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After experiencing many ups and downs, chimeric antigen receptor (CAR)-T cell
therapy has reached a milestone as an anti-cancer method, as evidenced by the
increasing number of clinical trials and approved products. Nonetheless, there is a
real need to optimize CAR-T cell therapy and overcome its existing limitations.
The importance of cellular starting material for generating CAR-T cells is
undeniable, as the current personalized manufacturing approach is the main
roadblock to providing a fast, affordable, and standard treatment for patients.
Thus, developing an off-the-shelf CAR-T product is a leading focus in adoptive
cell therapy. Several biotech companies worldwide are focused on developing an
off-the-shelf CAR-T product from allogeneic sources. Induced pluripotent stem
cells (iPSCs) have unique characteristics, making them highly attractive among
various allogeneic sources. IPSCs can be modified with CAR, undergo other
intended gene manipulations, and then be differentiated into functional
hematopoietic lineages with anti-cancer activity. Moreover, iPSCs provide an
unlimited cell source, simplifying the setting of a standard treatment protocol by
generating a homogenous population of resulting cells and reducing batch-to-
batch inconsistency. In this review, we delve into the manufacturing of iPSC-
derived CAR-T (iCAR-T) cells and discuss the path and challenges of their clinical
translation. We also introduce some iPSC-derived cellular alternatives to
conventional iCAR-αβ-T cells, including iCAR-T cells with a limited TCR
diversity, iCAR-NK, iCAR-macrophages, and iCAR-neutrophils and discuss
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their relative advantages and disadvantages as well as their differentiation from
iPSCs in compliance with cGMP. Finally, we reviewed iPSC-derived CAR-
engineered cells being evaluated in clinical trials.

KEYWORDS

induced pluripotent stem cell (iPSC), chimeric antigen receptor (CAR), cGMP, cancer,
immunotherapy

1 Introduction

The introduction of chimeric antigen receptor (CAR)-T cells in
the 1990s (Gross and Eshhar, 1992; Eshhar et al., 1993; Stancovski
et al., 1993) has ushered a new era in the field of anti-cancer
treatments, as evidenced by at least 11 commercially available
CAR-T products and hundreds to thousands of registered clinical
trials. Since the approval of Kymriah (a CD19 CAR-T product) in
2017 by the US Food and Drug Administration (FDA) for patients
with B-cell acute lymphoblastic leukemia (B-ALL) (Maude et al.,
2018) Five other CAR-T products have been approved by this
authority, including Yescarta (a CD19 CAR-T product approved
in 2017) (Neelapu et al., 2017), Tecartus (a CD19 CAR-T product
approved in 2020) (FDA, 2021a), Breyanzi (a CD19 CAR-T product
approved in 2021) (FDA, 2021c), Abecma (a BCMACAR-T product
approved in 2021) (FDA, 2021b), and Carvykti (a BCMA CAR-T
product approved in 2022) (FDA, 2022). Other regulatory
authorities have also authorized some other CAR-T products.
China National Medical Products Administration (NMPA)
approved two CD19 CAR-T products, including Carteyva (JW
Therapeutics, 2021) and CNCT 19 (Liu et al., 2024), as well as
two BCMA CAR-T products, including Fucaso (Keam, 2023) and
“Zevor-Cel, CT053” (Chen et al., 2022; Fu et al., 2023). The Spanish
Agency of Medicines and Medical Devices (AEMPS) has also
approved ARI-001, a CD19 CAR-T cell, for adult patients with
B-ALL (Ortíz-Maldonado et al., 2021).

The approved CAR-T products listed above are manufactured
using T cells derived from the patient’s own peripheral blood (PB)
based on a custom process. Although autologous CAR-T cell
therapy has been widely recognized as an effective treatment
option for patients with CD19+ hematologic malignancies and
multiple myeloma, the extensive application of this treatment is
impeded by several limitations. Most of the drawbacks of this
individualized manner are attributed to its starting material,
patients-derived T cells. Due to the immune-suppressive nature
of cancer and anti-cancer agents, the patient’s T cells may lack the
desired cellular fitness and may not be viable for ex vivo expansion to
achieve a clinically significant quantity. The lack of appropriate
cellular fitness can lead to production failure in 7% of patients with
B-ALL and 25% of patients with non-Hodgkin lymphoma (NHL)
(Baguet et al., 2024). Manufacturing autologous products normally
takes around 2–4 weeks, another access-limiting factor in cases of
urgent needs (Shah et al., 2023). Moreover, treatment failure can
occur in up to 40% of patients with B-ALL and up to 50% of patients
with B-cell lymphoma (Baguet et al., 2024). In these cases, re-
administration of CAR-T cells may be required. However, this is
hindered by the limited number of cells obtained. Even in the case of
successful manufacturing and treatment, the high cost of
commercially available autologous products (more than

$375,000 for FDA-approved products) imposes a high-cost
burden on patients (Moradi et al., 2023). The difference between
cellular fitness and composition in different patients results in the
batch-to-batch inconsistency of final products, making it difficult to
set a standard drug dosing and treatment protocol (Sommermeyer
et al., 2016; Cuffel et al., 2022). Finally, while a high safety profile is
considered a significant advantage of autologous CAR-T cell therapy
over allogeneic therapy, recent reports of disease relapse after CAR-
T cell therapy due to product contamination by leukemic cells have
raised concerns in this regard (Ruella et al., 2018).

Based on the mentioned limitations of autologous CAR-T cell
therapy, there is a real-time demand for an appropriate cellular
starting material to manufacture an off-the-shelf, homogenous,
affordable, scalable, and reproducible product. In the following
sections, we delve into the induced pluripotent stem cells (iPSCs)
as a reliable cell source for CAR-based immunotherapy.

2 IPSCs and their merits over other
cell sources

The issues mentioned above have moved the focus of several
biotech companies worldwide to provide an appropriate master
stock as starting material for CAR-T cell manufacturing. In recent
years, allogeneic CAR-T cell therapy has emerged as an alternative to
address the current issues of autologous treatment. Nearly
100 clinical trials using allogeneic CAR-T cells have been
designed in recent years, and the released data of some of these
trials are promising (Moradi et al., 2023). Third-party donors,
umbilical cord blood, and pluripotent or multipotent stem cells
are the primary cellular sources for these trials. Each source has
relative advantages and disadvantages that must be considered in its
use (Table 1).

Generating healthy donor-derived genome-edited CAR-T cells
is the most widely utilized approach in clinical trials to develop an
off-the-shelf CAR-engineered cell product. In this method, genome
editing tools such as CRISPR/Cas9 are employed to reduce the
immunogenicity of allogeneic cells and prevent the risk of inducing
graft versus host disease (GvHD) in allogeneic HLA-mismatched
CAR-T cell therapy (Lonez and Breman, 2024). Although the use of
healthy donor-derived CAR-T cells could address most of the
bottlenecks of autologous therapy, the batch-to-batch
inconsistency remains unsolved. Different donors have different
cellular compositions and immune characteristics, which can lead to
variations in batches derived from different donors. On the other
hand, due to the limited volume of blood donated by each donor and
the limited expansion capacity of T cells, each donor-derived
product is sufficient for only a limited number of patients
(Moradi et al., 2023). Another reliable T cell source is umbilical
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cord blood (UCB), which is rich in T cells with naive and less
differentiated phenotypes. Due to the high expansion capacity and
longevity, transfusion of UCB-derived CAR-T cells provides a
sustainable anti-tumor activity. Low immunogenicity, low risk of
GvHD occurrence, and the presence of private/public UCB banks
worldwide are other advantages of UCB-derived CAR-T cells (Liu
D-D. et al., 2022). Despite the promising results of UCB-derived
CAR-modified cells in several preclinical and clinical studies (Yu
et al., 2023; Liu et al., 2020), it should be noted that each cord blood
unit yields about 108 CAR-T cells (Yu et al., 2023) that can be
enough for only a single adult patient.

Utilizing pluripotent/multipotent stem cells as master stock cell
sources could be another alternative. While ethical issues restrict the
therapeutic application of embryonic stem cells (ESCs), the use of
hematopoietic stem cells (HSCs) and induced pluripotent stem cells
(iPSCs) for the generation of hematopoietic lineages have gained
attention in recent years. HSCs have been efficiently engineered with
CAR and differentiated toward CAR-T and CAR-NK cells with
therapeutic efficacy. However, expanding primary HSCs while
retaining their stemness is the main obstacle in their application
for generating CAR-T cells on an industrial scale (Arias et al., 2021;
Tang and Zhang, 2024).

The advent of iPSCs by Dr. Yamanaka in 2006 (Takahashi and
Yamanaka, 2006) was a revolution in the field of cell-based
treatments since their stemness and differentiation capacity are
on par with ESCs while avoiding ethical issues of ESCs.
Theoretically, iPSC can be generated by introducing
reprogramming factors (Oct3/4, Sox2, Klf4, and c-Myc) to any
somatic cells and can differentiate into any desired cell lineage.
iPSCs can be generated using patient-derived cells for personalized
therapeutic approaches or allogeneic cells to provide off-the-shelf
products. While iPSCs are very similar to ESCs in terms of surface
markers, stemness, proliferation rate, morphological features, and
feeder cell-dependent cultivation, they differ in transcriptional and
epigenetic profiles (Scalise et al., 2021). In recent years, iPSCs have
emerged as a reliable source for generating CAR-T cells. In the
following sections, we discuss the process of generating iPSC-
derived CAR-T cells (iCAR-T cells).

3 Generation of iCAR-T cells

CAR-T cell therapy in both autologous or allogeneic settings
mainly relies on the use of αβ-T cells, the most well-known subset of
T cells, and the dominant subpopulation of T cells in peripheral
blood. Here the key requirements regarding the generation of
clinical-grade CAR-αβ-T cells from iPSCs are briefly highlighted.

3.1 Generation of iPSCs

Reprogramming the somatic cells to iPSCs is the first step
toward manufacturing iCAR-T cells. To generate iPSCs for
clinical applications, three key factors that can affect
reprogramming efficiency should be initially considered: i) the
initial cell type, ii) The method of introducing the
reprogramming factors into the cells, and iii) cell culture protocol.

3.1.1 Initial cell type
Since the first report of iPSC generation using fibroblasts,

different cell types from different tissues have been used to
generate iPSCs, so today, almost all cell types can be
reprogrammed into iPSCs. Nonetheless, the most frequently used
cells to generate iPSCs include skin fibroblast, keratinocytes, and
peripheral blood- or cord blood-derived mononuclear cells.
Generally, irrespective of initial somatic cell type, reprogramming
is a cumbersome process in which, in ideal conditions, its efficiency
is just up to 4% (Poetsch et al., 2022). It has been revealed that the
reprogramming efficiency is highly affected by the age and type of
the initial cells. Although iPSCs can be generated using senescent
cells, reprogramming juvenile cells is more efficient and faster than
senescent cells (Lapasset et al., 2011). It has also been shown that the
reprogramming efficiency of cord blood- and peripheral blood-
derived CD34+ cells is considerably higher than that of terminally
differentiated peripheral blood CD34negative mononuclear cells
(PBMCs) (Jha et al., 2021). The results of various studies have
shown that the reprogramming efficiency of keratinocytes is
100 times higher than that of fibroblasts. iPSCs generated from

TABLE 1 Comparison of CAR-T cells derived from different sources.

Autologous
CAR-T

Third-party donor-
derived CAR-T

Cord blood-
derived CAR-T

HSC-derived
CAR-T

IPSC-derived
CAR-T

Cellular fitness of the final
product

Unfavorable Favorable Favorable Favorable favorable

Batch-to-batch consistency Inconsistent Inconsistent Inconsistent Inconsistent Consistent

Manufacturing capacity Limited Limited (from a single donor) Limited (from one unit) Limited (from a single
donor)

Potentially unlimited

Immunogenicity Low High Relatively Low High High

Multiplexed gene editing Possible but challenging Possible but challenging Possible but challenging Possible but
challenging

More straight forward

Safety concerns CRS, ICANS GvHD, CRS, ICANS GvHD, CRS, ICANS GvHD, CRS, ICANS GvHD, CRS, ICANS,
Teratoma

Accessing time 2–4 weeks Readily available Readily available Readily available Readily available

Re-administration Difficult Possible Possible Possible Possible
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keratinocytes are produced in a faster time and are more similar to
ESCs (Klingenstein et al., 2020).

The above-mentioned findings indicate the influence of initial
cell type in the reprogramming efficiency. When the final purpose of
iPSC generation is its differentiation toward T-cell lineage for
adoptive cell therapy, the choice of initial cell type can affect the
final result. In various studies, iPSC-derived T (iT) cells have been
successfully generated using reprogramming of either T or non-T
cells (Themeli et al., 2013; Netsrithong et al., 2020; Montel-Hagen
et al., 2019; Nishimura et al., 2013; Maeda et al., 2020). However, it
has been found that somatic memory of the initial cell type can affect
the differentiation of iPSCs into the intended lineage and can also
affect some of the characteristics of the resulting cells. Somatic
memory means that iPSCs retain the epigenetic and transcriptomic
signatures of their origin cell and tissue, which can affect their
behavior (Khoo et al., 2020). For example, it has been revealed that
compared to iPSCs generated from fibroblasts and keratinocytes,
iPSCs reprogrammed from T cell clones (T-iPSCs) retain the VDJ
rearrangement pattern of their parent T cells and that the resulting
T cells express the same T-cell receptor (TCR) as the parent T cells
(Netsrithong and Wattanapanitch, 2021). It can be considered a
safeguard in the autologous settings since T-iPSC-derived T cells will
not express an autoreactive TCR because of the removal of
autoreactive T cells in the thymus. In contrast, in the cases of
using non-T cells as starting material, the random VDJ
recombination of TCR can give rise to the generation of
autoreactive T cells. In allogeneic settings, whether T cells are
used as starting materials or non-T cells, the resulting T cells
would be alloreactive, which is associated with the risk of
inducing graft versus host disease (GvHD). In this regard,
knocking out of the intrinsic TCR of iCAR-T cells or the use of
T-cell clones with defined TCR repertoire as starting cellular
material for the generation of iPSCs could be a solution to
circumvent the risk of GvHD (Mazza and Maher, 2021).

Although it is demonstrated that the initial somatic cell type can
affect the iPSC differentiation and behavior of the resulting cells, the
significance and amount of these influences have not yet been
completely clarified. There is a real-time need for comparative
studies to determine the effect of initial cell type in the
differentiation of iPSCs toward T cells and the efficacy of
generated CAR-T cells.

3.1.2 Introducing the reprogramming factors
Historically, the first attempt to introduce reprogramming

factors into the somatic cell was made using a retroviral vector
(Takahashi and Yamanaka, 2006). Nonetheless, the random
integration profile of integrating viral (lentiviral-retroviral)
vectors carries the risk of insertional mutagenesis, which can lead
to tumorigenesis by altering the expression pattern of tumor
suppressor genes or oncogenes (Moretti et al., 2022). In recent
years, integrating transposon vectors (such as sleeping beauty and
piggyBac) have emerged as safe alternatives to retroviral/lentiviral
vectors because of their safe random integration profile (Metanat
et al., 2024). Nonetheless, recent cases of leukemic transformation in
a clinical trial of piggyBac-mediated CAR-T cells have raised worries
about their safety (Schambach et al., 2021). On the other hand,
transgene integration-based methods are not suitable for clinical
applications since the integrated transgenes may not become

transcriptionally silenced over time, and their permanent
expression leads to tumorigenesis (Shao and Wu, 2010).

Given that only transient expression of reprogramming factors
is required for cell reprogramming, in recent years, several non-
integrating protocols have been used in this regard.While all of these
non-integrating approaches circumvent the risks related to the
permanent expression of reprogramming factors and avoid the
risk of insertional mutagenesis, they are different regarding
safety, efficiency, and compliance with current good
manufacturing practice (cGMP). Adenoviral vectors were the first
non-integrating vectors used to generate iPSCs (Sridharan et al.,
2009). The cargo capacity of this vector is ~8kb, which allows
delivery of all four factors in the form of a single polycistronic
transgene. Even with this, adenoviral vector-mediated generation of
iPSCs suffers from low reprogramming efficiency (about 0.0006%),
cumbersome manufacturing process, and requiring multiple steps of
cell transduction (Shao and Wu, 2010; Karami et al., 2022).
Temperature-sensitive Sendai viral vectors have been efficiently
used to introduce reprogramming factors into the somatic cells
and production of iPSCs without integrating foreign genetic
materials within the host genome. Temperature-sensitive
mutations in this vector enable removing viral vector
components and reprogramming factors at nonpermissive
temperatures (Ban et al., 2011). Nonetheless, due to the lack of a
cGMP-compliant regent, this approach is not applicable to clinical
approaches (Abraham et al., 2018).

Episomal expression of reprogramming factors is another
option to generate transgene-free iPSCs. Plasmids are the most
known episomal vectors that can be manufactured under cGMP
with significantly lower cost than clinical-grade viral vectors
(Metanat et al., 2024). However, their transfection rate is cell-
type dependent and may be toxic for cells due to their large size.
Moreover, their bacterial backbone may cause transgene silencing.
Bacterial backbone-free minicircles are suitable alternatives to
plasmids since their small size and lack of bacterial elements
increase the efficiency of transfection and transgene expression
(Jia et al., 2010; Narsinh et al., 2011). Origin of replication
(oriP)/Epstein-Barr nuclear antigen-1 (EBNA1) containing
plasmids can replicate within the cells and sustain transgene
expression for a while that is enough for reprogramming, so
circumvent the need for multiple transfections (Kumar et al.,
2018). Nonetheless, they have shown low reprogramming
efficiency in various studies. Another drawback of these vectors
is that they may exert long-term episomal expression of
reprogramming factors (Yu et al., 2009). Excision competent/
integration defective (exc + int-) variants of sleeping beauty \
piggyBac vectors can also be used for transgene-free iPSCs
(Moretti et al., 2022).

Although the mentioned episomal vectors are non-integrating,
the risk of their insertion into the host genome is possible (Mulia
et al., 2021). DNA-free reprogramming approaches allow the
transient activity of reprogramming factors and remove the risk
of insertional mutagenesis. In this regard, mRNA-, miRNA-,
protein, and small molecules-based approaches have been
developed to generate iPSCs. among the non-integrating
approaches, the mRNA-based method has the highest
reprogramming efficiency. By bypassing the need for DNA
transcription, mRNA-mediated reprogramming takes less time
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than DNA-based approaches. While low in vivo stability is the main
bottleneck of the mRNA-based method, somemodifications, such as
phosphatase treatment and replacing cytidine and uridine with 5-
methylcytidine and pseudouridine, respectively, significantly
improve the stability of mRNA molecules. As the mRNAs have a
low life span, repeated mRNA transfection to complete the
reprogramming is crucial (Warren and Lin, 2019). In this regard,
the use of self-replicating RNAs can yield a more durable expression
of reprogramming factors and remove the necessity for multiple
transfections (Yoshioka et al., 2013). In recent years, several
microRNAs (miRNAs) (such as mir-200c, mir-302, and mir-369
families) have also been discovered to be involved in the
pluripotency of stem cells. Transfection of these miRNAs has
been successfully used to reprogram both mouse and human cells
into iPSCs (Yoshioka et al., 2013; Omole and Fakoya, 2018).

One of the safest reprogramming methods for clinical purposes
is the use of proteins, which mediates the reprogramming process
without the risk of inducing genetic scars. Proteins can be fused to
other compounds, such as polyarginine, to increase their
transfection into the cells. Nonetheless, this method suffers from
low efficiency and requires a long time to reprogram. Production
and purification of reprogramming factors are other difficulties of
these methods (Omole and Fakoya, 2018). There are also several
small molecules with the ability to reprogram somatic cells to iPSCs.
Certain mixtures of these small molecules have been successfully
used to reprogram somatic cells. small molecules can also be
combined with other methods to synergize their reprogramming
efficiency. Generally, these small molecules mediate their
reprogramming roles via three main mechanisms: affecting
cellular signaling pathways, alteration of epigenetic profile, and
metabolic changes. Compared to other approaches this method
offers a safer and cost-beneficial approach that simplifies large-
scale manufacturing of iPSCs (Karami et al., 2022).

3.1.3 IPSC culture considerations
While traditionally iPSCs are manufactured in xenogeneic

feeder cell-based culture conditions, the use of xeno-free culture
protocols is vital for their clinical translation. Although human-
derived feeder cells can also be used for iPSC culture, their
preparation is time-consuming and labor-intensive. On the other
hand, It has been revealed that they can disturb the maintenance of
iPSCs (Nakagawa et al., 2014). In recent years, xeno-free and feeder-
free approaches have been developed to generate iPSCs under
cGMP. Since iPSCs are anchorage-dependent, feeding the
extracellular matrix (ECM) to sustain their survival and
pluripotency is required in feeder-free protocols (Horiguchi and
Kino-oka, 2021). These ECMs can be classified as undefined, semi-
defined, and fully defined. Undefined matrices are crude ECM
extracts (animal-derived or xeno-free) that are a mixture of ECM
proteins with undefined ratios. Although they support the
proliferation and pluripotency of iPSCs in culture, their lot-to-lot
variation may affect the reproducibility of IPSCs (Hagbard et al.,
2018). Semi-definedmatrices are proteins (such as laminin, collagen,
fibronectin. And vitronectin) purified from natural sources.
Difficulties in the purification of these proteins in large amounts,
the risk of affecting the phenotype and behavior of iPSCs due to the
presence of other biological contaminants, and batch-to-batch
variability are the main bottlenecks of these products (Hagbard

et al., 2018; Wondimu et al., 2006). In recent years, the development
of xeno-free, contaminant-free recombinant matrix proteins such as
recombinant laminin, fibronectin, and vitronectin with fully defined
composition put an additional level on the safety of clinical-grade
iPSCs and iPSC-derived products. They are commercially available
in research-grade and clinical-grade forms with low batch-to-batch
inconsistency (Kasai et al., 2020; Valamehr et al., 2011).

In recent years, scientists have also developed feeder-free cell
culture mediums, which are a milestone for cGMP-compliant iPSC
manufacturing. Essential 8™ and MTeSR™ are the most frequently
used mediums that have been successfully used for scale-up
manufacturing of iPSCs. They are capable of supporting the
expansion of iPSCs for more than 50 passages without affecting
their karyotype, pluripotency, and differentiation capacity (Ghaedi
and Niklason, 2019; Hayal and Doğan, 2022). The culture media
should be changed daily to support iPSCs’ growth and prevent their
differentiation. It has been shown that enzymatic dissociation and
mechanical dissociation methods can lead to genetic instability of
iPSCs (Garitaonandia et al., 2015; Maitra et al., 2005; Lefort et al.,
2008; Spits et al., 2008; Steichen et al., 2019) Therefore, the use of
non-enzymatic passaging methods such as EDTA-based
dissociation is recommended (Beers et al., 2012). In the case of
ESC culture, It has been revealed that Rho-associated protein kinase
(ROCK) inhibitors can prevent dissociation-induced apoptosis
without affecting the pluripotency and differentiation capacity of
ESCs (Rivera et al., 2020). Nonetheless, the effect of ROCK
inhibitors on iPSCs is controversial. While some results indicate
the effectiveness of adding ROCK inhibitors to iPSC culture media
(Claassen et al., 2009; Matsumoto et al., 2022), others indicate that
the metabolism and differentiation capabilities of iPSCs are altered
by exposure to ROCK inhibitors (Jiang et al., 2022; Vernardis et al.,
2017; Maldonado et al., 2016).

3.2 Characterization and quality control of
the generated iPSCs

Several in-process quality controls must be performed to ensure
the safety, pluripotency, and differentiation capacity of generated
iPSCs. The efficiency of the reprogramming may vary and result in
different partially- or fully-reprogrammed iPSCs. The emerged
colonies can be initially selected based on their ESC-like
morphology, positive alkaline phosphatase staining, and doubling
time kinetics (Karami et al., 2022). iPSCs can be characterized using
the analysis of the expression of pluripotency markers, including
SSEA3, SSEA4, OCT4, Tra-1-60, Tra-1-81, Oct3/4, Sox2, and
Nanog. Expression of these markers can be analyzed at the
protein level using flow cytometry and immunohistochemistry or
at the mRNA level using qPCR and RNA sequencing (Baghbaderani
et al., 2015). Combinational evaluation of at least one surface marker
and one intracellular marker is recommended (Sullivan et al., 2018).
The loss of the construct used for reprogramming must also be
evaluated (Jha et al., 2021). The reprogramming process, serial
subculturing, and freeze/thaw make iPSCs prone to acquire
chromosomal abnormalities and mutations. Genomic stability of
iPSCs must be confirmed using methods such as G-band
karyotyping assay, multicolor FISH (M-FISH) analysis,
chromosomal microarray analysis, Whole genome sequencing,
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whole exome sequencing, and cDNA expression analysis (Steichen
et al., 2014; Baghbaderani et al., 2016). multi-lineage differentiation
capacity of generated iPSCs can be evaluated using in vitro
differentiation assays (embryoid body formation and directed
differentiation assay) and in vivo teratoma formation assay
(Sadeqi Nezhad et al., 2021). Microbiological sterility assays must
be performed to detect contaminations by bacteria, mycoplasma,
viruses, and endotoxins, according to the FDA guidance document
21 CFR 610.12 (Sullivan et al., 2018; FDA, 2024). Sterility assays
should be performed at various stages and should not be limited to
the final product (Sullivan et al., 2018).

3.3 CAR modifications and other gene
manipulations

3.3.1 CAR engineering
While the integrating viral (lentiviral and gamma retroviral)

vectors are mainly used for introducing CAR to the target cells, in
recent years, several integrating (transposon vectors) and non-
integrating (mRNA, plasmids, minicircles, nanoplasmids, and
nanocarriers) non-viral vectors and delivery methods have been
developed to remove the safety concerns, exorbitant cost and
cumbersome production process of viral vectors (Metanat et al.,
2024). To generate iCAR-T cells, CAR transgene can be introduced
to iPSCs or to already differentiated iT cells. CAR engineering at
both levels has relative advantages and disadvantages. At the level of
iT cells, both integrating and non-integrating vectors can be used to
engineer iT cells with CAR. The use of non-integrating vectors and
delivery methods removes the concern of insertional oncogenesis.
Additionally, when the target antigen has a shared expression
between normal and malignant tissues (more prominent in solid
tumors), the transient expression of CAR can prevent on-target off-
tumor toxicities. Nonetheless, Given the short duration of CAR
expression, multiple transfusions of CAR-engineered cells may be
required to complete the eradication of the tumor (Metanat et al.,
2024; Nethi et al., 2023).

For direct engineering of iPSCs, it makes more sense to use
integrative vectors because CAR expression is lost during
differentiation and expansion if non-integrative vectors are
used. Lentiviral, retroviral, and transposon vectors (sleeping
beauty, piggyBac, Tol2, and TcBuster) can yield stable
expression of CAR (Metanat et al., 2024). Nonetheless, the
random integration profile of these vectors raises concerns
about the risk of insertional oncogenesis. Recently, reports of
changes in the cellular behavior of lentiviral-mediated CAR-T
cells (Shah et al., 2019; Fraietta et al., 2018) and leukemic
transformation of piggyBac-mediated CAR-T cells
(Micklethwaite et al., 2021) raise these worries. Moreover,
randomly integrated CAR may become silent during the
differentiation of iPSCs toward hematopoietic lineages. In an
elegant work conducted by Kong and colleagues, it was
demonstrated that iPSCs could be effectively engineered using
either lentiviral or piggyBac vectors. However, the expression of
CAR has been downregulated during the differentiation of CAR-
iPSCs into iCAR-macrophages (Kong et al., 2022). In this regard,
the site-directional insertion of CAR using gene editing tools into
the safe genomic harbors within the host cell genome can prevent

insertional oncogenesis and CAR silencing over time (Kimura
et al., 2019). Programmable nucleases such as zinc finger
nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs), and CRISPR/Cas9 are targeted nucleases capable of
introducing a double-strand break (DSB) at desired genomic sites.
Non-homology end joining (NHEJ) and homology-directed repair
(HDR) are two cellular intrinsic repair pathways that are
responsible for the repair of introduced DSB. NHEJ is an error-
prone mechanism that ultimately results in disruption of target
genes due to the random insertion/deletion mutations. In contrast,
HDR precisely repairs the cleaved site using a homologous
template. If a template consisting of the desired sequence,
which lies within the homology arms, is introduced to the DSB
site, HDR uses this template to repair the cleaved site, ultimately
resulting in the insertion of the desired sequence within the
damaged site (Moradi et al., 2024). Several safe genomic
harbors for targeted CAR insertion have been discovered in
recent years, enabling stable and uniform expression of CAR.
These genomic harbors are included AAV1, TRAC, TRBC,
PCD1, TET2, CCR5, and ROSA26 loci. The size of the CAR
transgene allows its delivery to the DSB site using an adeno-
associated viral (AAV) vector that is safe for clinical
applications (Dabiri et al., 2023).

3.3.2 Gene editing to prevent graft versus host
disease (GvHD)

While iPSC technology can be used in either autologous or
allogeneic settings, the focus of iPSC-derived CAR-T cell therapy is
mainly on its allogeneic applications to overcome the limitations of
the autologous CAR-T cell therapy. Nonetheless, the allogeneic
nature of CAR-T cells poses two challenges to this method. Due to
the diversity of intrinsic TCR of iCAR-T cells and HLA mismatch
between recipients and donors, the infused iCAR-T cells may cause
GvHD and immunologically be rejected by the patient’s immune
responses. Although the use of fully or partially HLA-matched
donor cells can reduce the immunogenicity of iCAR-T cells and the
risk of GvHD, this approach is hindered by the logistical challenges
of finding an HLA-matched donor (Cichocki et al., 2023). In the
past decade, gene editing tools, specifically the CRISPR/
Cas9 system, have paved the way for utilizing allogeneic CAR-T
cells safely and efficiently. In the CRISPR system, the target site
recognition is mediated by the single guide (sg) RNA, making its
re-purposing easier than ZFNs and TALENs, whose re-purposing
to new target sites requires laborious protein engineering
processes. Moreover, performing a multiplex genome-editing
strategy (editing two or more genes simultaneously in the same
cell) is more straightforward using CRISPR/Cas9 (Moradi et al.,
2024). Gene editing tools have been successfully used to remove
endogenous TRC from the surface of CAR-T cells. This can be
achieved by disrupting either the TCR alpha constant (TRAC) or
TCR betta constant (TRBC) genes, which encode the TCR alpha
and beta chains, respectively (Madison et al., 2022). Additionally,
the disruption of the TRAC/TRBC genes can be coupled with the
site-directional insertion of CAR at the disrupted site. Using this
method, CAR is expressed under endogenous TCR transcriptional
elements that result in uniform expression of CAR between the
cells and remove the risk of insertional oncogenesis (Eyquem
et al., 2017).
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3.3.3 Gene editing to prevent graft rejection
Programmable nucleases can also be utilized to reduce the

immunogenicity of infused iCAR-T cells (Figure 1). Surface
removal of MHC-I and MHC-II molecules can prevent rejection
of iCAR-T cells by host CD8+ and CD4+ T cells, respectively. The
MHC genes are highly polymorphic, so their direct targeting is
extremely difficult. MHC-I molecules can be eliminated by
disrupting β2 microglobulin (β2M), a shared non-polymorphic
chain between MHC-I molecules. MHC-II molecules can also be
eliminated from the cell surface by targeting CIITA and RFX genes,
two regulators of MHC-II expression (Wang B. et al., 2021; Mishra
and Qasim, 2024).

While the disruption of MHC-I and MHC-II molecules blunts
both CD4+ T and CD8+ T cell-mediated rejection of iCAR-T cells,
the absence of MHC-I molecules can cause host natural killer (NK)
cell-mediated rejection of iCAR-T cells (Kagoya et al., 2020). Several
strategies have been developed to blunt NK cell-mediated rejection
of allogeneic cells. One of these strategies is the targeted disruption
of HLA-A and HLA-B molecules but not non-canonical HLA-C
molecule (Kitano et al., 2022; Xu et al., 2019). This strategy is

laborious as it needs to design several sgRNAs and select iPSC colons
harboring all intended edits. Nonetheless, homozygous iPSCs can
make this process easier since one sgRNA can induce biallelic
disruption of each of the HLA-A/HLA-B molecules (Kitano
et al., 2022). Another strategy is introducing a ligand to iPSCs to
promote NK inhibitory signals or suppress NK activating signals.
β2m-HLA-E/β2m-HLA-G fusion proteins, siglec 7/9, and
E-cadherin are among the NK cell inhibitory ligands that can be
inserted into the iPSC genome to prevent NK cell-mediated rejection
of iCAR-T cells (Depil et al., 2020). It has been revealed that
allogeneic CAR-T cells with disruption of both MHC-I and
MHC-II molecules and insertion of an NK inhibitory ligand have
a prolonged in vivo persistence than MHC-I and -II disrupted CAR-
T cells (Li W. et al., 2022).

CD155, or poliovirus receptor (PVR), is another ligand on CAR-
T cells that can trigger NK cell-mediated rejection of CAR-T cells via
interaction with DNAM-1, an NK cell-activating receptor. In a study
by Wang et al., a combinational gene editing/engineering strategy
have used for increasing iPSC-derived T cells. They combine the
disruption of β2M, CIITA, and CD155 genes with the insertion of

FIGURE 1
Gene editing strategies to develop hypoimmunogenic iCAR-engineered cells with reduced risk of GvHD. Removing the expression of TCR through
the genetic ablation of TRAC/TRABC genes can prevent the occurrence of GvHD. Reducing the immunogenicity of allogeneic cells can be performed
using different strategies. Host CD8+ and CD4+ T cell-mediated rejection can be blunted by disruption of MHC-I (knocking out of the B2-M gene) and
MHC-II (knocking out of CIITA and RFX genes). Insertion of an NK inhibitory ligand and disruption of CD155 can prevent NK cell-mediated rejection
of alloimmune cells. Insertion of an alloimmune defense receptor (ADR) can also prevent graft rejection. An alternative method to prevent graft rejection
is based on the disruption of CD52 or deoxycytidine kinase (dck), which allows the depletion of host lymphocytes by the administration of exogenous
agents. Insertion of an off-switch receptor or suicide gene makes it possible to deplete the infused cells in case of severe adverse effects.
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HLA-E transgene, which significantly increases the immune escape
of iPSC-derived T cells (Wang B. et al., 2021). They used this
combinational strategy on the basis that the HLA-E inhibitory
ligand is not capable of inhibiting all host NK cells as about half
of NK cells are NKG2Anegative (receptor of the HLA-E) (Fauriat et al.,
2008). In this regard, coupling the insertion of the HLA-E ligand
with the disruption of CD155 can completely blunt NK cell-
mediated immune rejection of iCAR-T cells. It has also been
revealed that the insertion of CD47 and PD-L1, two immune
checkpoint molecules, can blunt NK cell-mediated rejection and
macrophage-mediated phagocytosis of CAR-T cells (Beckett et al.,
2023; Rong et al., 2014). Recently, scientists have developed a 4-1BB-
specific alloimmune defense receptor (ADR) whose expression on
the membrane of CAR-T cells can blunt all three CD4+ T cell-, CD8+

T cell-, and NK cell-mediated rejection of allogeneic CAR-T cells. 4-
1BB is expressed on the surface of activated lymphocytes but not
resting lymphocytes; thus, using this receptor, the transfused
allogeneic cells can reverse the anti-graft responses of the host
lymphocytes and persist in vivo for a longer time (Mo et al., 2021).

While a multiplex genome editing strategy makes it possible to
generate hypoimmunogenic iCAR-T cells, it should be noted that
this strategy is relatively cumbersome and also increases the risk of
chromosomal abnormalities (Samuelson et al., 2021). In this regard,
a different strategy can be used to prevent the rejection of infused
cells without requiring the insertion/deletion of multiple genes. This
strategy is based on the disruption of either CD52 or deoxycytidine
kinase (dck), which allows the depletion of host lymphocytes by
anti-CD52 monoclonal antibodies and fludarabine, respectively,
without depleting iCAR-T cells (Tees et al., 2021; Valton et al., 2015).

3.3.4 Off-switch receptors
CAR-T cell therapy is not without risk and is associated with

several adverse effects, such as on-target off-tumor toxicities,
cytokine release syndrome (CRS), and Immune effector cell-
associated neurotoxicity syndrome (ICANS). Secondary tumors
due to leukemic transformation of infused CAR-T cells or
contamination of final iCAR-T products by iPSCs are other rare
risks of iCAR-T cell therapy (Schambach et al., 2021; Wang, 2023).
In this regard, adding an off-switch receptor or suicide gene into the
iCAR-T cells makes it possible to deplete them by administering an
exogenous agent when required. In recent years, different types of
off-switch receptors have been designed. For example, co-expression
of CAR and a cell surface epitope of CD20 or EGFR allows the
depletion of CAR-T cells by administration of rituximab and
cetuximab, respectively (Serafini et al., 2004; Wang et al., 2011).
Inducible caspase 9 (iCasp9) is another off-switch receptor
composed of Caspase 9 fused to a modified FK506-binding
protein (FKBP1A). By systemic administration of rimiducid (AP
1903), iCasp9 becomes dimer and triggers apoptosis (Rafiq et al.,
2020). It has been revealed that by administration of rimiducid,
iCasp9 can eliminate more than 90% of cells in less than 30 min (Di
et al., 2011). Herpes simplex virus thymidine kinase (HSV-TK) Mut
2 gene can also be used as a suicide gene in CAR-T cells, which
enables the elimination of infused cells by administration of
ganciclovir (Tomasik et al., 2022). Nonetheless, the viral nature
of HSV-TK increases the risk of immunogenicity. Additionally, the
HSV-TK-mediated depletion of infused cells is very slow and has
low efficiency (Netsrithong et al., 2024).

3.4 Differentiation of CAR-iPSCs into iCAR-
T cells

3.4.1 Differentiation of CAR-iPSCs into HSCs
Differentiation of CAR-iPSCs into functional iCAR-T cells

demands the meticulous coordination of specific biological
processes resembling embryonic development. For this purpose,
iPSCs must first differentiate into HSCs and then commit to T cells.
This process involves the initial formation of definitive mesoderm,
the precursor of various adult cell types, including hematopoietic
cells, skeletal muscles, and cardiac muscles. Further differentiation
of definitive mesoderm gives rise to a transient stage called
hemogenic endothelium, where a specific type of endothelial cells
can generate HSCs during endothelial to hematopoietic transition
(Mazza and Maher, 2021). This complex process requires precise
orchestration of various signaling pathways, transcription factors,
and alteration of gene expression profile. Activin A, BMP4, Wnt3a,
and CHIR99021 growth factors must be added to the iPSC culture
medium to induce definitive mesoderm. These growth factors bind
to their receptors on the surface of iPSCs and induce downstream
signaling pathways, including Wnt/β-catenin, Activin/Nodal, and
BMP pathways (Ruiz et al., 2019). These signal transductions
ultimately lead to the activation of transcription factors such as
Brachyury (T) and Eomesodermin (Eomes), which changes the gene
expression profile necessary for the induction of
KDR+APLNR+PDGFRαlow/− mesoderm (Tosic et al., 2019).
Subsequent timed administration of growth factors encompassing
VEGF and FGF elicit the activation of transcription factors such as
GATA2 and RUNX1, which facilitate the differentiation to VE-
cadherin (CD144)+ CD73negative CD235a/CD43negative hemogenic
endothelium (Garcia-Alegria et al., 2018; Bresciani et al., 2021).
By Further modulation of signaling pathways through adding
vascular endothelial growth factor (VEGF), stem cell factor
(SCF), thrombopoietin (TPO), FMS-related tyrosine kinase
3 ligand (FLT-3L), interleukin-3 (IL-3), IL-6, and StemRegenin 1
(SR1) hemogenic endothelium undergoes endothelial-to-
hematopoietic transition, eventually resulting in the formation of
HSCs (Choi et al., 2012; Zheng et al., 2023).

Differentiation of iPSCs into HSCs can be mediated using either
2D or 3D culture systems. Depending on the research goals, both of
these systems can be utilized. 2D systems are more suitable for initial
research because of their relatively simple and cost-beneficial
process (Rao et al., 2022). The most well-known 2D culture
system is based on the co-culture of iPSCs with murine stromal
cell lines such as OP9, MS5, C3H10T1/2, and S17 (Zheng et al.,
2023). These cell lines produce and secrete growth factors required
for iPSC differentiation toward HSCs. While this method gives rise
to HSCs resembling definitive hematopoiesis, xenogeneic cell lines
impede their clinical use. Another 2D differentiation method is
based on the seeding of iPSCs on a surface coated with extracellular
matrix such as vitronectin, collagen, Matrigel, and Tenascin C. This
method requires growth factors and small molecules to be added in a
timed manner to direct iPSC differentiation toward HSCs. While
avoiding the use of murine stromal cell lines makes this approach
compliant with cGMP, large-scale production of HSCs using this
method is challenging.

The use of in vivo or in vitro 3D differentiation systems
resembling in vivo microenvironments can improve the efficiency
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of iPSC differentiation toward HSCs. In 2013, for the first time, it
was revealed that the injection of human iPSCs into
immunodeficient mice gave rise to teratoma, a kind of benign
tumor with differentiated cells of all three germ layers (Amabile
et al., 2013; Suzuki et al., 2013). This method provides a niche-like
environment that supports the differentiation of iPSCs toward
functional HSCs (Tsukada et al., 2017). Nonetheless, it is
challenging to translate this technique into the clinical setting
and to produce HSCs on a large scale using it. Another well-
known technique to induce differentiation of iPSCs in a 3D
microenvironment is based on the use of embryoid bodies (EBs).
EBs are three-dimensional structures with multicellular aggregates
comprising the mesodermal, ectodermal, and endodermal lineages
formed by spontaneous differentiation of human pluripotent stem
cells. Due to the resembling embryonic condition, differentiation of
HSCs from iPSCs on EBs is more efficient than on 2D cultures
(Mora-Roldan et al., 2021). While the EB-induced differentiation of
iPSCs normally leads to primitive hematopoiesis, induction of
definitive hematopoiesis is also possible by the timely addition of
activin inhibitors and manipulation of the Wnt-β-catenin signaling
pathway (Nafria et al., 2020; Garcia-Alegria et al., 2021).
Reproducibility is the main bottleneck of this method since,
depending on the donor of the initial somatic cell, the size and
quality of EBs, media composition, and other lab-to-lab variables,
the final output of this process can vary (Rao et al., 2022; Garcia-
Alegria et al., 2021). As an alternative to EBs, ESC–derived sacs (ES-
sacs) can also be used for in vitro differentiation of iPSCs in a 3D
environment; nonetheless, this method also suffers from
reproducibility challenges (Martin et al., 2019; Haro-Mora et al.,
2020). In recent years, several organoid-like 3D differentiation
systems have been developed, which indicate the superiority of
3D differentiation systems over 2D methods (Ackermann et al.,
2021; Shan et al., 2021; Ma et al., 2021; Wu et al., 2023).

3.4.2 T-cell commitment
In recent years, various methods have been developed to

simulate the thymus environment for T-cell differentiation. The
key point of all these methods is to provide Notch signaling, a critical
regulator of T-cell development in the thymus. The most well-
known method for T cell differentiation is based on the co-culture
with stromal cells. In this method, mouse stromal cell lines such as
OP9 cells are manipulated to overexpression of Delta-like 1 (Dll1) or
Dll4, the human homologs of the Notch ligand, to induce the
required Notch signaling in HSCs. Andrawes et al., have revealed
that dll4 binds to the Notch receptor with a significantly higher
affinity than Dll1 (Andrawes et al., 2013). In addition to Dll1/4,
providing Flt3L and IL-7 is also necessary for the T-cell specification
(Nishimura et al., 2019). As the mouse stromal cells cannot provide
TCR stimulation for human T-cell progenitors, the addition of an
anti-CD3 monoclonal antibody is necessary for T-cell development
(will be discussed in detail in the following section) (Maeda et al.,
2016). The use of artificial thymic organoids is another feeder-based
approach that provides a 3D structure resembling the thymus
environment for T cell development. These organoids are formed
by aggregating DLL1/4 expressing MS5 mouse stromal line with
human HSPCs through centrifugation (Seet et al., 2017). This
method has been successfully used to generate iPSC- and ESC-
derived T cells (Montel-Hagen et al., 2019). Wang et al., have

revealed that the anti-tumor activity of anti-CD19 CAR-T cells
generated by artificial thymic organoids is comparable to that of
peripheral blood-derived CAR-T cells (Wang et al., 2022).

The use of mouse stromal cell line in the abovementioned
approaches limits their clinical translation. On the other hand,
efforts to use human feeder cells to develop a Xeno-free
differentiation approach have not been very satisfactory
(Mohtashami et al., 2013; Lapenna et al., 2013). Several feeder-
free differentiation systems have been developed to overcome this
limitation. In these methods, DLL1/4 becomes immobilized by
fusing to the Fc domain of IgG, VCAM-1, retronectin, or
microbeads (Varnum-Finney et al., 2003; Shukla et al., 2017;
Iriguchi et al., 2021; Trotman-Grant et al., 2021).

3.5 Technical and biological hurdles for the
generation of iCAR-T cells

Initial studies on generating T cells from iPSCs have shown that
iPSC differentiation leads to iT cells with an innate-like phenotype
that differs from conventional PB-derived T cells. These iT cells
possess CD8αα and innate lymphocyte-related markers such as
CD56 while lacking the expression of CD8αβ dimer, CD2, CD5,
and CD28 (Themeli et al., 2013; Nishimura et al., 2013; Vizcardo
et al., 2013; Ando et al., 2015). It has been shown that depleting
double-negative T cells from mixed cultures before stimulation with
an anti-CD3 monoclonal antibody enhances the formation of
CD8αβ single-positive T cells because double-negative T cells can

FIGURE 2
Stepwise process of differentiation of T-cells from iPSCs. To
generate iT cells, iPSCs should first be differentiated into HSCs. By
providing Notch signaling, HSCs can be differentiated toward
functional iT cells. Premature TCR signaling (if a T cell clone is
reprogrammed to IPSC) and/or CAR signaling can lead to generating
innate-like T cells with CD8αα homodimer. Preventing pre-mature
TCR/CAR signaling as well as providing stronger Notch signaling
results in the generation of single-positive T-cells resembling
peripheral blood-derived T cells.
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kill the double-positive T cells and impair their skew toward
CD8αβ single-positive T cells (Maeda et al., 2016). On the other
hand, it has been revealed that premature expression of TCR or
early expression and constitutive signaling of CAR can prevent
the formation of double-positive T cells and skew differentiation
of iT cells toward innate/γδ-T-like CD8αα single-positive T cells
(Figure 2) (van der Stegen et al., 2022). When T cells are used as
the initial source for the generation of iPSCs (T-iPSCs), the
expression of TCR occurs earlier than usual due to the pre-
rearranged TCR. Signaling of pre-mature TCR prevents the
transition to the double-positive stage, leading to the
formation of an innate-like phenotype (Nianias and Themeli,
2019). In this regard, the use of OP9-DLL4 cells or a 3D thymic
culture system instead of OP9-DLL1 cells can enhance the
formation of double-positive T cells by providing stronger
Notch signaling (van der Stegen et al., 2022; Vizcardo et al.,
2018). Nonetheless, the expression of CAR transgene during the
in vitro differentiation can reduce the expression level of Noth1,
Notch3, and their downstream targets, leading to impairing the
transition to the double-positive stage, even in the presence of
DLL4-induced Notch signaling (van der Stegen et al., 2022). In
addition to the downregulation of Notch signaling, early
expression and constitutive signaling of CAR prevent the
expression of PTCRA (Pre-T Cell Antigen Receptor Alpha),
which has an important role in the development of αβ-T cells
but not γδ-T cells (van der Stegen et al., 2022). Optimizing the
CAR structure and regulating its expression time can avoid such
a problem. Insertion of a 4-1BB co-stimulatory domain in place
of a CD28 domain in the CAR construct has been shown to
increase the transition to the double-positive stage and further
formation of CD8αβ single-positive CAR-T cells (Li S. et al.,
2023; Ueda et al., 2023). It has been revealed that the targeted
insertion of a CAR construct with inactivated second and third
ITAM to the TRAC locus can prevent TCR expression and
constitutive signaling of CAR, leading to the restored Notch
signaling, PTCRA expression, and enhanced formation of
double-positive T cells. In the absence of TCR signaling,
providing CAR target antigen and 4-1BB ligand effectively
stimulates double-positive T cells and differentiates them
toward CD8αβ single positive CAR-T cells (van der Stegen
et al., 2022).

Differentiation of iPSCs toward the T lineage usually gives rise to
the formation of CD8 single-positive T cells but not CD4 helper
T cells, even when CD4+ T cells are used as the starting cellular
material for the generation of iPSCs (Furukawa et al., 2023a).
Although CD8+ CAR-T cells are considered the leading player of
tumor killing, several studies have shown that the presence of both
CD4+ and CD8+ CAR-T cells with a defined ratio within the final
product can result in a better and more durable anti-tumor function
(Sommermeyer et al., 2016; Turtle et al., 2016; Boulch et al., 2023;
Lee et al., 2023; Melenhorst et al., 2022). While some recent studies
have reported the successful generation of CD4+ iPSC-derived
T cells using artificial thymic organoids (Montel-Hagen et al.,
2019; Seet et al., 2017; Wang et al., 2022), the generation of these
cells using feeder-free approaches remains challenging. Recently,
Fong et al. developed a new feeder-free and serum-free method for
the generation of CD4+ T cells from human iPSCs. In this method,
stimulation of iPSC-derived CD4+ CD8+ double-positive T cells with

PMA/Ionomycin skew their differentiation toward CD4 single-
positive T cells (Fong et al., 2023).

4 Alternatives to iCAR αβ-T cells

Although αβ-T cells stand as the foremost cell type employed in
CAR-based immunotherapy, the unknown and diverse repertoire of
allogeneic CAR αβ-T cells comes with the risk of lethal GvHD. This
issue necessitates gene editing steps to disrupt the expression of
endogenous TCR. However, it should be noted that there is
controversy regarding the role of endogenous TCR in the
function of CAR-T cells (Smirnov et al., 2021). While the
disruption of endogenous TCR has been successfully performed
in various allogeneic CAR-T cell studies to prevent GvHD, the
results of other studies indicate that the absence of endogenous TCR
signaling impairs the persistence and function of CAR-T cells (Yang
et al., 2017; Wang Z. et al., 2021).

In this regard, the use of iCAR T cells with a defined TCR
repertoire, which lacks the risk of GvHD, or the use of other immune
cells lacking TCR expression, can be used as alternatives to prevent
GvHD. In recent years, several alternatives to CAR αβ-T cells have
been introduced, including T cells with limited TCR diversity
(gamma delta T, MAIT, iNKT, double-negative T, Virus-specific
T, and tumor-specific T cells), cytokine-induced killer cells, natural
killer cells, macrophages, and neutrophils (Figure 3). In addition to
reducing the risk of GvHD, in some cases, these alternatives can
promote anti-tumor function by providing both CAR-dependent
and CAR-independent responses and prevent post-transplantation
infections (Tang and Zhang, 2024). Nevertheless, the main obstacle
in the front of clinical applications of these alternatives is the
difficulty of isolating an adequate number of them from
peripheral blood. In this regard, the use of an unlimited source
such as iPSCs could overcome this limitation. Most of these
alternatives have been successfully generated using iPSCs in
recent years. The following paragraphs discuss the merits and
drawbacks of these cells over the conventional iCAR αβ-T cells.

4.1 iCAR-T cells with low diverse/antigen-
specific TCR

In 2013, for the first time, it was demonstrated that when a T cell
clone is used to generate iPSC (T-iPSC), the resulting T cells from
T-iPSC differentiation express a TCR with a repertoire similar to
that of the initial T cell clone (Nishimura et al., 2013; Vizcardo et al.,
2013). In this regard, T cell clones with a defined TCR repertoire can
be used to generate iPSC to reduce the risk of GvHD. Although
T-iPSC-derived T cells mainly express a TCR similar to the original
T cell, in some cases, it has been reported that additional activity of
recombinases in the double-positive stage can induce rearrangement
of the TCR α chain and change its antigen specificity. Disruption of
recombination activating gene 2 (RAG2) can prevent rearrangement
of the TCR α chain and preserve the antigen specificity of T-iPSC-
derived T cells (Minagawa et al., 2018). Reprogramming of T cell
clones to iPSCs and further differentiation of iPSCs results in the
generation of iT cells with telomers longer than the original clones.
Due to the long telomeres, the fold expansion rate of iT cells is
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5–50 times higher than that of the same clones derived from
peripheral blood (Ando and Nakauchi, 2017). It should be noted
that peripheral blood antigen-specific T cells are mainly terminally
differentiated cells with short telomeres and are prone to die during
reprogramming. It has been demonstrated that adding two factors,
including NANOG and LIN28, to the classical Yamanaka factors can
prevent apoptosis and increase the reprogramming efficiency
(Netsrithong and Wattanapanitch, 2021). iCAR-T cells with low
diverse/antigen-specific TCR and their generation from iPSCs are
discussed in this section.

4.1.1 Tumor-specific iCAR-T cells
If a T cell clone expressing a TCR against the tumoral antigen is

used as the starting cellular material for generating iPSC, the
endogenous TCR of the final iCAR-T cells shows similar antigen
specificity. Thus, these iCAR-T cells can recognize and kill
malignant cells via both CAR-directed and TCR-directed
mechanisms without inducing GvHD. Several studies have used
this method to manufacture tumor-specific iT cells. In these studies,
leukemia WT1-, melanoma MART1-, EBV-induced lymphoma
LMP2-, multiple myeloma BCMA-, and hepatocellular/lung
carcinoma GPC3-reactive T cells have been successfully used for
generating iPSCs and further redifferentiation to functional CD8+

iT cells with similar TCR specificity (Maeda et al., 2016; Vizcardo
et al., 2013; Minagawa et al., 2018; Bae et al., 2024). Equipping these
tumor-specific iT cells with CAR gives them a dual anti-tumor
activity via both TCR and CAR.

4.1.2 Virus-specific iCAR-T cells
The first documented application of virus-specific T cells in

adoptive cell therapy was in the 1990s when it was shown that
infusion of donor-derived T cells with specificity against viral

antigens could prevent post-transplant infections in individuals
who underwent HSC transplantation without inducing GvHD
(Walter et al., 1995; Leen et al., 2013; Monzavi et al., 2021).
Utilizing CAR-equipped allogeneic virus-specific T cells presents
a promising approach to advance the development of an off-the-
shelf product. The CAR of these cells can direct anti-tumor cytotoxic
responses, while their TCR prevents post-transplant infections (a
leading complication after CAR-T cell therapy). In recent years,
virus-specific T-cell clones have been successfully equipped with
various CARs and have shown promising safety and efficacy in
several in vitro/in vivo assessments (Pule et al., 2008; Quach et al.,
2024; Wang X. et al., 2021; Quach et al., 2022). It has also been
demonstrated that recognizing viral antigens by endogenous TCR
not only does not compromise the CAR-directed responses but also
increases the duration of anti-tumor responses by boosting the in
vivo proliferation of CAR-T cells (Wang X. et al., 2021; Cruz et al.,
2013; Louis et al., 2011). In a clinical trial of CAR EBV-specific
T cells in neuroblastoma patients, it has been demonstrated that
these cells can induce a more durable anti-tumor response than their
conventional counterparts, which is attributed to the costimulatory
signals of their endogenous TCR (Pule et al., 2008). In addition,
three other phase I clinical trials have been designed to investigate
the safety and efficacy of virus-specific CAR-T cells (NCT00085930,
NCT00840853, and NCT00840853).

Whereas virus-specific T cell clones can be efficiently isolated
from peripheral blood by peptide-HLA multimers or cytokine
capture techniques (Chang, 2021; Lambert et al., 2023), cells
obtained from a single donor can only be sufficient for a single
recipient. On the other hand, overexpansion of these cells to reach
more of them can exhaust them (Quach et al., 2023). To overcome
this issue, virus-specific T cell clones can be reprogrammed to
T-iPSC and redifferentiated into T cells with the same TCR

FIGURE 3
Generation of Various CAR-iPSC-derived cells. After engineering iPSCs with CAR, they can be differentiated toward CAR-T, CAR-NK, CAR-
neutrophils, and CAR-macrophages. When a T-cell is used to generate iPSCs, the resulting cells express a TCRwith an equivalent repertoire to that of the
initial T-cell. In this regard, using T-cell clones with a defined TCR diversity as the starting material, final iCAR-T cells with specific TCRs that have a lower
risk of GvHD can be generated.
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specificity. In this manner, an unlimited number of virus-specific
T cells can be generated at clinical and industrial scales. Several
studies indicate the feasibility of generating functional iPSC-derived
virus-specific T cells using this method (Nishimura et al., 2013;
Ando et al., 2015; Furukawa et al., 2023b; Haque et al., 2021; Honda
et al., 2020). According to the promising safety and efficacy of
allogeneic PB-derived CAR-modified virus-specific T cells, sourcing
these cells from CAR-iPSCs could be a reliable strategy to provide an
off-the-shelf product in a clinically relevant number.

4.1.3 Gamma delta iCAR-T cells
Gamma delta (γδ) T cells are a subset of T cells that constitute

less than 5% of peripheral blood lymphocytes. These cells express an
HLA-unrestricted TCR in which one of the δ1, 2, 3, 4, and 5 chains
are paired with one of the seven distinct varieties of γ chains. Based
on the paired δ and γ chains, γδ-T cells can recognize CD1d- or
MICA/B-presented lipid antigens or butyrophilin 3A1/2-presented
phosphoantigens without requiring their processing with classical
HLA systems. This unique TCR structure allows them to be utilized
in third-party settings without the risk of inducing GvHD (Hu et al.,
2023). The safety of γδ-T cells in allogeneic settings has been
demonstrated in several preclinical and clinical studies (Hu et al.,
2023; Ma et al., 2023). Due to their high cytotoxicity and low risk of
GvHD, in recent years, γδ-T cells have emerged as a new candidate
for developing an off-the-shelf CAR-modified cell product. CAR-
γδ-T cells can suppress tumor cells via CAR-directed or CAR-
independent responses (Rozenbaum et al., 2020). The latest is
mediated by CD16-directed antibody-dependent cell cytotoxicity
(ADCC) and natural killer (NK) cell cytotoxicity receptors
(NKG2D, NKp30, NKp44, and NKp46) (Capsomidis et al., 2018;
Dong et al., 2022). Moreover, having natural killer cell receptors
makes them capable of preventing post-transplant infections (Chen
et al., 2021).

Ex vivo expansion of γδ-T cells is mediated in the presence of
zoledronate. Nonetheless, it has been revealed that zoledronate-
mediated expansion of γδ-T cells is disparate between different
donors, and γδ-T cells of some donors do not expand in response to
the zoledronate (Wallet et al., 2021). In this regard, iPSCs could be
reliable sources for generating high amounts of CAR γδ-T cells.

In recent years, some research groups have successfully
generated iγδ-T cells using γδT-iPSCs (Wallet et al., 2021;
Watanabe et al., 2018; Murai et al., 2023; Zeng et al., 2019; Jeon
et al., 2023). In 2018, Watanabe et al. developed a new method for
the generation of γδT-iPSCs without requiring the sorting of
peripheral blood γδ T cells. In this method, peripheral blood
mononuclear cells are cultured in the presence of IL-2 and
zoledronate, leading to the specific activation and enrichment of
γδ-T cell clones. Thus, due to the dominancy of γδ T cells, most of
the reprogrammed cells are γδT-iPSCs which can be redifferentiated
to iγδ-T cells (Watanabe et al., 2018). In 2019, Zeng et al. used an
NK-promoting protocol to redifferentiate γδT-iPSCs into iγδ
T cells, which led to the generation of iγδ T cells with the
expression of Natural killer receptors. These cells, which were
different from natural peripheral blood γδ-T cells, were called
“iγδ NKT cells” (Zeng et al., 2019). In newly published research,
Murai et al. redifferentiated γδT-iPSCs toward γδ-T cells. They
revealed that the resulting cells are similar to a minor subtype of
peripheral blood γδ-T cells. In contrast to the majority of the PB-

derived γδ-T cells, the generated iγδ-T cells had a low expression
level of CD2 and CD5, low antigen-presenting ability, and lower
interferon gamma-secretion activity while a higher expression level
of NK cell markers, KIT, and CD7 (Murai et al., 2023). These results
indicate that iγδ-T cells are not completely on par with natural PB-
derived γδ-T cells. Thus, subsequent studies are needed to
completely elucidate the molecular and functional similarities and
differences between iγδ-T cells and PB-derived γδ-T cells. In recent
years, significant progress has been made in developing iγδ-T cells
using CGMP-compliant, feeder-free, and serum-free protocols,
which can facilitate the translation of these cells from bench to
beside (Wallet et al., 2021; Jeon et al., 2023).

There are also promising pioneering data regarding iCAR γδ-T
cells. Scientists in “Century Therapeutics” recently generated iCAR
γδ-T cells from γδT-iPSCs in a feeder-free condition. These cells
showed favorable anti-tumor responses in the preclinical
assessments (Wallet et al., 2021). Quinn et al. revealed that
iCAR- γδ T cells mediate anti-tumor activity via CAR-dependent
cytotoxicity and ADCC. To sustain the in vivo durability of iCAR
γδ-T cells, they engineered these cells to express a membrane-bound
IL-15 (Quinn et al., 2022).

4.1.4 iCAR iNKT cells
Invariant natural killer T cells (iNKT) cells constitute less than

1% of PB T lymphocytes and are characterized by the expression of
both T and NK cell markers. These cells pose a semi-diverse αβ-
TCR, which are HLA-unrestricted and recognize glycolipid antigens
presented by CD1d (Look et al., 2023). Thus, they are potential
candidates for adoptive cell therapy in third-party settings without
the risk of developing GvHD. On the other hand, these cells are very
cytotoxic, which makes them an attractive cell type that can be
modified with CAR to kill malignant cells (Hadiloo et al., 2023a).
The remarkable safety and effectiveness of CAR iNKT cells have
been demonstrated in a variety of preclinical assessments (Liu et al.,
2022b). It has been revealed that in some cases, CAR iNKT cells have
advantages over the conventional CAR αβ-T cells. Their CD1d-
restricted TCR can synergize with CAR to kill CD1d-positive
tumors. Their NK receptors can also sustain anti-tumor
responses and prevent CAR-target antigen-negative relapses.
They pose a broad spectrum of chemokine receptors, facilitating
their infiltration into tumor sites (Rotolo et al., 2018). In a preclinical
assessment, it has been shown that these cells can pass the blood-
brain barrier and suppress the secondary brain lymphoma more
efficiently than their CAR αβ-T counterparts (Rotolo et al., 2018).
Moreover, these cells can reduce the immunosuppressive effects of
the tumor microenvironment by suppressing myeloid-derived
suppressor cells and tumor-associated macrophages (Karadimitris
et al., 2019). Currently, there are three ongoing phase I clinical trials
of CAR iNKT cells (NCT03774654, NCT04814004, NCT03294954).
Published results indicate the favorable anti-tumor activity of CAR
iNKT cells with a high safety profile (Heczey et al., 2020).

Ex vivo activation and expansion of CAR iNKT cells can be
mediated using the administration of α-galactosylceramide (α-
GalCer). The very limited number of iNKT cells in peripheral
blood necessitates long-term ex vivo cultivation to reach a
clinically valuable number of these cells. Nonetheless, chronic
exposure of iNKT cells to α-GalCer may induce their exhaustion,
anergy, or death or differentiate them toward anti-inflammatory T
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helper 2 and regulatory T phenotypes (Hadiloo et al., 2023a). The
use of iPSCs as the source of iNKT cells can overcome this limitation
and provide iNKT cells in a large number for industrial applications.
First time in 2010, Watarai et al. generated iPSC-derived iNKT cells.
They reprogrammed mouse splenic iNKT cells to iPSCs and
redifferentiated them into functional iNKT cells (Watarai et al.,
2010). In 2016, Yamada et al. developed human Vα24 + iNKT cell-
derived iPSCs and successfully redifferentated them into iPSC-
derived iNKT cells. They showed that these cells have reliable
anti-tumor activity in animal models even better than PB-derived
iNKT cells (Yamada et al., 2016). The feasibility of the generation
and anti-tumor function of iPSC-derived iNKT cells has also been
demonstrated by other preclinical studies (Kitayama et al., 2016;
Urakami et al., 2022). iPSC-derived iNKT cells are currently being
evaluated in a phase I clinical trial for patients with advanced head
and neck cancer (HNC) (jRCT2033200116).

Although iPSC technology has not yet been applied for the
generation of CAR-iNKT cells, given the successful generation of
iNKT cells from iPSCs (Watarai et al., 2010; Yamada et al., 2016;
Kitayama et al., 2016; Urakami et al., 2022; Aoki et al., 2023) and the
encouraging results of PB-derived CAR-iNKT cells (Ponnusamy
et al., 2023; Rowan et al., 2023; Ren et al., 2023; O’Neal et al., 2023), it
is expected that the generation of iPSC-derived CAR-iNKT cells will
be carried out in future studies.

4.1.5 iCAR MAIT cells
Mucosal-associated invariant T (MAIT) cells are an innate-like

T cell subtype expressing an HLA-unrestricted semi-invariant TCR.
They recognize metabolites of vitamin B2 presented by MR1 and
have a crucial role in response to vitamin B2-producing microbial
agents (Hinks and Zhang, 2020). Due to the HLA-unrestricted
mechanism of action and the lack of production of riboflavin
derivatives by human cells, MAIT cells have the potential to be
utilized in third-party settings without the risk of developing GvHD
(Talvard-Balland et al., 2024). In recent years, several preclinical
studies have been conducted to evaluate CAR-MAIT cells, and their
results indicate the safety and efficacy of these cells (Dogan et al.,
2022; Bohineust et al., 2021; Li YR. et al., 2022). In addition to CAR-
directed responses, CAR-MAIT cells can be activated in CAR-
independent manners comprising TCR-MR1 interaction (in
MR1-positive tumors), NK receptors (such as NKG2D), and
various cytokines (IL-2, -15, and −18) (Li YR. et al., 2022; Hinks
and Zhang, 2020). By killing the tumor-associated macrophages via
CAR-independent responses, CAR-MAIT cells can also reduce the
immunosuppressive effect of the tumor microenvironment (Li YR.
et al., 2022). From the safety prospects, due to the lower secretion of
proinflammatory cytokines such as IFN-γ, compared to their CAR
αβ-T counterparts, CAR-MAIT cells are associated with a lower risk
of CRS (Dogan et al., 2022).

While some of most cells have a T helper 2 (Th2) phenotype and
tumor-promoting function, the majority of them are highly
cytotoxic and are able to exert potent anti-tumor responses via
their FASL, TRAIL, and the secretion of granzyme A, B, K, H, and
M, and perforin. It has also been shown that equipping MAIT cells
with CAR can direct their polarization toward the anti-cancer
phenotype (Li YR. et al., 2023). Whereas in mucosa-rich tissues,
the abundance of MAIT cells reaches up to 40% of all T cells, in
peripheral blood, they constitute 1%–10% of all T cells. MAIT cell’s

ex vivo expansion is conducted by sorting them from PBMCs and
subsequent culture of them in the presence of MR1 Tetramer-Based
artificial antigen-presenting cells or irradiated mononuclear cells
that are loaded with 5-OP-RU. Nonetheless, using this method, the
expansion rate of MAIT cells lies between 60 and 200-fold (Li YR.
et al., 2023). Therefore, generating a clinically valuable number of
CAR-MAIT cells can be considered as one of the main limitations of
their clinical translation. This underscores the need to provide a
source such as iPSCs to generate MAIT cells in a clinically
meaningful number. On the other hand, given the paucity of
MAIT cells in the peripheral blood of mice, iPSC-derived
MAIT cells can be used in preclinical studies to understand
better the features of MAIT cells and their roles in diseases
(Sugimoto et al., 2024).

In 2013, Wakao et al. conducted a pioneering study. They
reprogrammed cord blood-derived MAIT cells into iPSCs,
redifferentiated them toward MAIT cells, and called them
m-reMAIT cells. Although the generated m-reMAIT cells were
different from PB-MAIT cells in terms of differentiating state,
homing chemokine receptors, and surface markers, they were
capable of migrating to various organs and preventing the
occurrence of Mycobacterium abscessus in immunocompromised
mice (Wakao et al., 2013). In 2022, in another study, Wakao and
colleagues revealed that m-reMAIT cells can efficiently migrate to
various organs. They showed that injection of m-reMAIT cells
before inoculation of Lewis lung carcinoma (LLC) increases the
survival of mouse models, while injection of these cells after LLC
inoculation does not suppress tumor growth (Sugimoto et al., 2022).

Despite the abovementioned items, there is very little data about
m-reMAIT cells. Future studies should be conducted to completely
elucidate the difference between m-reMAIT cells and PB-derived
MAIT cells. It is unclear if these cells have a migration and anti-
tumor activity on par with their PB-derived counterparts. It should
also be assessed whether modifying these cells with CAR can
improve their cytotoxicity or not.

4.2 iCAR NK cells

NK cells are the second most widely utilized cell type in CAR-
directed target therapy. CAR-NK cells are being evaluated in more
than 50 registered clinical trials (Zhang et al., 2023). From both
safety and efficacy perspectives, they have several properties that
propose them as a promising cell type for modification with CAR.
NK cells are parts of the innate immune system and do not express
TCR, allowing their use in allogeneic settings without the risk of
GvHD (Hadjis and McCurdy, 2024). CAR-NK cells have a potent
cytotoxic activity which can be exerted upon CAR signaling or CAR-
independent mechanisms, including ADCC and various activating
receptors (NKp44/46/80, NKG2D, KIR2DS, DNAM1, 2B4, and
NTBA). These CAR-independent mechanisms of action make
them more efficient than CAR-T cells in eradicating tumor
clones that are negative for CAR target antigen and preventing
target antigen-negative relapses (Moradi et al., 2023; Zhang et al.,
2024). In contrast to CAR-T cells, which can develop life-
threatening CRS by secreting IL-1/6 and TNF-α, CAR-NK cells
secrete a different set of cytokines, such as GM-CSF, IL-3, and IFN-
γ, which come with a lower risk of CRS (Zhang X. et al., 2022).
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Because of the lower adverse events, CAR-NK cell therapy has the
potential to be performed in outpatient settings (Zhong and
Liu, 2024).

Peripheral blood (PB), cord blood (CB), and NK-92 cell line are
three classical sources of NK cells. Although PB-NK cells are highly
cytotoxic, leveraging them in CAR-NK cell therapy has specific
challenges. Due to their small number in PB (about 10% of PB-
lymphocytes) and low expansion capacity, their long-term ex vivo
cultivation is necessary to attain a clinically valuable quantity. On
the other hand, prolonged expansion of NK cells within culture
conditions can adversely affect their viability and cytotoxicity (Yang
et al., 2020; Lamers-Kok et al., 2022; Heipertz et al., 2021). In
contrast, cord blood contains more NK cells (about 30% of its
lymphocytes) with higher expansion capacity than PB-NK cells.
Moreover, global and national cord blood banks worldwide make it
easy to access CB-NK cells (Zhang et al., 2024). Nonetheless, the low
cytotoxicity of CB-NK cells due to their immature phenotype is their
main bottleneck (Sarvaria et al., 2017). Moreover, due to the low
transduction/transfection rate, genetic manipulation of PB- and CB-
NK cells is challenging (Schmidt et al., 2020). NK cells have a
relatively short lifespan in the body (less than 2 weeks), which may
necessitate multiple steps of NK transfusion (Pan et al., 2022),
underscoring the need for their large-scale manufacturing. The
only approved NK cell line for human applications is NK-92.
Nonetheless, due to the worries about developing secondary
malignancies (due to their cancerous nature), these cells should
be irradiated before administration, significantly reducing their
lifespan. Additionally, without IL-2, these cells will die within
3 days; however, systemic administration of IL-2 comes with the
risk of serious adverse events. Finally, due to the lack of
CD16 expression, NK-92 cells cannot mediate ADCC (Zhang
et al., 2019; Klingemann, 2023).

iPSC technology can provide a reliable source for the continuous
production of NK cells with homogeneous phenotypes. Various
desired genetic manipulations can be performed in the iPSC stage,
and the iPSC clone harboring the intended changes can be selected
and differentiated toward functional CAR-NK cells. These genetic
alterations can be made to increase the persistence, cytotoxicity, and
tumor infiltration of CAR-NK cells, as well as reduce their
immunogenicity (Goldenson and Kaufman, 2021). Since the
pioneering work of differentiation of NK cells from ESCs (Woll
et al., 2005). Several steps have been taken to generate iPSC-derived
NK cells. Initial studies have demonstrated the feasibility of
manufacturing functional iPSC-NK using classical differentiation
methods, including co-culture with stromal cells, matrix-coated
Petri dishes, and spin embryoid body (Knorr et al., 2013;
Goldenson et al., 2022). Nonetheless, cGMP-compliant
production of NK cells on an industrial scale remains
challenging. Feng et al. recently registered a patent to develop a
3D bioreactor platform to generate homogeneous iPSC-NK cells on
an industrial-scale and serum-free cGMP-compliant condition. In
this system, the release of iNK cells starts on the 15th day and
continues until the 45th day. Over 95% of released cells are positive
for CD56, NKG2D, NKP44, and NKP46 and negative for CD3, TCR,
and B-cell markers. The final yield of this system is about 1010 NK
cells/300 mL (Qiang et al., 2020).

It has been revealed that iNK cells are very similar to primary
NK cells. However, some differences can exist between iNK and

primary NK cells. For example, Zeng et al. have shown that when
PB-derived cells are reprogrammed to iPSC, the generated iNK cells
do not express inhibitory killer cell immunoglobulin-like receptors
(KIRs) which makes them more functional than primary NK cells
(Zeng et al., 2017). CD16a, the responsible molecule for mediating
ADCC, has allelic variation binding affinity to the Fc region of IgG.
Moreover, metalloprotease ADAM17 cleaves the CD16a from the
surface of activated NK cells. Inserting a non-cleavable high-affinity
CD16 (hnCD16) or a CD64/16a chimeric receptor can increase the
ADCC function of NK cells. by engineering iCAR-NK cells to
express these Fc receptors, CAR-NK cell therapy can be
combined with monoclonal antibodies to eradicate tumor cells
via both CAR-directed mechanisms and ADCC (Dixon et al.,
2020; Zhu et al., 2020). This strategy is currently being evaluated
in clinical trials (discussed in the subsequent sections).

4.3 iCAR macrophages

Macrophages are tissue-resident parts of the innate immune
system that are distributed throughout the body and play a vital role
in defense against exogenous and endogenous harmful agents and in
maintaining tissue hemostasis (Na et al., 2023). Macrophages are
mainly classified into two distinct subsets: M1 macrophages and
M2 macrophages. These two subsets of macrophages are
phenotypically and functionally different. M1 macrophages have
anti-tumor activity and are characterized by the expression of CD68,
80, 86, and MHC-II, and M2 macrophages that promote tumor
growth and are characterized by the expression of CD163, 204, 206,
and secretion of immunosuppressive cytokines such as IL-10 and
tumor growth factor-β (Hadiloo et al., 2023b; Jayasingam et al.,
2019). In terms of tumor infiltration, macrophages outperform other
types of immune cells. Research indicates that over half of tumor-
infiltrating immune cells are macrophages exhibiting the
M2 phenotype, commonly referred to as tumor-associated
macrophages (TAMs) (Liu J. et al., 2022).

Several research groups have recently focused on developing
CAR-modified macrophages as off-the-shelf CAR-based products.
CAR macrophages have several advantages over other CAR-
engineered cells. The lack of TCR expression allows them to be
used in third-party settings without the risk of GvHD. The natural
tendency of CAR-macrophages to the tumor sites makes them a
better therapeutic candidate for solid and dense tumors. Moreover,
their long-living activity in the tumor sites provides a sustainable
anti-tumor response (Chen et al., 2024). It has been demonstrated
that modifying the macrophages with CAR skews their polarization
toward the M1 phenotype (Dong et al., 2023). Upon CAR signaling,
these cells mediate direct anti-tumor activity by phagocytosis of
malignant cells or indirectly promote anti-cancer immune responses
by various mechanisms, including secretion of inflammatory
compounds (such as TNF-α), antigen presentation to T cells,
promoting the activity of antigen-presenting cells, and increasing
permeability of tumor microenvironment to immune cells (Chen
et al., 2024; Klichinsky et al., 2020). CAR-macrophages are capable
of being loaded with the intended therapeutic cargos to deliver them
directly to targeted tumor sites (Liu et al., 2022d; Yang S. et al., 2024).

Despite the merits of CAR macrophages, several bottlenecks
limit the generation of these cells from natural sources. Genetic
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engineering of macrophages is difficult even by lentiviral/retroviral
vectors (Gao et al., 2023). On the other hand, they are very rare in
peripheral blood, making it impossible to reach many of them from
peripheral blood to clinical use. To overcome this limitation
monocytes can be isolated from peripheral blood, modified with
CAR, and differentiated into CARmacrophages (Yang B. et al., 2024;
Gabitova et al., 2022). Nonetheless, the paucity of monocytes within
PB leukocytes and their limited expansion rate hinder the generation
of CARmacrophages on an industrial scale. It has also been reported
that monocyte-derived macrophages are not completely similar to
tissue-resident macrophages (Shyam Sushama et al., 2022). To
overcome these limitations, iPSCs can serve as reliable and
potentially unlimited sources for generating macrophages. It has
also been shown that compared to monocyte-derived macrophages,
iMacrophages are better models for tissue-resident macrophages
(Shyam Sushama et al., 2022).

Differentiating iMacrophages from iPSCs requires the
regulation of a stepwise process with the timed addition of the
required cytokines and growth factors. This process involves the
differentiation of iPSCs to HSCs (It was described earlier), myeloid
specification of HSCs, formation of CD14-positive monocyte-like
precursors, and differentiation of these precursors toward functional
iMacrophages (Figure 3) (Lyadova et al., 2021). In recent years,
various research groups have successfully generated iMacrophages
using different methods, including embryoid body-dependent,
stromal cell line-dependent, and xeno-free methods (Klepikova
et al., 2022; Yanagimachi et al., 2013). Results of these studies
have shown that differentiation of iPSCs leads to the generation
of iMacrophages with both M1-and M2-like phenotypes. However,
phenotypical and functional biases exist between the iMacrophages
generated by different methods. iMacrophages generated using
stromal cells have been reported to be phenotypically and
functionally biased toward M2 macrophages, whereas embryoid
body-derived iMacrophages tend to have M1-like characteristics
(Klepikova et al., 2022). However, several results indicate that
iMacrophages are reliable cells that can be used instead of
monocyte-derived macrophages for cell therapy (Lyadova and
Vasiliev, 2022). Given that iMacrophages are terminally
differentiated cells and cannot be expanded in vitro, it is crucial
to generate them on large scales for clinical applications. In a
recently published elegant study, Ackermann et al. developed a
novel method to generate iMacrophages in a xeno-free and
chemically defined intermediate-scale bioreactor platform. This
method allows the continuous production of iMacrophages from
3D hematopoietic organoids. This method yields functional,
reproducible, and highly pure iMacrophages that can be
harvested weekly for multiple weeks (Ackermann et al., 2024).

The feasibility of generating iCAR macrophages and the
efficiency of these cells against solid tumors and hematologic
malignancies has been demonstrated in various preclinical studies
(Kong et al., 2022; Zhang J. et al., 2022; Zhang et al., 2020; Shah et al.,
2024; Shen et al., 2024). In a Proof-of-concept study, Abdin et al.
successfully generated anti-CD19 iCAR macrophages with an M1-
like phenotype and CAR-dependent activity. This study used an
automated CERO 3D bioreactor to produce iCAR macrophages on
an intermediate scale. The overall yield of this method was up to
~5.73 × 107 cells/40 mL (Abdin et al., 2023). This method has the
potential to translate into industrial-compliant scale.

4.4 iCAR neutrophils

Although CAR-neutrophils are considered a new type of CAR-
engineered cells, the first report on the production of CAR
neutrophils was in 1998 (Roberts et al., 1998). However, the
Modification of neutrophils with CAR to fight cancer cells was
not widely investigated until recent years. CAR neutrophils have
several features that render them attractive alternatives to CAR-T
cells. They are parts of the innate immune system and do not express
TCR; thus, CAR-neutrophils can be safely utilized in third-party
settings without the risk of triggering GvHD (Chang et al., 2023).
They can efficiently penetrate physical barriers such as blood-brain
barrier and blood-tumor barrier. This makes them superior to T cells
in accessing dense solid tumors and brain malignancies (Chang
et al., 2022). Recent studies indicate that CAR neutrophils are
versatile tools that can be used as cytotoxic cells and/or delivery
tools for carrying anti-cancer agents into tumor sites to avoid their
systemic toxicity (Chang et al., 2023; López-Arredondo et al., 2024).
While it has been shown that some neutrophils show N2 phenotype
and exert tumor-promoting responses (similar to M2macrophages),
equipping neutrophils with CAR, skew their polarization toward
anti-cancer N1 phenotype (Chang et al., 2023; Chang et al., 2022;
Harris et al., 2023; Majumder et al., 2022). The anti-tumor function
of CAR neutrophils is mediated in a CAR-directed antigen-specific
manner and includes direct phagocytosis, NETosis, and the
production of reactive oxygen species (ROS) (Liang et al., 2023).

Despite the abundance of neutrophils within the peripheral
blood, two main bottlenecks hinder the clinical applications of
CAR-neutrophils. First, the genetic engineering of neutrophils
with the currently available gene engineering tools has low
efficiency and leads to suboptimal expression of CAR by
neutrophils. Second, neutrophils have a very short lifespan and
are not expandable ex vivo or in vivo, underscoring the need for
generating a large amount of them to support their repeated
administration (Chang et al., 2022).

Due to the possibility of differentiation into all adult cell
lineages, iPSC technology can provide a scalable source for
generating CAR neutrophils. The feasibility of differentiation of
neutrophils from iPSCs has been demonstrated in several studies. In
2019, Brok-Volchanskaya developed a serum-free and xeno-free
method capable of generating functional neutrophils from iPSCs. In
this method, iPSCs are first differentiated into hematoendothelial
progenitors using ETV2-modified mRNA. In the presence of GM-
CSF, FGF2, and UM171, these hematoendothelial progenitors can
subsequently be directed to form CD34+ CD33+ myeloid
progenitors. Using this method these myeloid progenitors can be
harvested every 8–10 days for up to 1month. The subsequent culture
of the generated myeloid progenitors in the presence of G-CSF
differentiates them into mature functional iNeutrophils. They state
that this method can produce a considerable number of iNeutrophils
within 14 days (Brok-Volchanskaya et al., 2019).

There is an increasing focus on the research surrounding the
generation of CAR neutrophils from CAR-iPSCs. The published
results indicate that CAR neutrophils can be successfully generated
from iPSCs and can be used as antigen-specific cytolytic agents or
drug-delivery vehicles (Chang et al., 2023; Chang et al., 2022; Harris
et al., 2023; Majumder et al., 2022; Chang et al., 2023). It seems that
the use of CRISPR/Cas9 for the targeted insertion of CAR within the
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safe genomic harbors such as AAV1 locus leads to better and
consistent expression of CAR among the resulting iCAR-
neutrophils (Chang et al., 2023; Chang et al., 2022; Harris et al.,
2023)Nonetheless, these cells are new to the block of CAR-based
immunotherapy and require further optimizations, such as
developing a protocol for large-scale manufacturing of iCAR
neutrophils and optimizing the CAR construct to elicit the
optimal function of iCAR neutrophils. Further preclinical and
clinical evaluations are also needed to validate the safety and
efficacy of iCAR neutrophils.

5 Clinical translation of iCAR-T
products: Challenges and
considerations

5.1 Genomic instability

Genomic instability is a serious concern in iPSC-based
therapeutics as this can lead to the malignant transformation
of iPSC-derived cells and the development of secondary
malignancies. During reprogramming, the metabolism of
reprogrammed cells is shifted from oxidative respiration to
oxidative glycolysis, which increases the risk of genetic
changes by creating an oxidative stress condition within the
cells (Steichen et al., 2019). The oncogenic effect of
reprogramming factors (specifically c-Myc), prolonged in vitro
culture, and enzymatic passaging are other factors that can
promote the risk of genomic instability (Beers et al., 2012;
Netsrithong et al., 2024). Analyzing the 20-metaphase
karyotype using G-binding is the most frequently used method
for detecting chromosomal instabilities. Nonetheless, this
method analyzes less than 30 cells and is insensitive to small
genetic changes. Whole genome sequencing, Single nucleotide
polymorphism (SNP) arrays, and KaryoLite BoBs® are newer and
more precise techniques for screening the genomic alteration of
iPSCs (Steichen et al., 2019; O’Shea et al., 2020). KaryoLite BoBs®

and SNP arrays analyze more than 106 cells in a shorter period
and at a lower cost than G-binding. Nonetheless, these techniques
are not able to detect inversions/balanced rearrangements
(O’Shea et al., 2020). Given the lack of a method with 100%
sensitivity and specificity, it is recommended to combine various
methods to increase accuracy. When a gene editing (specifically
multiplex gene editing) strategy is applied, screening for
detection of off-target and on-target genotoxicities is crucial.
The methods for predicting or detecting these unintended events
are comprehensively discussed in our previous paper (Moradi
et al., 2024).

5.2 Immunogenicity

Due to the allogeneic properties of iCAR-T products, they are
rapidly rejected by the host immune system. In this regard, gene
editing strategies can be applied to reduce the immunogenicity of
iCAR-T products (as comprehensively discussed in the previous
sections). Another strategy to enhance the in vivo survival of injected
cells is the use of high-dose chemotherapy to deplete host immune

cells completely before the administration of iCAR-T cells (Moradi
et al., 2023).

5.3 Tumorigenicity

Tumorigenicity is one of the leading concerns about the clinical
use of iPSC-derived products. This can occur due to the existence of
undifferentiated iPSCs within the final product or malignant
transformation of intermediate or final cells (Patel et al., 2019).
Despite the presence of highly precise quality control assessments,
the evaluation of all the generated cells is not possible. The
manufacturing process and in-process/finished product quality
must be rigorous to reduce the risk of tumorigenesis. In vitro
quality control assays should be coupled with in vivo functional
assays. In these in vivo methods, produced cells are injected into
immunodeficient mice, and their in vivo behavior is monitored for
up to 1 year (Moradi et al., 2024).

Introducing reprogramming factors by non-integrating vectors
is preferred to integrating methods.While the use of non-integrating
vectors to introduce reprogramming factors into the cells reduces
the reprogramming efficiency, the efficiency of some non-
integrating vectors, specifically mRNA vectors, is sufficient as
much as providing a suitable number of iPSCs (Kogut et al., 2018).

Finally, engineering iPSCs to generate iCAR-T cells expressing
an off-switch receptor ensures that the transfused cells can be rapidly
depleted from the recipient’s body in case of unintended adverse
events (comprehensively discussed in section 3.3).

5.4 Required technical optimizations

There is a real-time need to optimize the entire process,
including the enhancement of reprogramming efficiency,
shortening the time of in vitro culture, and the use of cost-
effective and chemically defined media. With a deeper
understanding of the mechanisms involved in the iPSC
differentiation process, this process can be controlled more and
directed towards generating the desired cell. For example,
optimizing iPSC differentiation to generate both CD4+ and CD8+

T cells can lead to better therapeutic efficiency (Furukawa
et al., 2023a).

5.5 The matter of timeline, cost, and scale-
up manufacturing

The production of iCAR-T cells is a costly and time-intensive
process that can take several months. Since the prolonged in vitro
culture increases the risk of contamination and genomic instability,
reducing the manufacturing timeline while maintaining regulatory
standards is crucial. Integrating different steps of iCAR-T cell
manufacturing in a continuous, automated, and closed-loop
system can significantly diminish the overall time and cost.
Implementing a continuous system also provides the possibility
of real-time monitoring of the manufacturing process and prompt
rectification of the errors that occur, preventing production delays
(Abou-El-Enein et al., 2021). Developing cGMP-compliant pre-
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optimized iPSC cell lines can dramatically reduce the production
timeline by circumventing the initial steps, which include iPSC
generation and quality control (Madrid et al., 2024). Another
potential strategy to reduce the time and cost of manufacturing is
the utilization of a split, universal, and programmable (SUPRA)
CAR system. In this strategy, iPSCs are engineered to express a
constant signal transduction receptor called zipCAR which lacks the
antigen binding domain. After the differentiation of zipCAR-
expressing iT cells from IPSCs, the addition of antigen binding
domain (zipFv) leads to the formation of functional CAR capable of
antigen recognition and signal transduction. Using this strategy
various iCAR-T cells with different antigen specificities can be
differentiated from the same iPSC line (Zhao et al., 2018).
Engagement with regulatory authorities from the initial stages
and throughout the development process can facilitate clinical
translation by reducing the required time for regulatory review.
A platform-based approval strategy in which every manufacturing
stage (e.g., reprogramming or gene editing) is standardized and
approved separately can considerably cut costs and manufacturing
time since each standardized production step can also be applied to
subsequent products using this strategy (Ammar et al., 2023).

Scaling and closing the current methods for generating iCAR-T
cells is crucial to translating these therapeutics into clinical settings.
The production of iCAR-T cells in cGMP-compliant conditions and
on an intermediate scale is feasible using currently available
methods. However, the yields of these methods can only support
an initial phase safety assessment clinical trial (Iriguchi et al., 2021).
To bring these products to the market, it is necessary to scale up the

manufacturing of iT cells using larger equipment like automated
stirred-tank bioreactors. Recently, Trotman-Grant et al. developed
and patented a scalable serum-free feeder-free method for
differentiating a clinically relevant number of T cells from stem
cells. In this method, microbeads of a specific size are coated with
DL4 and induce the commitment of T cells with the cooperation of
lymphoid factors in suspension culture conditions (Trotman-Grant
et al., 2021; Juan Carlos et al., 2019).

6 Clinical trials of CAR-iPSC-
derived products

The promising results of iPSC-derived cells in preclinical have
opened the door for their assessment in clinical settings. According
to the Clinical study database for human pluripotent stem cell
(hPSC)-based cell therapies until the first of July, 153 clinical
trials have been registered to evaluate hPSCs or their derivatives
(Guhr et al., 2024). Several companies worldwide are also working
on developing iPSC-derived CAR-modified cell-based products.
Some of these groundbreaking products have advanced to clinical
trials and are currently undergoing evaluation in phase I
trials (Table 2).

“Fate Therapeutics” is an outstanding company focused on
developing off-the-shelf iCAR-T, iCAR-NK, iT, and iNK
products for various therapeutic purposes. Several of this
company’s iCAR-T and iCAR-NK products are currently
undergoing assessment in phase I clinical trials. The ICAR-T

TABLE 2 Clinical trials of iPSC-derived CAR-modified cells.

Cell
type

Product
name

NCT
number

Developer CAR
target
Ag

Genome modifications Disease Study
phase

Inserted genes Disrupted
genes

iCAR-T FT819 NCT04629729 Fate Therapeutics CD19 CD19 TRAC CD19+ B-cell
malignancies

I

FT825 NCT06241456 Fate Therapeutics HER2 HER2 CAR, IL7RF,
hnCD16a, CXCR2,

TGFβ-signal
redirection receptor

TRAC, CD38 Advanced solid
tumors

I

iCAR-
NK

FT522 NCT05950334 Fate Therapeutics CD19 CD19 CAR, hnCD16,
IL-15/IL-15Rα, anti-4-

1BB ADR

CD38 CD19+ B-cell
malignancies

I

FT576 NCT05182073 Fate Therapeutics BCMA BCMA CAR, hnCD16,
IL-15/IL-15Rα

CD38 Multiple myeloma I

FT596 NCT04555811 Fate Therapeutics CD19 CD19 CAR, hnCD16,
IL-15/IL-15Rα

none CD19+ B-cell
malignancies

I

CNTY-101 NCT05336409/
NCT06255028

Century
Therapeutics

CD19 CD19 CAR, IL-15,
Safety switch, HLA-E

β2M and CIITA CD19+ B-cell
malignancies/lupus
Erythematosus

I

Anti-CD19
iCAR NK Cells

NCT03824951 Allife Medical
Science and

Technology Co., Ltd

CD19 Undisclosed Undisclosed CD19+ B Cell
Lymphoma

I

CLL1 CAR-NK
cell

NCT06027853 Zhejiang University CLL1 Undisclosed Undisclosed AML I

iPSC-NK cells NCT06367673 Zhejiang University CLL1 or
CD33

Undisclosed Undisclosed AML I
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pipeline of Fate Therapeutics comprises FT819 (anti-CD19 iCAR-
T), FT825/ONO-8250 (anti-HER2 iCAR-T), and FT836 (anti-
MICA/B ICAR-T), except for the last one two others have been
entered clinical trials. FT819 is manufactured using CRISPR/
Cas9 for site-directional insertion of a novel 1xx CD19 CAR into
the TRAC locus. This strategy has several advantages, including
prevention of GvHD (due to the disruption of endogenous TCR),
prevention of insertional mutagenesis (due to the site directional
insertion of CAR), and prevention of skewing T cell progenitors
toward CD8αα+ innate-like T cells (due to the lacking the expression
of premature TCR and prevention of CAR tonic signaling during the
differentiation). Fate Therapeutic’s stage-specific differentiation
protocol generates a homogenous population of iCAR-T cells,
which are completely negative for TCR, and 99% of them express
CAR (Yuan et al., 2021). The preclinical results indicate that
FT819 is safe and can control tumor growth as effectively as
primary CAR-T cells (Clarke et al., 2018; Chang et al., 2019;
Mandal et al., 2020). FT819 is currently under evaluation in a
Phase I dose-finding study (NCT04629729) as a monotherapy
(single dose of 90/180 million cells or three doses of 30 million
cells) or in combination with IL-2 (single dose of 90/180 million
cells) for 12 patients with CD19+ B-cell malignancies. Before product
administration, all patients received fludarabine (30 mg/m2) and
cyclophosphamide (500 mg/m2) for three consecutive days. The
interim results of this ongoing trial have recently been released,
indicating this product’s promising safety and efficacy. There were
no reports of GvHD, ICANS, dose-limiting toxicity, Grade ≥3 CRS,
or other treatment-related Grade ≥3 serious adverse events among
the 15 subjects treated with FT819. Of 15 efficacy-evaluable subjects,
three patients achieved complete responses (CRs), and one patient
achieved partial responses (PR) (Mehta et al., 2022). FT825/ONO-
8250 is another iCAR-T product of Fate Therapeutics that has been
developed with the collaboration of “Ono Pharmaceutical.” It is
undergoing assessment in a phase I clinical trial With or Without
Monoclonal Antibodies for patients with advanced solid tumors
(NCT06241456). FT825/ONO-8250 is a multiplex-CRISPR-edited
iCAR-T product that harbors 7 genetic edits to promote their
function. These edits include the targeted insertion of a novel
anti-HER2 CAR into the TRAC locus, disruption of endogenous
TCR, insertion of a CXCR2 transgene to promote cell trafficking to
tumor sites, insertion of a high-affinity non-cleavable CD16A
(hnCD16) transgene to enabling the cells to mediate ADCC,
insertion of a TGFβ-signal redirection receptor to prevent the
immunosuppressive effect of the tumor microenvironment,
insertion of interleukin-7 receptor fusion protein to promote
stemness of the iCAR-T cells, and disruption of CD38 to
enhance durability of CAR-T cells in high oxidative stress tumor
microenvironment (Hosking et al., 2023).

Fate Therapeutics is also evaluating three iCAR-NK products,
FT522, FT576, and FT596, in early phase trials. FT596 is a
multiplexed-edited iCAR-NK product that harbors three genetic
edits, including a CD19 CAR containing NKG2D-2B4-CD3ζ
signaling domains (designed to maximize cytolytic activity), an
IL-15/IL-15Rα fusion protein (to enhance in vivo expansion), and
hnCD16. In preclinical assessments, it has been demonstrated that
the combination of FT-596 with rituximab led to better anti-tumor
responses than conventional CD19 CAR-NK cells (Goodridge et al.,
2019). In a multicenter Phase I clinical trial 20 patients with

relapsed/refractory B-cell lymphomas and chronic lymphocytic
leukemia were treated with FT596 in three regimen groups. After
conditioning chemotherapy with fludarabine 30 mg/m2 and
cyclophosphamide 500 mg/m2, patients received a single dose of
FT596 as monotherapy (Regimen A), or in combination with
rituximab 375 mg/m2 (Regimen B1) or obinutuzumab 1,000 mg/
m2 (Regimen B2). Each single dose levels was single-dose levels
between 30 and 900 million cells. The published clinical data reveal
that administration of FT596 is well tolerated by all the 20 recipients
with no reports of dose-limiting toxicity, GvHD, ICANS, or
Grade ≥3 CRS. Among the 17 efficacy-evaluable patients, nine
achieved objective responses, including seven complete responses.
Seven out of nine patients with objective responses received a second
cycle of treatment. The second cycle of treatment was well tolerated
with no cases of CRS, ICANS, or GvHD and showed favorable
efficacy with indications of continued therapeutic benefit
(Bachanova et al., 2021). FT522 is this company’s next-
generation CD19 iCAR-NK product that harbors more genetic
edits than FT-596 to enhance its efficacy. The five genetic edits
of FT-522 include a CD19 CAR, hnCD16, IL-15/IL-15Rα fusion
protein, disruption of CD38, and an anti-4-1BB alloimmune defense
receptor (ADR) (Williams et al., 2022). Administration of FT-522
with rituximab is currently under evaluation in a phase I trial
(NCT05950334). FT576 is another multiplex genome-edited
clinical-grade iCAR-NK product of Fate Therapeutics developed
for individuals suffering from multiple myeloma. These cells are
manipulated to express a BCMA CAR, hnCD16, an IL-15/IL-15Rα
fusion protein, and elimination of CD38 expression. In preclinical
studies, it has been demonstrated that Combined administration of
FT576 with daratumumab results in stronger responses than
monotherapy with FT576 or primary CAR-NK cells (Goodridge
et al., 2020). This product is presently being assessed in a phase I
dose-finding study. According to the recently released interim data
of this trial, nine patients with relapsed/refractory multiple myeloma
were treated with a single dose (on day 1) or multidose (on days
1 and 15) of FT576 as monotherapy or in combination with
daratumumab. Administration of FT576 was well tolerated by
patients, with no reports of GvHD, ICANS, CRS, or dose-
limiting toxicity (Dhakal et al., 2022).

“Century Therapeutics” is another leading company in the field
of CAR-iPSCs and is developing various iCAR αβ-T, iCAR γδ-T,
and iCAR-NK products. CNTY-101, a multiplex genome-edited
CD19 iCAR-NK product of this company, is currently under
assessment in the phase I “ELiPSE-1” clinical trial for patients
with CD19+ hematologic malignancies. These cells have two
knock-out and four knock-in edits comprising the insertion of
CD19 CAR, IL-15 transgene, safety switch, HLA-E, and
disruption of β2M and CIITA (Krish Patel et al., 2024).
According to the interim results of the ELiPSE-1 trial, 12 patients
after the lymphodepletion regimen were treated with 107, 307, or
1007 CNTY-101 cells at either Day 1 or Days 1, 8, and 15. Daily
subcutaneous injection of IL-2 for a period of eight or 4 days after
product administration was also performed for each patient.

Among the 12 patients treated with CNTY-101, no signs of
GvHD, dose-limiting toxicity, ICANS, Induction of humoral
immunogenicity, or Grade ≥3 CRS have been observed. Among
the ten efficacy-evaluable subjects, the objective response rate and
complete response rate were 40% and 30%, respectively. Following
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infusion, CNTY-101 cells quickly exited circulation and were
detectable using cell-free DNA for up to 28 days. In two patients
who received the second cycle of CNTY-101 without prior
lymphodepletion the persistence of infused cells was not
negatively affected, indicating the lower immunogenicity of
CNTY-101 cells (Krish Patel et al., 2024).

7 Future prospects and conclusion

In this review, we have discussed how the current bottlenecks of
CAR-T cell therapy are expected to be overcome by combining this
field with iPSC technology. The use of iPSCs as the sources for
generating CAR-modified cell products offers several advantages,
including providing a potentially unlimited source for developing an
off-the-shelf product, removing the issue of batch-to-batch
inconsistency, ease of multiplexed genome editing, and allowing
product re-administration (if needed). Although the preclinical
results and published clinical data underscore the promise of
iCAR-modified cells, this emerging field is not without
challenges. There is little clinical data regarding the safety and
efficacy of iCAR-cell products. Moreover, differentiating
hematopoietic lineages, especially T cells, from iPSCs and producing
iPSC-derived CAR-modified cells under cGMP and on an industrial
scale remains challenging. Thus, the focus should be on conducting
more preclinical and clinical studies in this field.While the clinical trials
evaluate the efficacy and long-term safety of iCAR cells, preclinical
studies should focus on elucidating the molecular mechanisms of iPSC
differentiation to control and streamline this process and optimize it for
industrial scale. Here we propose some Areas for Future Research:

- Optimizing Manufacturing Scalability: Manufacturing and
scaling iCAR-T cells while ensuring cGMP compliance and
maintaining cell quality is one of the main obstacles to the
clinical translation of iCAR-T cells. The development of more
efficient bioreactors and closed-system automation is crucial
for scaling ICAR-T cell production. This can lead to enhanced
reproducibility, reducing the risk of contamination,
standardization of manufacturing protocol, and minimizing
batch-to-batch inconsistency by reducing manual labor. The
potential of artificial intelligence and machine learning can be
harnessed for predictive modeling of cell growth patterns,
optimizing the culture conditions and differentiation
process, and real-time troubleshooting.

- Reducing the negative consequence of gene editing: Gene editing
is an inevitable step for generating iCAR-T cells. This is
performed to prevent GvHD, reduce immunogenicity, and
enhance safety and efficacy. Nonetheless, gene editing,
particularly when a multiplex strategy is employed, is
associated with the risk of genotoxicity such as chromosomal
abnormalities and off-target cleavages. Future studies should
focus on optimizing the structure and mechanism of action of
gene editing tools to reduce their genotoxicities. Long-term
follow-up studies should be conducted to elucidate the long-
term consequences of the edited genes.

- Reducing the production time and cost: Reducing the
production timeline and costs is crucial to democratize

access to this treatment option. Developing continuous
automated and closed manufacturing systems, generating
pre-validated and optimized IPSC cell lines and ZIP CAR
technology can significantly help to overcome the issue of
production time and treatment affordability.

- Expanding to Solid Tumors: Given the suboptimal efficacy
of CAR-T cell therapy in solid tumors, subsequent studies
should focus on developing novel strategies to overcome
the current bottlenecks of CAR-T cell therapy in
solid tumors

- Long-term Safety Studies: For validating the clinical
applicability of these therapeutics conducting long-term
safety assessment trials for monitoring any potential adverse
event such as tumorigenicity is crucial.

- Platform-based Approvals: Platform-based approval allows
to reuse of the same methodologies and facilities for
multiple products, streamlining the clinical translation
by reducing the time needed for regulatory review.

In conclusion IPSC-derived CAR-engineered cells hold
transformative potential for oncology. By solving the above-
mentioned hurdles, ICAR cells can reshape CAR-based
immunotherapy by making it safer, efficacious, and accessible.
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