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Systemic sclerosis (SSc) is a complex autoimmune disease with clinical symptoms
of vascular damage, immune disorders, and fibrosis, presenting significant
treatment challenges and limited therapeutic options. Mesenchymal stem
cell-derived extracellular vesicles (MSC-EVs) have been demonstrated in
numerous studies as more effective than MSCs in treating autoimmune
diseases. Recent studies demonstrate that MSC-EVs can significantly
ameliorate the symptoms of SSc and mitigate pathological changes such as
vascular injury, immune dysregulation, and fibrosis. These findings underscore
the promising therapeutic potential of MSC-EVs in the treatment of SSc. MSC-EVs
promote angiogenesis, modulate immune dysfunction, and combat fibrosis. This
article summarizes the therapeutic applications and possible mechanisms of
MSC-EVs for SSc, thereby offering a novel therapeutic direction for the treatment
of SSc.
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1 Introduction

Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease with an overall
prevalence of 17.6 per 1,00,000 individuals. The disease’s comorbidity and prevalence are
five times higher in women than in men (Bairkdar et al., 2021). SSc exhibits a complex
pathogenesis and highly heterogeneous clinical presentation (Di Battista et al., 2023). The
main characteristics of SSc include vasculopathy, immune dysfunction, and fibrosis
(Lescoat et al., 2021; Stifano and De Palma, 2021; Yin et al., 2024). Early symptoms of
SSc are subtle and easily overlooked, whereas late-stage symptoms are more apparent and
easier to diagnose (Rosendahl et al., 2022). Consequently, the disease is often diagnosed at
an advanced stage, complicating treatment and increasing mortality rates. The pathogenesis
of SSc primarily involves early microvascular changes accompanied by endothelial cell
dysfunction, followed by infiltration of lymphocytes and histiocytes around affected vessels.
This process results in extracellular matrix deposition and myofibroblast activation (Frech
et al., 2022). The early stages of SSc are characterized by Raynaud’s phenomenon, often
referred to as “very early SSc” (Bellando-Randone and Matucci-Cerinic, 2019). The
hallmark clinical feature of SSc is progressive and extensive fibrosis of the skin and
internal organs, accompanied by organ-related complications, which severely impact the
patient’s quality of life and psychological wellbeing (Frech et al., 2022; Hughes and Herrick,
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2023; Moysidou et al., 2023). SSc is characterized by fibrosis of the
lesions and is often accompanied by organ complications. Examples
include scleroderma renal crisis (SRC) (Cole and Ong, 2023), SSc-
associated interstitial lung disease (Perelas et al., 2020), and cardiac
involvement (Moysidou et al., 2023). These complications
significantly contribute to the high mortality rate in SSc patients.
Currently, there is no single therapeutic approach that is universally
effective for all SSc patients. Consequently, existing studies
emphasize the need for developing personalized treatments
tailored to the disease progression in individual patients, aiming
to alleviate various symptoms and improve their quality of life. The
use of immunomodulators in SSc patients targets reducing
inflammation and fibrosis, while vascular therapeutic agents like
sildenafil have shown efficacy in treating pulmonary hypertension
(Volkmann et al., 2023).

The etiology of Systemic Sclerosis (SSc) is currently complex and
not well understood. Numerous studies have indicated that
environmental factors, medications, microbial imbalances, and
genetic factors may contribute to the development of SSc
(Khanna et al., 2020; Alahmari et la., 2022). Genetic factors are
considered the main contributors to the pathogenesis. Different
studies show that family members of SSc patients have a significantly
higher risk of developing the disease compared to the general
population, with a familial aggregation rate as high as 0.72.
Furthermore, first-degree relatives of SSc patients have a
significantly increased probability of developing other
autoimmune diseases (Kuo et al., 2016). The strongest genetic
association of SSc has been reported at the major
histocompatibility complex (MHC) locus. One study investigated
the genetic component of the MHC locus and found that the
primary genetic contribution to the disease came from the
human leukocyte antigen (HLA) region. Genes such as HLA-
DRB111:04, HLA-DQB102:02, and HLA-DPB1*13:01 in HLA
class II were strongly associated with genetic susceptibility to SSc.
Additionally, for the first time, their study emphasized the
involvement of HLA class I genes in the pathogenesis of SSc, an
area previously underexplored. These allelic associations may pave
the way for precision therapies and could develop into potential
molecular biomarkers (Acosta-Herrera et al., 2021; Hanson
et al., 2022).

Mesenchymal stem cells (MSCs), first isolated from bone
marrow in 1970, are multipotent stem cells with multidirectional
differentiation and self-replenishing abilities. MSCs can secrete
various cytokines, extracellular vesicles (EVs), inflammatory
factors, chemokines, and more to perform functions such as
immunomodulation and stimulation of tissue regeneration
(Wechsler et al., 2021; Wang et al., 2022). For decades, MSCs
have been used as therapeutic agents to replace dead or damaged
cells in animal and clinical trials (Harman et al., 2021; Shimizu et al.,
2022; Tan et al., 2022). Recent research highlights the significant
potential of MSCs in disease treatment through the release of EVs,
particularly in conditions such as osteoarthritis, neurological
disorders, and renal disorders (Yang et al., 2021; Roth et al.,
2022; An et al., 2023). For instance, research demonstrates that
human gingival MSCs (hGMSCs) exhibit both pro-angiogenic and
anti-inflammatory properties. Moreover, the EVs they secrete offer
protection to cardiomyocytes in hypoxic environments (Della Rocca
et al., 2023). EVs contain a variety of active substances, including

proteins and nucleic acids, which enable them to participate in
cellular communication, influence immune and inflammatory
regulation, deliver genetic material, and affect receptor cells
(Mas-Bargues and Alique, 2023; Aloi et al., 2024). Additionally,
EVs have the advantage of crossing the blood-brain barrier,
protecting the carried material from enzymatic degradation, and
exhibiting low immunogenicity (Chi et al., 2022), which makes
MSC-derived EVs promising for SSc therapy. All cells can secrete
EVs, which are small lipid bilayer vesicles with diameters ranging
from 30 to 2000 nm (Huang et al., 2022). However, current EV
isolation techniques do not differentiate between the various types of
EVs produced by different mechanisms. The nomenclature for EV
subtypes in the guidelines published by the International Society for
Extracellular Vesicles (ISEV) in 2014 and 2018 was found to be
insufficient, prompting the ISEV to update its guidelines in 2023.
The new guidelines discourage the use of biogenesis-based terms
such as exosomes and microvesicles. Instead, ISEV recommends
using the generic term “EV” and specific extensions as needed.
Generally, EVs less than 200 nm in diameter are referred to as small
extracellular vesicles (sEVs), while those greater than 200 nm are
called large extracellular vesicles (LEVs). ISEV has also introduced
new terms for EV mimics: artificial cell-derived vesicles (ACDVs)
for those produced by inducing cellular rupture in the laboratory,
and synthetic vesicles (SVs) for those synthesized from molecular
components (Welsh et al., 2024). In this review, the authors use the
terms sEVs or LEVs based on EV size and ACDVs or SVs based on
their synthesis method. When the original study does not specify EV
size or synthesis method, the term “EVs” is used uniformly.

The application of MSC-derived EVs in clinical settings presents
several challenges, such as susceptibility to macrophage clearance (Imai
et al., 2015) and difficulties in achieving high and sustained yields
(Welsh et al., 2024). However, MSC-derived EVs offer numerous
advantages over MSC transplantation in disease treatment, including
low immunogenicity, the capability to cross the blood-brain barrier,
ease of storage, andmodifiability (Zhang et al., 2022;Wang et al., 2024).
As a result, numerous studies are currently investigating the application
of MSC-derived EVs in the treatment of SSc. This paper provides an
overview of the pathogenesis of SSc and the potential applications of
MSC-derived EVs in SSc therapy.

2 Pathogenesis of systemic sclerosis

The exact etiology of systemic sclerosis (SSc) remains unclear,
although numerous studies suggest that both exogenous and
endogenous environmental factors may trigger the activation of
relevant genes. SSc episodes lead to early vascular injury, followed by
activation of the immune system. These factors eventually cause
fibroblast fibrosis and extracellular matrix deposition (Figure 1)
(Frech et al., 2022). The progression of SSc pathogenesis can be
understood through three main aspects: vascular injury, immune
system activation, and fibrosis.

2.1 Vascular injuries

Vasculopathy is an early change in systemic sclerosis (SSc),
initiated by predisposing factors, including infection, oxidative
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stress, cytotoxicity, and occupational exposure (Maehara et al., 2020,
ER, 2022; Kizilay Mancini et al., 2022; Blum et al., 2023). Initially,
these factors cause endothelial cell swelling or apoptosis,
accompanied by enhanced expression of adhesion molecules like
E-selectin (Deng et al., 2021; Romano et al., 2022). This leads to
aberrant activation of vasoactive factors. Adhesion molecules recruit
inflammatory cells, while disruption of vasoactive factors maintains
elevated microvascular tone. Alterations in the microvasculature
promote platelet activation, increasing vascular permeability and
resulting in microvascular leakage. As a result, vascular smooth
muscle cells and pericytes proliferate, leading to thickening of the
vessel wall and narrowing of the lumen (Hegner et al., 2016; Rius
et al., 2024).

2.2 Immune system activation

In the early stages of systemic sclerosis (SSc), immune cell
infiltration, including T cells, dendritic cells, macrophages, and
monocytes, takes place before detectable endothelial cell damage
(Bosello et al., 2018). Pro-inflammatory factors are elevated during
these initial stages and correlate with the severity of SSc. The
relationship between vascular injury and the immune response is
intimately linked and interdependent.

Immune cells secrete various fibrotic factors, including IL-4, IL-
13 (Gasparini et al., 2020), IL-17 (Wei et al., 2022), IL-11 (Steadman

and O’Reilly, 2023), IL-6 (Lin et al., 2022), tumor necrosis factor-α
(TNF-α) (Kosałka-Węgiel et al., 2024), and transforming growth
factor-β (TGF-β) (Lomelí-Nieto et al., 2023), and these factors are
significantly elevated in the serum of patients with SSc (Zarrabi et al.,
2021; Kosałka-Węgiel et al., 2024).

Abnormal activation of macrophages may contribute to
chronic inflammation and fibrosis. Thus, the role of
macrophages in modulating inflammation and fibrosis in SSc
is gradually being recognized. Macrophages can be stimulated to
differentiate into two primary phenotypes: classically activated
M1-like macrophages and alternatively activated M2-like
macrophages (Boutilier and Elsawa, 2021). These macrophage
phenotypes are primarily distinguished by their surface markers
(Wang et al., 2024). During the early stages of SSc, M1-like
macrophages are significantly increased, secreting pro-
inflammatory factors such as TNF-α and IL-6 (Wang et al.,
2022; Peng et al., 2023). M2-like macrophages are activated
during the late repair phase of the disease and inhibit the
M1 response by releasing anti-inflammatory factors such as
IL-4 and IL-13. Additionally, they promote the release of
extracellular matrix (ECM) proteins and pro-fibrotic factors,
and trigger Th2 effectors to enhance anti-inflammatory
responses (Hu et al., 2023). Therefore, M2-like macrophages
are considered a crucial pathogenic factor in SSc.

T cells play a crucial role in the pathogenesis of systemic
sclerosis (SSc) as part of the adaptive immune response. CD4+

FIGURE 1
Pathogenesis of systemic sclerosis. Early injury to the vascular system leads to endothelial cell apoptosis, immune cell infiltration, and loss of small
vessels. These processes release cytokines that activate cells of the innate and adaptive immune systems. These immune cells release a variety of
proinflammatory and fibrogenic cytokines. B cells secrete autoantibodies against nuclear and other antigens and are implicated in tissue injury.
Myofibroblasts secrete high levels of ECM components within the affected tissues, leading to severe stiffness and rigidity. (Created with
BioRender.com).
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and CD8+ T cells are present in the skin and lungs of patients
with SSc(Servaas et al., 2021; Frantz et al., 2022; Yang et al.,
2022). CD4+ T cells differentiate into helper T (Th)1, Th2, Th17,
and regulatory T (Treg) cells (Jin et al., 2022). The Th1/
Th2 balance is crucial in the regulation of allergies and
autoimmune diseases. Studies have shown that in patients
with SSc, the Th2/Th1 ratio is significantly elevated, with
Th2 cells playing a more dominant role in the pathogenesis
of SSc compared to the interferon-γ (IFN-γ) produced by
Th1 cells. Th2 cells produce pro-fibrotic factors, such as IL-4
and IL-13, which stimulate fibroblasts to synthesize collagen,
thereby advancing the fibrotic process. Therefore, targeting
Th2 cell differentiation represents a potential therapeutic
strategy for SSc (Tian et al., 2024). IL-17, secreted by
Th17 cells, is significantly elevated in patients with advanced
SSc and is positively correlated with disease severity (Han et al.,
2022). Treg cells are significantly elevated in patients with SSc;
however, their impaired immunosuppressive function suggests
that targeting Treg cells for depletion could be a novel
therapeutic approach for SSc (Liu et al., 2021).

Patients with SSc also exhibit an imbalance in B-cell homeostasis
in their blood. An increased number of activated naïve B cells and a
decrease in memory B cells are observed. The B-cell activating factor
(BAFF) plays a crucial role in B-cell proliferation and maturation,
and its elevated levels may directly contribute to the pathogenesis of
SSc. Studies have shown that patients with SSc exhibit elevated
serum levels of anti-BAFF autoantibodies (Erdő-Bonyár et al., 2022).

2.3 Fibrosis

Persistent injury, inflammation, and immune cell activation lead
to fibroblast activation, contributing to the progression of SSc
towards fibrosis. The clinicopathologic hallmarks of fibrosis
include the proliferation of myofibroblasts and the accumulation
of extracellular matrix (ECM) proteins within tissues, leading to
organ damage and eventual failure (Abraham et al., 2024).
Numerous studies have demonstrated that myofibroblast
transformation is primarily induced by epithelial cells via
epithelial-mesenchymal transition (EMT). Beyond its pro-fibrotic
role in various autoimmune diseases, EMT is also critical to the
fibrotic processes in tumors and chronic fibrotic diseases (e.g.,
diabetic nephropathy, end-stage liver disease) (Li et al., 2022; Du
et al., 2023; Zhou et al., 2023a). The chronic inflammatory state in
the pathogenesis of SSc serves as an effective trigger for EMT,
promoting the development of pathological fibrosis. Epithelial
cells are primarily connected through various types of outer cell-
cell junctions, which transition to a spindle shape upon dissolution
of these junctions. Once EMT is initiated, epithelial cells undergo a
transition to a fully mesenchymal state, characterized by the loss of
epithelial markers such as E-cadherin and the upregulation of
mesenchymal markers like fibronectin, vimentin, and N-cadherin
(Utsunomiya et al., 2022; Sarrand and MS, 2023).

Transforming growth factor-beta (TGFβ) is a central mediator
of pathological fibrosis and is pivotal in numerous biological
processes, including wound repair, cell differentiation, and

FIGURE 2
MSC-EVs in the treatment of SSc. MSC-EVs exert therapeutic effects by enhancing angiogenesis, modulating the immune response, and reducing
fibrosis through miRNAs and key molecules. (Created with BioRender.com).
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immune regulation (Sun et al., 2024). Beyond its involvement in
autoimmune diseases, TGFβ also plays a critical role in conditions
such as tumors and diabetic nephropathy. In tumor pathogenesis,
TGFβ activation directly induces EMT in tumor cells, leading to the
deposition of ECM proteins (Canè et al., 2021). TGFβ1 has been
identified as a diagnostic marker for skin and lung fibrosis in SSc
(Martinović Kaliterna and Petrić, 2019). Additionally, TGFβ
activates connective tissue growth factor (CTGF), which
synergistically regulates fibrosis alongside TGFβ (Nakai et al.,
2019). Other molecules that exert synergistic effects with TGFβ
in fibrosis include platelet-derived growth factor (PDGF). CXCL4 is
a chemokine produced by platelets and various immune cells under
pathological conditions, with elevated levels detected in the skin and
circulation of SSc patients. A study demonstrated that stimulation of
monocytes from SSc patients with CXCL4 induces the release of
PDGF-BB, thereby exacerbating fibrosis (van der Kroef et al., 2020).

In summary, the initial injury and chronic inflammation in SSc
trigger the production of TGFβ, CTGF, PDGF, among other factors,
which in turn initiate the EMT process. This facilitates the
differentiation of more cells into myofibroblasts, thereby
exacerbating fibrosis (Dees et al., 2020).

3 MSC-EVs in the treatment of SSc

MSC-EVs represent a novel therapeutic approach, emerging as
an innovative modality in tumor therapy, either as a drug carrier or
as a tumor vaccine (Huang et al., 2022; Wang et al., 2022a). Current
therapeutic approaches for SSc primarily include anti-vascular
injury, anti-fibrotic, and immunomodulatory therapies. Common
therapeutic agents include: (a) Nidanib, which exhibits antifibrotic
effects and has proven effective in SSc patients with interstitial lung
disease, slowing the progression of pulmonary fibrosis; dabigatran, a
direct thrombin inhibitor, has shown efficacy in improving
dermatosclerosis symptoms in small-scale clinical trials (Kowal-
Bielecka et al., 2017; Campochiaro and Allanore, 2021; Teske and
Fett, 2024). (b) Leflunomide, used to treat SSc patients with skin and
lung involvement, is strongly supported by recent EULAR
recommendations; cyclophosphamide remains a key
immunosuppressant before stem cell transplantation in critically
ill patients (Teske and Fett, 2024). (c) Phosphodiesterase 5 inhibitors
and endothelin receptor antagonists are commonly used to treat
pulmonary hypertension and Raynaud’s phenomenon, playing a
crucial role in mitigating early vascular damage (Distle et al., 2024).
Although these therapies can effectively control the symptoms of
SSc, they cannot cure the disease. Recent exploration of MSC-EVs as
a treatment for SSc represents a significant breakthrough in the field.
Given that MSC-EVs are enriched with various potent biological
factors, their documented successes in combating vascular injury,
fibrosis, and immunomodulation in SSc suggest they may become a
valuable tool for SSc treatment (Figure 2) (Rozier et al., 2021a), as
detailed below.

3.1 Angiogenesis

Vascular injury is a key part of SSc pathogenesis and occurs at an
early stage; therefore, timely treatment and control during this stage

can greatly reduce fibrosis and complications in the later stages of
the disease (Kowal-Bielecka et al., 2009). MSC-EVs exert their
therapeutic functions through the delivery of genetic material,
including cytokines, miRNAs, and LncRNAs, which they
transport to the relevant receptor cells. They are particularly
effective in wound healing and ischemic disorders, such as
diabetic foot ulcers and myocardial infarction, with strong pro-
angiogenic effects (Song et al., 2021; Kouroupis et al., 2023). A recent
study developed a novel hydrogel dressing, HMN/TP, designed for
rapid wound protection, particularly in resource-limited settings.
The hydrogel also exhibits anti-inflammatory and pro-vascular
regeneration properties (Li et al., 2024). This research strongly
suggests that MSC-EVs can be engineered to enhance and
stabilize their pro-vascular effects across various diseases.

MSC-EVs are rich in various anti-inflammatory and antioxidant
molecules that mitigate SSc-induced inflammation and oxidative
stress through multiple pathways, thereby protecting vascular
endothelial cells and reducing vascular damage. IL-10, present in
MSC-EVs, is a potent anti-inflammatory factor that inhibits the
release of pro-inflammatory cytokines, including TNF-α, IL-6, and
IL-1β. This action reduces the inflammatory response in vascular
endothelial cells and helps preserve the vascular integrity (Jiang
et al., 2022). MSC-EVs are also enriched in Hepatocyte Growth
Factor (HGF) and Vascular Endothelial Growth Factor (VEGF).
HGF promotes the proliferation and migration of endothelial cells
(Wang et al., 2017; Chen et al., 2019), while VEGF facilitates the
repair of damaged blood vessels by promoting angiogenesis, thereby
restoring normal vascular function (Phelps et al., 2023).

MSCs have the potential for multidirectional differentiation and
are primarily derived from the umbilical cord (UC), bone marrow
(BM), and adipose tissue (AD). MSCs localize to the site of injury
and secrete anti-inflammatory molecules and growth factors
through paracrine, autocrine, and endocrine mechanisms to
accelerate wound healing (Hoang et al., 2020; Lu et al., 2022).
MSC-derived EVs from all these sources are crucial for vascular
injury repair. For example, AD-derived MSC-sEVs can enhance the
migration and proliferation of endothelial cells (ECs), thereby
facilitating wound healing in diabetic nephropathy (Song et al.,
2023). UC-derived MSC-sEVs have also been shown to facilitate
wound healing in diabetic conditions (Yang et al., 2020). miRNAs in
MSC-sEVs can promote neovascularization by modulating gene
expression, thereby promoting endothelial cell proliferation and
migration. Zhu et al. found that miR-126-3p carried by sEVs can
be internalized by human umbilical vein endothelial cells
(HUVECs), promoting their proliferation and tube formation via
the mTOR pathway, thereby enhancing angiogenesis (Zhu et al.,
2024). MSC-EVs are inherently angiogenic. Recent studies have
shown that the angiogenic potential of sEVs can be enhanced by
engineering adipose tissue-derived stem cells (ADSCs) to produce
ADSCs-ACDVs, which are enriched in miR-21-5p. Co-incubation
of these ADSCs-ACDVs with HUVECs led to a marked reduction in
PTEN protein levels and a notable increase in VEGF levels in
HUVECs, indicating that ADSCs-ACDVs promote angiogenesis
through PTEN inhibition and activation of the PI3K/Akt
pathway (Sun et al., 2022). Therefore, autologous MSC-ECDVs,
which often have low yield and purity, could be more efficiently
employed for the treatment of vascular injury through engineering
approaches.
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3.2 Immunomodulation

In SSc, the pathological activation primarily includes
dysregulation of Th1, Th2, Th17, Treg cells, and M1/
M2 cytokines (Qin et al., 2023; Yang et al., 2023a). MSC-EVs
function as immunomodulators in SSc by modulating the
production and differentiation of various immune cells, including
T cells, B cells, and macrophages (Zhao et al., 2023; Zhao
et al., 2023a).

3.2.1 T cells
Suppression of inflammation is also a crucial therapeutic

approach in the early stages of SSc pathogenesis. MSC-EVs can
activate different effectors in response to distinct
microenvironments to modulate immune disorders in SSc.

MSC-sEVs can modulate the immune response through
modulating the balance between Th17 and Treg cells.
Th17 cells secrete IL-17, which exerts a pro-inflammatory
effect, while Tregs exert an immunosuppressive function by
secreting anti-inflammatory factors such as IL-10, TGF-β, and
IL-35 (Hu et al., 2024). Jung et al. demonstrated that MSC-sEVs
can be internalized by naïve CD4+ T cells, thereby modulating their
differentiation and preventing the conversion of CD4+ T cells into
Th17 cells. RAR-associated orphan receptor γt (RORγt) is the key
transcription factor for defining the Th17 lineage, and its stability
is maintained by acetylation and K63-linked polyubiquitination.
Their study revealed that MSC-sEVs induce the degradation of
RORγt through K63-linked deubiquitination, leading to reduced
IL-17 production in CD4+ T cells polarized to Th17 cells. This
mechanism exerts anti-inflammatory and immunosuppressive
effects in autoimmune diseases (Jung et al., 2023). Conversely,
MSCs induce FoxP3 expression through the secretion of
indoleamine 2,3-dioxygenase (IDO), which increases the
proportion of Tregs in the spleen of EAE patients, thereby
alleviating clinical symptoms and disease severity in EAE
(Manganeli Polonio et al., 2021).

Maintaining the Th1/Th2 balance is crucial in the pathogenesis
of autoimmune diseases. Yang et al. (2023) showed that ADSCs-
sEVs can inhibit Th2 differentiation and reduce the serum levels of
sIgE, IL-4, and IFN-γ, which are key markers of allergic rhinitis
(AR), thereby significantly improving the allergic symptoms of AR,
such as sneezing.

3.2.2 Macrophages
Macrophage polarization is crucial for regulating the tumor

microenvironment, and dysregulation of the M1/M2 ratio plays a
key role in the inflammatory response and fibrosis associated with
autoimmune diseases (Yang et al., 2023). AKT is a pivotal protein in
M1 polarization; its phosphorylation promotes M1 polarization
while inhibiting M2 polarization. Diabetic wound healing is
frequently delayed by inflammatory factors, which can ultimately
result in amputation. Bonemarrowmesenchymal stem cell (BMSC)-
derived sEVs significantly upregulated PTEN expression, inhibiting
AKT phosphorylation and thereby shifting the balance toward
M2 polarization. Additionally, MSC-sEVs can enhance collagen
synthesis and angiogenesis, thereby promoting wound healing
(Liu et al., 2020). Hu et al. (2022) demonstrated that MSC-sEVs
may transfer miR-34c-5p to macrophages via a CD81-epidermal

growth factor receptor (EGFR) complex, thereby suppressing
macrophage activation.

3.2.3 B cells
B lymphocytes are crucial in the adaptive immune response, and

MSC-EVs have been shown to regulate both the proliferation and
function of B cells. Xing et al. isolated labial gland (LG)-derived MSC
sEVs (LGMSCs-sEVs) and found that LGMSCs-sEVs could attenuate
the symptoms of primary Sjögren’s syndrome (pSS) by regulating B cell
proliferation and differentiation. pSS results from abnormalities or over-
activation of T and B cells. They injected LGMSCs-sEVs into mice with
pSS, resulting in a significant reduction in the proportion of CD19−and
CD138+ plasma cells in the spleen. Sequencing analysis suggested that
miR-125b may be pivotal in mediating the inhibition of plasma cell
differentiation (Xing et al., 2022).

3.3 Anti-fibrotic effect

Fibrosis in SSc represents a more advanced stage of the disease,
characterized not only by skin fibrosis but also by severe fibrosis of
vital organs. Research on MSC-EVs has increasingly focused on
their role in addressing fibrosis. Reduced levels of miR-29a have
been detected in the serum and skin tissues of patients with SSc.
miR-29a is an antifibrotic factor, negatively correlated with type I
collagen levels. Rozier et al. demonstrated that human AD-derived
MSC-EVs release miR-29a, which targets TGFβ-activated kinase 1-
binding protein 1 (TAB1), leading to decreased TIMP1 expression
and increased matrix metalloproteinase 1 (MMP1) levels, ultimately
exerting antifibrotic effects (Rozier et al., 2021b). Additionally, they
preactivated MSC-EVs with IFNγ, which effectively improved lung
fibrosis in mice; however, a low dose of IFNγ did not significantly
impact the reduction of skin thickening (Rozier et al., 2021c). Jin
et al. (2021) developed an SSc mouse model by injecting bleomycin
(BLM) and subsequently treated the mice with isolated mouse
BMSC-derived EVs. In the skin of BLM-treated mice, TGF-β1-
positive cells and α-SMA-positive myofibroblasts were significantly
increased. However, in the SSc model mice treated with BMSC-EVs,
the number of TGF-β1-positive cells was significantly reduced.
Subsequently, through sequencing the miRNAs in BMSC-EVs,
they identified that miR-21a, miR-143, miR-27b, miR-29a, and
let-7 were highly enriched. GO analysis predicted that these
miRNAs are associated with classical pathways such as WNT and
TGFβ, making them potential therapeutic targets for the disease.
Additionally, they found that BMSC-EVs could reduce pro-
inflammatory cytokines in the SSc mouse model.

There has been extensive research and application of MSC-EVs
in various other diseases. Currently, the use of MSC-EVs in SSc
treatment primarily focuses on antifibrotic therapy. Therefore, our
research on the angiogenic and immunomodulatory aspects of SSc
represents a promising and valuable new avenue to enhance the
quality of life for SSc patients.

4 Conclusion and outlook

MSC-EVs can ameliorate vascular injury, immune dysfunction,
and fibrosis in SSc by modulating key factors and signaling
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pathways. Numerous studies now indicate a positive role of MSC-
EVs in the treatment of SSc. Additionally, some research indicates
that pluripotent stem cells derived from hGMSCs reprogramming
(iPS), along with iPS-derived EVs, may offer superior therapeutic
advantages (Della Rocca et al., 2024). However, further clinical trials
are required to confirm these findings. A key challenge that needs to
be addressed is scaling up and engineering large-scale MSC-EVs
production, which could enhance their therapeutic potency and
stability. This includes the genetic modification of MSCs to achieve
specific therapeutic outcomes.
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