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Intervertebral disc degeneration (IVDD) is the leading cause of low back pain,
where degeneration and death of nucleus pulposus cells within the intervertebral
disc (IVD) can be obviously revealed. This degeneration can result in an imbalance
in the extracellular matrix due to the loss of proteoglycans and water content,
which can further lead to catabolic and anabolic dysfunction of the IVD. Recently,
the dysfunction of cartilage endplate (CEP) during aging has drawn large attention
due to its essential functions in contributing nutrient exchange and maintaining
IVD homeostasis. Furthermore, the inflammation and disturbed homeostasis of
CEP not only accelerate the degradation of nucleus pulposus extracellular matrix,
but also exacerbate IVDD by causing nucleus pulposus cell death through other
pathological factors. Here in this review, we summarized the possible
pathological factors and the underlying mechanisms of the CEP
inflammation-induced IVDD, including exosomes degeneration, CEP
calcification, ferroptosis, mechanical changes, and cell senescence. Besides,
changes of miRNAs, pain-related neural reflex arc and pathways associated
with CEP inflammation-induced IVDD are also reviewed. In addition, new
strategies specifically designed for CEP inflammation-induced IVDD are also
discussed in the last section. We hope this paper can not only offer some new
insights for advancing novel strategies for treating IVDD, but also serve as a
valuable reference for researchers in this field.
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1 Introduction

Intervertebral disc (IVD) is a kind of fibrocartilaginous joint that is composed by a
central nucleus pulposus (NP) in the center and a peripheral annulus fibrosus (AF) around
the NP, while the cartilage endplate (CEP) is located between the intervertebral disc and the
vertebral body (Dowdell et al., 2017). Functionally, the IVD plays important roles in bearing
weight, absorbing shock, buffering cushion, andmaintaining stability of the spine. However,
intervertebral disc degeneration (IVDD) is recognized as the culprit of low back pain, which
greatly reduces the quality of human life (Maher et al., 2017). The development of IVDD is a
complex pathological process involving multiple factors, including extracellular matrix
(ECM) depletion, fibration and dehydration of nucleus pulposus, extensive CEP injury, and
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subchondral sclerosis, which jointly decrease the height of
intervertebral disc (Che et al., 2020; Lu et al., 2020; Tang et al.,
2019). Besides, elevated inflammatory cytokines such as IL-1 and
TNF-α in the IVD are revealed to be closely associated with disc
degeneration, where IL-1 is reported to directly mediate various pro-
inflammatory mediators and matrix metalloproteinases (MMPs),
resulting in a disturbed ECM metabolism of the intervertebral disc
(Gao et al., 2024). While the activation of TNF-α can lead to the
expansion of inflammation cascades, and apoptosis of nucleus
pulposus cells (NPCs) can be induced through its corresponding
receptors of TNFR in such inflammatory circumstance, which will
further result in spine dysfunction if left untreated (Alkhatib et al.,
2014; Chen et al., 2017; Kang et al., 2015; Sutovsky et al., 2017).

Cartilage endplate (CEP) is a kind of thin hyaline-like cartilage
layer covering the cranial and caudal ends of NP, with its thickness
estimated to be 0.1–1.6 mm. As we know, blood vessels only enter
the outer space of the annulus fibrous, and the CEP thus acts as the
main supply of nutrients and oxygen for inner cells of the disc by
permeation (Figure 1) (Huang et al., 2014). However, persistent
chronic inflammation of CEP elicited by pathological factors can
lead to CEP damages, which can further result in chondrocyte aging,
loss of cell phenotype, and reduced differentiation capacity by the
released inflammatory cytokines due to the degradation of disc ECM
(Dudli et al., 2016; Moore, 2006). In 1988, Modic et al. detected and
defined the different manifestations of CEP inflammation onMRI as
Modic changes, and further divided them into three types: Modic
type I (inflammatory phase - T1 low signal, T2 high signal), Modic
type II (fat phase - T1 high signal, T2 high signal) andModic type III
(sclerotic phase - T1 low signal, T2 low signal) (MODIC et al., 1988).

As the knowledge of IVDD advances, researchers find that CEP
inflammation is closely related to the development of IVDD (Li
et al., 2010; Wang et al., 2017; Wong et al., 2019). The disturbance of
CEP will cause pathological damage to the development of IVVD,
because the main supply of nutrition and oxygen for the IVD was

restricted and damaged during CEP inflammation. In addition,
IVDD caused by injury, inflammation, and infection will lead to
CEP inflammation as well (Crockett et al., 2017; Ganko et al., 2015;
Weiler et al., 2005). However, the causal relationship and underlying
mechanisms between CEP inflammation and IVDD are rarely
reported. To advance our knowledge on the development of
IVDD, this study mainly summarizes on how CEP inflammation
is interconnected to the development of IVDD.

2 Current knowledge on intervertebral
disc degeneration

The volume of NP cells (NPCs) occupied in IVD only account
for 1% of the IVD, but their roles are indispensable for the
physiology and biomechanics of IVD (Silwal et al., 2023). NPCs
are important for regulating the metabolism of NP ECM, where
collagen type II (Col II) and proteoglycan are the key contents
(Zhang G. Z. et al, 2021). The main function of those structures is to
cushion and decentralize the pressure suffered by the spine during
loading (Chang et al., 2022). Therefore, the physiological function of
NP ECM is crucial for maintaining the structure and function of the
IVD, as well as the development and progression of IVDD (Xing
et al., 2021), because the disturbance of ECMmetabolism will lead to
the loss of proteoglycan and water content of the IVD (Roh et al.,
2021). Many studies have shown that inflammation, oxidative stress,
abnormal mechanical load, and other pathological factors are
involved in the development of IVDD (Huang et al., 2023; Kang
et al., 2023; Wu et al., 2022). For example, inflammatory mediators
such as IL-1β can disrupt the metabolic homeostasis of the ECM
(Wang et al., 2020). Mitochondrial dysfunction can also contribute
to the development of IVDD by producing reactive oxygen species
(ROS), where excessive ROS activates the expression of various
oxidative stress biomarkers, including phospholipase and NO,

FIGURE 1
Schematic illustration of healthy and degenerated IVD. Where CEP destruction, abnormal infiltration of blood vessels, inflammation of nucleus
pulposus, and evident NP cells apoptosis can all be observed in degenerated IVD. AF, fibrous rings; NP, nucleus pulposus; CEP, cartilage endplate; NPCs,
nucleus pulposus cells. Image created with BioRender (www.biorender.com).
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which can further result in DNA damage, lipid metabolism, and
protein synthesis disorders in IVD (Chen et al., 2024). Of note,
abnormal mechanical stress can accelerate ECM degradation and
IVDD development as well (Zhou et al., 2024).

As we know, CEP acts as a key component of the spine. The
normal physiological function of CEP is important in maintaining
spinal cord function and providing nutritional support for IVD
(Maatta et al., 2016). The inflammation and degeneration of CEP
can downregulate its physiological function, and can further lead to
the development of IVDD (Ma et al., 2024). However, pathological
factors that can result in inflammation and degeneration of the CEP
are not clearly presented. Scholars reported that abnormal exosome
synthesis, cell calcification, iron overload, abnormal mechanical
load, cell senescence, and other factors are accountably involved
in this pathological process, which jointly or separately destroy the
metabolic balance and accelerate the development of IVDD
(Figure 2). Therefore, it is particularly important to explore the
pathological factors that lead to the degeneration of NPCs.

3 Potential mechanisms underlying
IVDD induced by CEP inflammation

3.1 Exosomes degeneration

Progenitor cells in human CEP can differentiate into osteoblasts,
adipocytes, and chondrocytes (He et al., 2018), which are named as
cartilage endplate stem cells (CESCs) by researchers. As reported,
CESCs can maintain the integration of structure and function of
CEP by paracrine activation of the SDF-1/CXCR4 and ERK1/
2 signal pathways, which pathways are conducive for accelerating
the proliferation and regeneration of NPCs. Moreover, CESCs can

release a type of extracellular vesicle called CESCs-derived exosomes
(Phinney and Pittenger, 2017). As demonstrated, those exosomes play
important roles in intercellular communication by transferring certain
proteins and RNAs, to control inflammation and prevent tissue
degeneration by inhibiting cell apoptosis (Fan et al., 2020; Xu et al.,
2019). What’s more, such exosomes can not only induce the CESCs to
differentiate intoNPCs, but also can promote the proliferation ofNPCs,
which altogether delay the development and progression of IVDD (Luo
et al., 2021a). However, CEP inflammation significantly weakens the
function of exosomes released fromCESCs, and accountably aggravates
the progression of IVDD (Luo et al., 2021b).

Accordingly, persistent inflammation can result in the CESCs to
degenerate, which changes the contents of those secreted exosomes,
where such exosomes are named as degenerated CESC-derived
exosomes (D-exos) by researchers. Compared to normal CESC-
derived exosomes (N-exos), the efficacy of D-exos on reversing
IVDD is greatly weakened, and the mechanisms are as follows:
firstly, N-exos can activate autophagy associated PI3K/Akt signaling
pathways to inhibit the apoptosis of NPCs; secondly, N-exos can
significantly reduce apoptotic proteins such as cleaved caspase3 and
Bax in NPCs, while anti-apoptotic protein Bcl-2 is increased in such
process (Luo et al., 2021b). Meanwhile, N-exos can also activate
HIF-1α/Wnt signaling pathways to promote the transformation of
CESCs into NPCs by an autocrine mechanism (Luo et al., 2021a).
Compared to N-exos, D-exos carried fewer anti-apoptotic proteins,
their ability to activate PI3K/AKT signaling pathways in NPCs and
HIF-1α/Wnt signaling pathways in CESCs is also decreased. Those
changes in D-exos downregulate NPCs autophagy and cause the
NPCs to develop apoptosis, resulting in reduction of NPCs
(Figure 3) (Luo et al., 2021b).

Studies also find that N-exos can affect the progression of IVDD
by their carried miRNAs. For example, miR-532-5p released by

FIGURE 2
Pathological mechanisms of IVDD caused by CEP inflammation. Degenerated exosome, calcification of CEP, iron overload, mechanical stress, and
senescence of NP cells are all involved in the development of CEP inflammation induced IVDD. Image created with BioRender (www.biorender.com).
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N-exos can downregulate the expression of caspase-3, caspase-9,
caspase-8, and MMP-1 in NPCs, while upregulate the expression of
collagen type I (Col I), collagen type II (Col II) and proteoglycan.
Besides, miR-532-5p can inhibit the release of inflammatory factors
such as IL-6 and IL-1β by targeting RASSF5 (Zhu et al., 2020). MiR-
125-5p secreted by N-exos can inhibit the apoptosis of nucleus
pulposus tissue by downregulating the gene expressions of
SUV39H1, Bax, MMP13, and p62, while upregulate the gene
expressions of Bcl2, ACAN, LC3-II/I. However, the expression
levels of miR-532-5p and miR-125-5p are downregulated in
D-exos (Chen and Jiang, 2022).

3.2 CEP calcification

Calcification of the CEP can also lead to the development of
IVDD. As we mentioned previously, the degeneration of CEP can
result in the release of proinflammatory cytokines, such as tumor
necrosis factor and interleukins (Brisby, 2006). Moreover, those
inflammatory factors can increase the risk of the CEP to calcification
and chondroid tissue formation as well (Bessueille andMagne, 2015;
Joshi et al., 2016). Researchers find that the TNF-α can predispose
vascular smooth muscle cells (VSMCs) to form calcium deposits
(Guerrero et al., 2012; Lencel et al., 2011; Masuda et al., 2013), where

the release of bone morphogenetic protein 2 (BMP-2), a potent
osteosynthesis factor, is revealed to accelerate the calcification of
involved tissues (Nakagawa et al., 2010). Furthermore, TNF-α can
also reduce the levels of extracellular inorganic pyrophosphate (PPi),
which is reported to be a potent endogenous inhibitor of
calcification (Lencel et al., 2011; Zhao et al., 2012). In addition,
some researchers have confirmed that the inflammation of CEP is
closely associated with the calcification of IVD (Joshi et al., 2016).

Besides, the calcified CEP can affect the nutrition and oxygen
exchange of the IVD as well. As we described previously, the
intervertebral disc is an avascular tissue structure, where capillaries
originated from the vertebral body terminate at the periphery of
intervertebral disc. Therefore, nutrients of the NP cells needed, such as
glucose and oxygen, can only be transported by diffusion through the
CEP (Sakai and Grad, 2015). Due to this anatomy of the disc, the
permeability of the CEP can be significantly decreased when the CEP
becomes calcified, those changes will further decrease the glucose and
oxygen delivered to the IVD, and further result in intervertebral disc
degeneration over time. Extracellular Ca2+ content is found to elevate
after CEP calcification in the microenvironment of IVD as well. As
reported, the elevated Ca2+ can activate the extracellular calcium-
sensing receptor (CASR), a C-g protein-coupled receptor (GPCR), to
regulate the synthesis and secretion of parathyroid hormone (Brown,
2013).While the activation of CASR is responsible for the aggravation

FIGURE 3
The changes of associated pathways elicited by CEP inflammation during the development of IVDD. Normal CESC-derived exosomes (N-exos) can
effectively activate the PI3K/AKT signaling pathway in NPCs and HIF-1α/Wnt signaling pathways in CESCs, which further enhances autophagy, alleviates
NPC cell apoptosis, and improves NPC differentiation. While the degenerated CESC-derived exosomes (D-exos) do the opposite, resulting in decreased
number of the NPCs. Image created with BioRender (www.biorender.com).
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of denatured NP cells (Grant et al., 2016), as decreased secretion
and accumulation of beneficial matrix molecules, such as Col II
and proteoglycans, can be observed in the NP cells during this
process (Lakstins et al., 2021; Wong et al., 2019; Zhao et al., 2007).
Besides, ECM synthesis-catabolism imbalance will be developed
within the NP cells during CEP calcification, where more ECM is
degraded than produced (DeLucca et al., 2016; Kim et al., 2009).
Over time, the water content within the IVD is significantly
decreased, and intervertebral disc subsidence will then occur
(Figure 4) (van Uden et al., 2017).

Moreover, calcified IVDs are more likely to rupture and herniate
than non-calcified IVDs and normal IVDs, because the loading
stress of the spine is abnormally distributed when CEP gets
calcification, which greatly increases the risk of developing
vertebral fractures and fissures (Fearing et al., 2018). In addition,
calcified intervertebral disc can result in caseous degeneration due to
calcified deposits, which can even be spontaneously liquefied in the
late stage. Calcification can also cause damage to the annulus
fibrosus or surrounding soft tissue, and inflammation can further
accelerate this process, which altogether lead to the development of
IVD herniation (Court et al., 2018; Yu et al., 2020; Yue et al., 2016).
Besides, Calcified tissue in CEP can destroy the microstructure of
bone trabeculae, which is another factor that leads to endplate
fracture (Crockett et al., 2017). Moreover, the calcified tissue in
CEP can result in anisotropic cracks of CEP as well. Those cracks in
CEP can further accelerate the loss of water content in the IVD,
while simultaneously increase the flow of inflammatory cytokines
and cells (Crockett et al., 2017).

3.3 Iron overload

Iron is considered as the most abundant trace element in the
human body. Nowadays, various studies have proved that iron’s
abnormal deposition is correlated to the development of IVDD and
CEP inflammation (Jing et al., 2021a; Jing et al., 2021b;
Nieuwenhuizen et al., 2013). Unfortunately, our human body
lacks the ability to get rid of excess iron, which causes the irons
to be gradually accumulated as we become aged (Tian et al., 2022).
Recent studies report that chondrocyte senescence and degeneration
are largely involved in iron toxicity caused by oxidative stress and
iron overload (Li et al., 2023; Yao et al., 2021). Accordingly, the
balance of iron metabolism within cells is regulated by iron
transporters DMT1 and FPN1, where DMT1 serves as the
transporter for taking up iron and FPN1 is responsible for
facilitating the outflow of iron (Galy et al., 2023), while ferritin is
responsible for storing iron (Zeidan et al., 2021). Some studies have
shown that when CEP is inflamed, the inflammatory cytokines IL-6
and TNF-α can upregulate the expression of DMT1 while decreasing
the expression of FPN1 in cells (Li et al., 2021; Urrutia et al., 2013),
which changes significantly elevate iron depositions in the body.
Meanwhile, IL-6 and TNF-α also increase the expression of hepcidin
(Frazier et al., 2011), an another factor that destroys iron
homeostasis (Stephenson et al., 2014).

Iron overload can produce large amounts of reactive oxygen
species (ROS) by electron transfer in the mitochondrial oxidative
respiratory chain (Mishima et al., 2022), where excess ROS is closely
associated with mitochondrial dysfunction and DNA damage (Chen

FIGURE 4
The underlying mechanism of CEP Calcification associated with the development of IVDD. Increased Ca2+ in the IVD microenvironment enhance
the expression of CASR, which further reduces ECM synthesis by downstream signaling and finally contributes to the calcification of the IVD. Image
created with BioRender (www.biorender.com).
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et al., 2020). Scholars have proved that iron overload can aggravate
oxidative stress and mitochondrial function in a dose-dependent
manner (He Q. et al, 2023), which further induces iron-dependent
cell death (Ferroptosis) of the CEP and NP cells (Dixon et al., 2012).
Ferroptosis is a recently discovered mode of cell death, a process
characterized by lipid peroxidation catalyzed by iron ions (Tang
et al., 2020). Nowadays, many reports have pointed out that
ferroptosis is closely related to IVDD (Zhang P. et al, 2023; Zhu
et al., 2023). In a TBHP-induced oxidative stress model, the
increased changes of ferroptosis-associated marker and lipid
peroxidation are positively correlated with IVD cell degeneration
(Fan et al., 2023).

Moreover, excess iron in NP cells can activate transcription
factor 3 (ATF3), a positive regulator of ferroptosis (Fu et al., 2021;
Wang et al., 2019), while inhibit glutathione peroxidase 4 (GPX4)
and cystine/glutamate antiporter SLC7A11 (xCT) (Wang W. et al,
2022; Zhang et al., 2020), which changes significantly induce
ferroptotic cell death in the NP cells. Another major cause of
ferroptosis is lipid peroxidation (Yang et al., 2020). In the human
body, fatty acids are the major components used for the synthesis of
phospholipid bilayers of cell membranes, and those components are
also major substrates for energy metabolism (Bersuker et al., 2019).
When Fe2+ are largely accumulated in the cytoplasm, toxic lipid ROS
are produced (Doll et al., 2016), where the polyunsaturated fatty
acids (PUFA) of phospholipids in the cell membrane are more likely
to be bound by ROS due to its highly expressed active hydroxyl
radicals (Kayagaki et al., 2021; Yan et al., 2021). Lipid peroxidation
driven by free radicals produces lipid oxygen peroxides (LOOH), a
enzyme that can damage the continuity of the lipid bilayer by
disrupting the integration of cell membrane, thereby inducing
ferroptosis of the NP cells (Fan et al., 2023).

Iron overload is also correlated with aging and degeneration of
the chondrocytes (Hou et al., 2016; Jing et al., 2021a). Although
abnormal iron ions have played some beneficial roles in increasing
the expression of Col10 and Runx2 to promote the formation and
mineralization of CEP (Wang W. et al, 2022; Yao et al., 2019).
However, excessive iron deposition upregulates matrix
metalloproteinases, such as Mmp3 and Mmp13 in CEP cells,
which evidently reduces the expression of Sox9 and Col II
(Wang W. et al, 2022), thus facilitating the breakdown of
cartilage matrix and expediting the deterioration of CEP, and
finally contributes to the development of IVDD (Yuan et al., 2019).

3.4 Mechanical changes

Non-physiological mechanical load is one of the important
factors known to affect IVDD as well (Belavy et al., 2016; Vergari
et al., 2016; Wuertz et al., 2009). While the relationship between
mechanics and biology is complex, it has been established that CEP
inflammation can lead to microfracture of the cartilage endplate and
abnormal mechanical loading (Feng C. et al, 2018; Xiao et al., 2018;
Zheng et al., 2019). As reported, The presence of inflammatory
mediators such as TNF-α increase the sensitivity of the CEP to
mechanical loading, thereby aggravate mechanical stresses applied
to the CEP, which contribute to the development of microfractures
(Din et al., 2021). Besides, the persistent production of
proinflammatory substances can expand the broken endplate, or

even extend to the whole NP and AF (Crockett et al., 2017; Kameda
et al., 2017). In addition, inflammation increases vascular
permeability of the damaged CEP, which can allow low-virulence
bacteria to infiltrate into the IVD along the newly formed capillaries,
and this is another factor that is associated with the development of
IVDD (Hernandez et al., 2020). Moreover, the existence of
inflammatory mediators like TNF-α can aggravate the outcomes
of mechanical stress exerted on the IVD (Liu et al., 2023; Snuggs
et al., 2021; Zhang A. et al, 2023). Under the stimulation of
inflammatory factors, abnormally changed osmotic stress elicited
by mechanical loading can more fiercely disrupt the F-actin
structure and cell volume of the NP cells (Kletsas et al., 2014),
even a complete absence of intracellular F-actin in the NP cells can
be observed (Kletsas et al., 2014). By in vitro experiments,
researchers reveal that those morphological and biophysical
characteristics of the NP cells suffered are irreversible, even those
cells are cultured in normal conditions after the discontinuation of
inflammatory stimulus (Jacobsen et al., 2021; Kletsas et al., 2014).

Interestingly, recent relevant studies reveal that cells isolated
from IVD tissue with inflammation show different responses to
mechanical stress compared to cells isolated from normal IVD tissue
(Mainardi et al., 2022; Tavakoli et al., 2020). It has been reported that
normal AF cells can maintain proteoglycan production when
mechanical stretch strains of low intensity (1%) and physiological
frequency (1 Hz) are applied (Pratsinis et al., 2016). Besides, NP cells
can observe an anabolism response under low-to-moderate intensity
stretch, and only higher intensities promote a catabolism response
(Fearing et al., 2018). However, Inflammatory factors such as TNF-α
would alter the sensitivity of IVD to normal mechanical stress,
thereby nullifying this beneficial effect under low-to-moderate
mechanical stretch (Torre et al., 2018). Increased evidences have
shown that stretch and inflammatory signaling are interacted in the
degeneration process of AF cells (Linder et al., 2021; Ramanathan
et al., 2022; Wang A. G. et al, 2022), because scholars discover that
inflammatory signalings can alter the cytoskeletal mechanical
transduction of the IVDs in recent studies. In AF cells, the
expression of F-actin stress fiber of α-tubulin is found to be
enhanced following TNF-α treatment, which may predispose the
AF cells susceptible to stress of mechanical strain (Gonçalves et al.,
2022). Moreover, mechanical stretches suffered by AF cells can
activate inflammatory receptors such as TLR as well (Mohd Isa et al.,
2022), while the changes of those receptors are demonstrated to be
correlated with cytoskeletal remodeling and biomechanical
alterations of the NP cells.

3.5 Cell senescence

Senescence is also another factor that leads to the development
of IVDD. Currently, multiple studies have showed close
relationships between senescent NP Cells and IVDD (Zhang K.
et al, 2021; Zhang et al., 2024). Short-term exposure to senescence is
harmless due to the clearance of the immunological effect, but long-
term exposure will lead to uncontrolled chronic inflammation owing
to the disrupted homeostasis of the immune system in this condition
(Calcinotto et al., 2019; Herranz and Gil, 2018). As researchers
reported, chronic inflammation of CEP is recognized as a
characteristic feature of senescence (Baechle et al., 2023; Salvioli
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et al., 2023). In such pathological status, overproduced inflammatory
factors such as IL-1β and TNF-α are observed and can subsequently
lead to senescence of the NP cells (Capoor et al., 2021; Zhu et al.,
2022). Studies have shown that endplate chondrocytes are involved
in the regulation of cell proliferation, differentiation, and senescence
through the Hippo-Yes-associated (YAP) pathways (Pan et al., 2021;
Sladitschek-Martens et al., 2022), and the decrease of YAP1 can
further stimulates the senescence of IVD cells during inflammation
in the CEP (Kong et al., 2023).

Besides, increased inflammation of the cartilage endplate can
result in elevated expression of SA-β-Gal, an age-related protein
(Purmessur et al., 2013). TNF-α generated during inflammation also
induces downregulated expressions of proteoglycan, Col I, and Col
II in the NP cells as well. For instance, Kang et al. found the
proportion of aging markers (e.g., P16 and p53) in TNF-α-
induced NP cells were increased in an IVDD inflammation
model (Li et al., 2019). In addition, senescence can also impact
the cell cycle of the NP cells, where senescence induced by TNF-α is
more likely to make the NP cells to stay in G0/G1 phase. While S
phase is decreased during this process, indicating an occurrence of
cell growth arrest. Besides, the proliferation of NP cells is also
inhibited after senescence induced by TNF-α (Li et al., 2019). In
addition, other pro-inflammatory mediators, such as IL-2, IL-4, IL-
8, IFN-γ, and prostaglandin 2, are also responsible for aggravating
the aging of the NP cells, which combinatorially lead to the
development of IVDD (Huang et al., 2018; Miyagi et al., 2022;
Risbud and Shapiro, 2013).

As cells becoming aged, a variety of pro-inflammatory cytokines,
chemokines, growth factors, and MMPs can be secreted, which are
then named as senescence-associated secretory phenotype (SASP)
by scholars (Patil et al., 2019). Accordingly, increased production of

MMPs can lead to hydrolysis of Col II and proteoglycan around the
NP cells (Bedore et al., 2014; Qin et al., 2022), which disrupts the
metabolic balance of the NP ECM, predisposing the human body
easier to develop IVDD (Chen et al., 2022; Cherif et al., 2020). SASP
can induce senescence of the neighboring cells by autocrine and
paracrine mechanisms as well (He X. et al, 2023; Herranz and Gil,
2018). Moreover, the cell division cycle can be prolonged by SASP
through an autocrine pathway, which makes the NP cells to more
likely be stayed in a static phase (G0 phase) (Ji et al., 2023), resulting
in decreased S and M phases (Figure 5) (Georgilis et al., 2018;
Hubackova et al., 2015). Noteworthily, the cessation of cell cycle
induced by SASP is often irreversible (Acosta et al., 2013). Besides,
other cytokines such as IL-6, monocyte chemotactic protein-1, and
IGF binding proteins can also make some contributions to the
development of NP senescence by paracrine mechanisms (Freund
et al., 2010; Jeon et al., 2017).

3.6 Others

As reported, miRNAs are also discovered to involve in the
development of IVDD induced by CEP inflammation (Chandan
et al., 2020). The expressions of miRNAs such as miR-640 and miR-
194 are upregulated during IVDD, which changes evidently reduce
the chondrogenic differentiation of CESCs and increase the
osteogenic differentiation of CESCs (Cazzanelli and Wuertz-
Kozak, 2020; Ma et al., 2024). For instance, Dong et al. found
that upregulated expression of miR-640 is observed in the inflamed
IVD cells, and stimulation of IVD cells with TNF-α and IL-1β can
reciprocally upregulate miR-640 expression as well. In addition,
miR-640 is found to be involved in NP cell apoptosis, where

FIGURE 5
SASP induces cell cycle arrest within NP cells. SASP-associated factors, such as proinflammatory cytokines, chemokines, growth regulators, and
matrix metalloproteinase, can significantly lead to the senescence of neighboring cells by the paracrine pathways. Image created with BioRender (www.
biorender.com).
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upregulation of MMP-3 and MMP-9 and downregulation of
proteoglycan and Col II of the NP cells can be observed (Dong
et al., 2019). Moreover, upregulation of miR-194 of the NP cells
induced by IL-6 and TNF-α is revealed to upregulate the expression
of CUL4A and CUL4B genes, which are then demonstrated to be
positively correlated with the severity of IVDD (Chen et al., 2019).
Except for the aforementioned miRNAs, miR-194 and miR-515 are
reported to involve in the development of IVDD by degrading
chondroitin sulfate synthase CHSY-1/2/3 of the NP cells (Hu
et al., 2017).

In recent years, abnormal changes in pain-related neural
pathways have aroused great interest in scholars, and those
abnormal changes are discovered to be intimately correlated with
the development of IVDD (Kim et al., 2020). As we know, substance P
(SP) and calcitonin gene-related peptide (CGRP) are important
neurotransmitters to regulate pain perception and transmission in
the nervous system. Interestingly, positive sensory and sympathetic

markers of the nervous systems are detected in degenerated IVD
tissues (Sainoh et al., 2014; Song et al., 2020), where increased CGRP
expression is detected in painful and degenerative discs (Ahmed et al.,
2019). Blocking SP or CGRP production in dorsal root ganglion
(DRG) neurons of the IVD can relieve pain symptoms significantly
(He et al., 2020). Of note, TNF-α and IL-1β are considered to be the
main inflammatorymediators to produce new nerve fibers that lead to
IVD pain (Risbud and Shapiro, 2013). When CEP is inflamed, TNF-α
and IL-1β infiltrate the annulus fibrosus through the damaged
cartilage endplate, which promotes local nerve endings to infiltrate
into the nucleus pulposus and induce pain by stimulating nociceptor
responses (Sun et al., 2022). Then, those evoked pain sensations
transmit to the DRG via generated electronic potential by nociceptors,
which will then result in increased secretion and transport of
neurotransmitters, such as SP and CGRP, into the corresponding
levels of IVD via their corresponding receptors (Seidel et al., 2013;
Wise et al., 2020). Those neurotransmitters can affect the neurons in

FIGURE 6
Schematic illustration of the IVD-DRG/sympathetic nerve-VMH/PVN axis. TNF-α and IL-1β evoke IVDD pain by reacting with their nociceptors of the
local nerve endings when CEP is inflamed, which transmits pain sensations to the DRG and further increases secretion and transport of neurotransmitters
into the corresponding levels of IVD via their receptors. Those neurotransmitters can then affect the neurons in the central nervous system, such as the
ventromedial hypothalamic nucleus (VMH) and paraventricular nucleus (PVN) of the hypothalamus, to reciprocally regulate the IVDD pain. Image
created with BioRender (www.biorender.com).
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the central nervous system as well, including the ventromedial
hypothalamic nucleus (VMH) and paraventricular nucleus (PVN)
of the hypothalamus, where excited VMH and PVN can reciprocally
increase the activities of sympathetic nervous system and DRG, by
secreting corresponding neurotransmitters (Sun et al.,
2022) (Figure 6).

4 Perspectives and future directions

IVDD is a kind of degenerative disease of the spine, and severe
social and economic burdens can be caused by this disease if left
untreated. In healthy IVD, the balance between anabolism and
catabolism of the ECM is important for the stability of the spine.
However, pro-inflammatory factors produced by CEP inflammation
significantly disrupt this balance, and ultimately result in the
development of IVDD due to the loss of ECM (Crump et al.,
2023; Zou et al., 2023). To what we have described previously,
changes of secreted exosomes, cell calcification, iron overload,
mechanical stress, and cellular senescence, are all contributing
factors for the development of CEP inflammation-induced IVDD.
However, strategies dedicated to treating this disease are remained
to advance. Nowadays, exosomes are becoming more and more
welcomed for treating degenerated diseases (Wei et al., 2019; Zhu
et al., 2018), and exosomes can also be engineered to render them
with special functions, which include virus transfection, ultrasound-
assisted drug loading, and cointubation with certain proteins (Luo
et al., 2021b). Therefore, engineered exosomes can be a promising
direction for treating IVDD.

Except for exosomes, MSC transplantation has also detected
beneficial roles in treating IVDD. By injecting nanofiber sponge-like
microbeads with loaded MSCs, the cell phenotype of nucleus
pulposus can be maintained by anti-microRNA-199a released by
MSCs, where calcification can also be inhibited simultaneously
(Feng et al., 2020; Hu et al., 2024). Furthermore, iron chelators
(DFO), antioxidants (NAC), and ferroptosis inhibitors (Fe-1) are
also good alternatives for preventing the degeneration of endplate
chondrocytes that are caused by iron overload (Wang W. et al,
2022). As demonstrated, DFO prevents the downregulation of
GPX4 and SLC7A11 by reducing iron load, while NAC and Fe-1
inhibit oxidative stress and ferroptosis (Jeney, 2017; Martacic et al.,
2018). Infliximab is discovered to be powerful in inhibiting the
production of pro-inflammatory cytokines by binding and isolating
TNF-α, and thus can be another alternative for treating IVDD
(Syversen et al., 2021). In addition, some Chinese medicine
extracts, such as Resveratrol, can be helpful in reversing the
harmful effects elicited by inflammatory cytokines (e.g., IL-1β
and TNF-α) on the NP cells as well, where ROS elimination and
G0/1 cell cycle promotion effects are observed (Li et al., 2019).

In addition, miRNA-based therapies for IVDD have also been
developed. For example, an injectable MMP-degradable hydrogels
containing miR-29a was developed for inhibiting IVD fibrosis and
reversing IVDD (Feng G. et al, 2018). Interestingly, chondroitin
sulfate transplantation can ameliorate the decreased chondroitin
sulfate synthesis caused by miR-194 and miR-515, which further
reverses the development of IVDD (Luo et al., 2023). Besides,
Enhancing the function of neurotransmitters in focal
environment of the IVD, such as exogenous administration of

NPY or VIP, or inhibiting harmful neurotransmitters by local
antagonisms of CGRP or SP, are potential approaches for future
treatment of IVDD (Sun et al., 2024). Nevertheless, more treatment
strategies specifically targeted to the IVDD are still needed to explore
in the future.

5 Conclusion

CEP plays an important and indispensable role in maintaining
the function of the intervertebral disc, as this structure not only
cushions and distributes the mechanical load of the spine, but also is
the key supply for providing nutrition and oxygen for the discs.
However, CEP becomes inflamed when suffered from uncontrolled
factors, where inflammatory factors such as IL-1β and TNF-α
disrupt the metabolic balance of ECM synthesis and further lead
to the degradation of intervertebral discs. Moreover, CEP
inflammation can influence exosome function of CESCs, promote
IVD calcification, induce iron overload of NP cells, increase IVD
sensitivity to mechanical stress, and induce cellular senescence as
well, which factors all accountably contribute to the development of
IVDD. Meanwhile, this paper has also reviewed relevant miRNAs
and pain-related neural pathways involved in this process, such as
miR-640 and CGRP. At last, potential treatment strategies are also
reviewed in the perspective section. We hope this review can not
only provide new ideas and references for treating IVDD, but also
inspire researchers in this field to develop more advanced strategies
in the future.
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