); (H) ROC
curve for 2-heptanethiol.

FIGURE 8
The bubble diagram for the results of KEGG pathway analysis. (A) Results of the pathway analysis between the DIS group and the CON group; (B)
Results of the pathway analysis between the SI group and the INF group.
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tribromophenol, and 25-cinnamoyl-vulgaroside were selected as the
diagnostic biomarkers for infant sepsis. Moreover, 12-oxo-20-
trihydroxy-leukotriene B4, dihydrovaltrate, PA (8:0/12:0), and 2-
heptanethiol were recognized as biomarkers that could identify the
presence or absence of complications.

In our study, the levels of hexylamine, psychosine sulfate,
LysoPC (18:1 (9Z)/0:0), and 25-cinnamoyl-vulgaroside were
significantly lower in the infected children than in the
uninfected children, conversely, the level of 2,4,6-
tribromophenol was notably higher in infected children.
Hexylamine is a monoalkylamine that, as a secondary
metabolite of biogenic amines, is involved in the metabolism
of amine hormones. When an infection occurs in the body, the
inflammatory and immune systems produce a variety of
molecules that can bind to receptors on the surface of various
types of central nervous system cells, thereby regulating the
secretion of norepinephrine by the sympathetic nervous
system and of epinephrine by the adrenal system (Thoppil
et al., 2023). Previous studies have established that bacterial
infections result in increased sympathetic nerve activity and
elevated circulating levels of norepinephrine in the body
(Kohm and Sanders, 2001). Thus, we hypothesize that
hexylamine, as a raw material for the synthesis of amine
hormones, is required for the synthesis of norepinephrine and
epinephrine, which are elevated after infection, and that this is
reflected in a decrease in peripheral serum hexylamine levels in
infected children. However, there are few reports on hexylamine
as a metabolite, and its role in the regulation of inflammation and
the immune system has not been specifically reported.
Psychosine sulfate is a derivative of psychosine and belongs to
the glycosphingolipids (GLS) class of metabolites.
Galactosylceramide (GalCer) and glucosylceramide (GlcCer)
are precursors of GLS that are synthesized in the Golgi
apparatus under the catalytic action of a series of transferase
enzymes, such as galactosyltransferases. In the metabolic
pathway of GLS, ceramide, ceramide-1-phosphate, and
sphingosine have been shown to be involved in several cellular
life activities, including cell proliferation, differentiation,
senescence, and apoptosis. Additionally, GLS itself can
participate in cellular physiological functions as a binding
agent for antigens and microbial toxins (Lahiri and Futerman,
2007). However, there is currently a paucity of research
elucidating the specific mechanisms by which
glycosphingolipids (GLS) undergo changes in sepsis. In
clinical studies, plasma levels of sphingosine-1-phosphate
(S1P) were reduced, and ceramide concentrations were
increased in adult patients who developed sepsis, indicating
abnormalities in sphingolipid and GLS metabolic pathways
(Wu et al., 2019). Ceramides activate caspase-dependent
apoptotic pathways by forming cell membrane platforms to
receive and amplify apoptosis-related signals or by directly
interacting with mitochondria (Siskind et al., 2006) and S1P is
involved in cell proliferation and antagonizes ceramide-
promoted apoptosis (Ogretmen, 2018).
Lysophosphatidylcholine (LysoPC) binds primarily to plasma
albumin, and peripheral blood albumin levels and LysoPC
levels are reduced during severe infections in the body (van de
Wouw and Joles, 2022). This finding is consistent with our

observation of reduced levels of LysoPC (18:1 (9Z)/0:0) in the
peripheral blood serum of infected children. Reduced serum
LysoPC has been found in both patients and mouse models of
sepsis in previous studies, and even LysoPC has been shown to be
strongly associated with patient survival and mortality (Ahn
et al., 2017; Lee et al., 2020; Liang et al., 2023). The synthesis
and metabolic network of LysoPC are extremely complex, and the
exact mechanism for its reduction is not clear at this time, but it is
hypothesized to be related to the changes in several enzyme
activities found in severe infections, such as secretory
phospholipase A2 (SPLA2), cholesterol acyltransferase
(LCAT), and lysophosphatidylcholine acyltransferase (LPCAT)
(Ahn et al., 2017). The presence of 2,4,6-tribromophenol and 25-
cinnamoyl-vulgaroside in sepsis has not been reported; 2,4,6-
tribromophenol is mostly considered a toxicant, and the
peripheral serum of infected children in this study was
significantly upregulated by 2,4,6-tribromophenol.

When comparing children with and without comorbidities, it
was hypothesized that the presence of comorbidities indicated a
higher disease severity and a further intense inflammatory response.
Among the four key differentially abundant metabolites identified in
the present study, 12-oxo-20-trihydroxy-leukotriene B4 is a
derivative of arachidonic acid and leukotriene metabolism.
Leukotrienes are lipid mediators synthesized from arachidonic
acid via the 5-lipoxygenase pathway, are produced primarily in
leukocytes and are reported to be closely associated with leukocyte
activation (Yokomizo, 2015). Leukotriene B4 (LTB4) is an active
chemoreceptor, particularly for granulocytes and phagocytes.
LTB4 has been implicated in various functions, including
neutrophil stimulation and activation, increased interleukin-6
production, and early gene transcription in monocytes
(Yokomizo, 2011). In the present study, significantly elevated
levels of 12-oxo-20-trihydroxy-leukotriene B4 were observed in
children with comorbidities, which was attributed to more severe
infections and the heightened metabolism of arachidonic acid and
leukotrienes among these children, leading to higher concentrations
of these metabolites. Phosphatidic acid (PA) is a
glycerophospholipid that forms a pivotal constituent of the lipid
bilayer in biofilms and is involved in crucial biological processes
such as cellular metabolism and signal transduction (Yang et al.,
2018). In vivo, PA is involved in an interconversion reaction with
lysophosphatidic acid (LPA), which is reported to be closely
associated with macrophage migration and infiltration (Jiang
et al., 2023). Animal studies have revealed a significant elevation
in PA serum levels in mice with sepsis compared to those in control
mice, while Wang et al. reported an increased level of peripheral
blood PA in infants with sepsis (Ahn et al., 2018; Wang et al., 2023).
The present study revealed that children with comorbidities had
higher levels of PA than those without comorbidities.

The metabolic pathway analysis conducted in the present
study revealed metabolic alterations between infected children
and children without any infection, between infected children
with complications and those without complications.
Interestingly, phenylalanine, tyrosine, and tryptophan
biosynthesis, phenylalanine metabolism, and porphyrin
metabolism exhibited differences in both analyses, suggesting
the potential roles of these pathways in the pathogenesis of infant
sepsis. First, it has been reported that phenylalanine, tyrosine and
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tryptophan biosynthesis and phenylalanine metabolic pathways
are altered in sepsis (Li et al., 2023). Phenylalanine, tyrosine and
tryptophan are aromatic amino acids, and in the study of Chen
et al., major metabolic intermediates of aromatic amino acids,
such as phenylpyruvic acid, dopamine and homogentisate, were
significantly upregulated in septic patients (Chen et al., 2022).
This may be due to inadequate energy supply, insulin resistance,
the accumulation of reactive oxygen species (ROS) and muscle
tissue breakdown at the onset of sepsis. ROS can reduce the
activity of 5,6,7,8-tetrahydrobiopterin (BH4), which serves as a
hydrogen donor, thereby affecting the metabolic process of
phenylalanine catalyzed by phenylalanine hydroxylase. As a
result, this manifests as an accumulation of phenylalanine in
the peripheral blood. Additionally, during the occurrence of
sepsis, a significant amount of amines such as glucosamine are
consumed to synthesize adrenaline, leading to a reduction in
small molecule amines. This phenomenon is also discussed in our
research (Huang et al., 2019; Feng et al., 2024). Previous studies
have shown that aromatic amino acids can compete with
branched-chain amino acids to cross the blood‒brain barrier
and form pseudo-neurotransmitters that can affect the central
nervous system. Due to the downregulation of phenylalanine
hydroxylase and tyrosine hydroxylase activities during sepsis, the
conversion of phenylalanine and tyrosine to dopamine is
blocked, and more phenylalanine and tyrosine may be
converted to pseudo-neurotransmitters in the brain, affecting
nerve signaling (Gelenberg et al., 1982; Brummelte et al., 2017).
The kynurenine pathway, a major pathway of tryptophan
catabolism, has been found to be activated during the onset of
neuroinflammation. The important role played by the
tryptophan kynurenine metabolic pathway in sepsis-associated
encephalopathy may be attributed to the fact that increased
inflammatory factors activate indoleamine 2,3-dioxygenase
(IDO), which metabolizes and produces several neurotoxic
factors, such as quinolinic acid (QA) and 3-
hydroxykynurenine (3-HAA) (Stone and Darlington, 2013).
IDO is thought to be critical for tryptophan metabolism to
cause cognitive deficits in septic encephalopathy, and in the
study by Gao et al., L-kynurenine, a metabolite of IDO,
induced cognitive deficits similar to those in septic mice after
injection; these deficits were subsequently relatively ameliorated
by administration of the inhibitor of IDO, 1-methyl-D,
L-tryptophan (Gao et al., 2016). Attention to the biosynthesis
and metabolism of phenylalanine, tyrosine, and tryptophan may
help to decipher the mechanism underlying the development of
sepsis-associated encephalopathy. In the porphyrin metabolic
pathway, porphyrin compounds are primarily synthesized in
the liver and can participate in the synthesis and metabolism
of heme in the human body (Arora et al., 2016). Current research
has shown that during the occurrence and development of sepsis,
red blood cells undergo deformation driven and induced by
cytokines and pathogens, thereby significantly increasing the
level of free hemoglobin in the plasma of septic patients. A
higher level of free heme is correlated with the death of
patients, and the impaired synthesis and metabolism of heme
may affect the porphyrin metabolic pathway (Janz et al., 2013;
Jung et al., 2015). Thus, it is hypothesized that alterations in the
porphyrin metabolic pathway may be a consequence of red blood

cell destruction and heme metabolism during the onset of sepsis.
These metabolic changes are, therefore, important indicators of
sepsis onset and severity in infants. Accordingly, correcting these
metabolic changes could have implications for the treatment of
neonatal sepsis.

In summary, by integrating metabolomics with machine
learning, we have identified five metabolites that serve as
potential biomarkers for the diagnosis of neonatal sepsis, as well
as four additional metabolites that may aid in the early
differentiation of patients at risk for developing complications.
However, our study has certain limitations. Firstly, it is a single-
center, small-sample exploratory study with inherent biases.
Secondly, the requirements for sample quality in metabolomics
analysis are stringent, and although literature suggests that one
freeze-thaw cycle may have minimal impact on sample analysis
(Goodman et al., 2021), this remains an area of uncertainty for us.
Future studies should aim to increase the sample size and expedite
metabolomics analysis after sample collection to address
these concerns.

Conclusion

A metabolomics analysis was conducted using infant sepsis
serum samples and LC/MS technology, and after univariate data
analysis and OPLS-DA, the comparison of infected and noninfected
children using LASSO and SVM-RFE revealed five endogenous
metabolites that could be used as discriminating biomarkers for
neonatal sepsis. The combined AUC of these markers was 1. Four
endogenous metabolites were identified by applying the random
forest algorithm for discriminating between children with
comorbidities and those without comorbidities, and all four
markers exhibited excellent discriminatory value. In addition,
pathway analysis was conducted, which provided a novel
perspective for monitoring infection and determining disease
severity in neonatal sepsis patients.
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