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The GC (Golgi complex) plays a pivotal role in the trafficking and sorting of
proteins and lipids until they reach their final destination. Additionally, the GC acts
as a signalling hub to regulate a multitude of cellular processes, including cell
polarity, motility, apoptosis, DNA repair and cell division. In light of these crucial
roles, the GC has garnered increasing attention, particularly given the evidence
that a dysregulation of GC-regulated signalling pathways may contribute to the
onset of various pathological conditions. This review examines the functions of
the GC and GC-localised proteins in regulating cell cycle progression, in both
mitosis and meiosis. It reviews the involvement of GC-resident proteins in the
formation and orientation of the spindle during cell division. In light of the roles
played by the GC in controlling cell division, this review also addresses the
involvement of the GC in cancer development. Furthermore, TCGA (The
Cancer Genome Atlas) database has been queried in order to retrieve
information on the genetic alterations and the correlation between the
expression of GC-localised proteins and the survival of cancer patients. The
data presented in this review highlight the relevance of the GC in regulating cell
cycle progression, cellular differentiation and tumourigenesis.
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1 Introduction

In vertebrate cells, the GC (Golgi complex) is composed of stacks of flattened cisternae
that are laterally connected by tubules (Rambourg and Clermont, 1990) to form the so-
called “Golgi ribbon”, which is localised near the CE (centrosome) and the nucleus (Rios,
2014). The correct architecture and positioning of the GC are essential for its functional
activities and are regulated by the Golgi matrix proteins, including GRASPs (Golgi
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Reassembly And Stacking Proteins) and Golgins (Li et al., 2019), and
MTs (microtubules) (de Forges et al., 2012; Gurel et al., 2014). MTs
function is essential for maintaining the juxta-nuclear localisation of
the GC. Indeed, the use of MT poisons has been shown to result in
the dispersion of the GC into mini-stacks (de Forges et al., 2012;
Gurel et al., 2014).

During the different phases of the cell cycle, the GC undergoes
significant structural and cellular localisation changes (Figure 1) (Li
et al., 2019). During G1 phase, the GC is compact and localised in
close proximity to the CE. During S phase, the GC dissociates from
the CE and surrounds the nucleus. Subsequently, during G2 the GC
undergoes fragmentation into isolated stacks (a process known as
“Golgi unlinking”) (Ayala and Colanzi, 2017), which during mitosis
are further disassembled and dispersed in the cytoplasm until the
formation of the so-called “Golgi haze”. During this extensive
disassembly the close interconnection between the GC, the CE
and the MTs undergoes significant alterations. At the end of
mitosis the GC is reassembled to form a new ribbon in the
daughter cells (Nakamura et al., 2012). It seems reasonable to
speculate that the close connection among the GC, the CEs and
MTs is strongly linked to the inheritance of the GC during the cell
cycle. Indeed, the CEs and MTs are responsible for the formation of
the spindle which, beyond its well-known function in promoting the
proper segregation of chromosomes during mitosis, is an
indispensable track system for the correct inheritance of GC
proteins involved in ribbon reassembling in the daughter cells at
telophase (Mascanzoni et al., 2019).

The GC is a cellular organelle that plays a crucial role in the
trafficking, sorting, modification, and targeting of lipids and proteins
(DeMatteis and Luini, 2008). In addition to these classical functions,
there is an increasing body of evidence to suggest that the GC is
involved in regulating multiple cellular processes, including cell
polarity (Ravichandran et al., 2020), migration (Bui et al., 2021; Xu
andWu, 2023), autophagy (Deng et al., 2020; Lu et al., 2021), cellular
wound repair and regeneration (Wijaya and Xu, 2024), apoptosis
(He et al., 2020), as well as mitosis and cell growth (Ayala and
Colanzi, 2017; Ayala et al., 2020; Mascanzoni et al., 2022). It is
therefore evident that the GC is recognised as an active signalling
hub whose dysregulation may contribute to the development of
several pathological conditions, including cancer, cardiovascular

illnesses and neurodegenerative diseases (Lu et al., 2018; Donizy
and Marczuk, 2019; Martínez-Menárguez et al., 2019; Liu et al.,
2021; 2024; Zhang, 2021; Spano and Colanzi, 2022; Mohan et al.,
2023). Our previous research highlights the crucial function of the
GC during the G2/M transition (Colanzi et al., 2007; Corda et al.,
2012; Barretta et al., 2016; Mascanzoni et al., 2024). This process
requires the proper fragmentation of this organelle to ensure the
correct formation of the bipolar spindle and subsequent cytokinesis.
Indeed, the Golgi unlinking activates a Golgi-localised Src, which in
turn phosphorylates the mitotic serine/threonine kinase Aurora-A
(AURKA) on Tyr148, thereby stimulating its recruitment at the CE
and kinase activity, thus enabling CE maturation. Following
autophosphorylation on Thr288, in conjunction with the binding
to its activating partner TPX2 (Bayliss et al., 2003; Garrido and
Vernos, 2016), AURKA acquires a fully active conformation and
promotes the formation of a correct bipolar spindle, due to its
interaction with CEP192, Plk1, TACC (Transforming Acidic Coiled-
Coil containing protein), Neural precursor cell Expressed, NEDD1
(Developmentally Downregulated 1), Hice1 (Hec1-interacting and
centrosome-associated 1) and MT-stabilizing proteins including
p150glued, MAP9, RASSF1A (Ras association domain-containing
protein 1) and WDR62 (tryptophan (W) aspartic acid (D) Repeat
domain 62) (Joukov et al., 2014; Magnaghi-Jaulin et al., 2019). These
events ultimately result in mitotic entry through the activation of
Cdk1, a well-known regulator of mitosis (Barretta et al., 2016). In
addition, it is established that several GC proteins are involved in the
formation and positioning of the CE/MTOC that drives the spindle
formation during cell division. Moreover, it is also well established
that GC may act as a storage centre for both cell fate determinants
and their interactors that, once released upon mitotic GC
fragmentation, play a role in specifying cell fate. Consequently,
the depletion or the dysfunction of these GC proteins has
repercussions on the aforementioned processes, subsequently
causing spindle defects that pertain to dimensions, angles, MT
reorganisations and migration (Mascanzoni et al., 2022). In
particular, the proper positioning and orientation of the spindle
determines the cell division plane, which in turn controls cell fate
decisions, morphogenesis and maintenance of tissue organisation
(Bergstralh et al., 2017). It has been observed that alterations of
spindle orientation impair a number of physiological processes,

FIGURE 1
GC changes during cell cycle progression. A schematic representation of the structural and cellular localisation changes of GC during cell cycle is
shown. See the text for the details.
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including gastrulation, neuronal differentiation, epithelial self-
renewal and tissue stratification (Gong et al., 2004; Lechler and
Fuchs, 2005; Fish et al., 2006; Cabernard and Doe, 2009).
Furthermore, when spindle orientation is not solidly controlled,
defective growth and differentiation occur and eventually lead to
hyperproliferation and cancer (Ragkousi and Gibson, 2014; Asare
et al., 2017).

This review examines the functions of GC-localised proteins in
regulating cell cycle progression, both during mitosis and meiosis. It
focuses on the involvement of GC-resident proteins in the correct
formation, positioning and orientation of the spindle during cell
division. Based on these functions, the role of GC-localised proteins
in cancer is then discussed. Furthermore, TCGA (The Cancer
Genome Atlas) database has been queried to gather data on the
genetic alterations and correlation of GC proteins with overall
survival in cancer patients.

2 Role of Golgi complex resident
proteins in somatic cell division and cell
cycle progression

The available evidence increasingly points to a role for GC
proteins in cell cycle progression. Indeed, the Golgins (such as
GM130) and GRASP65 and GRASP55 (GRASP family of Golgi
Reassembly And Stacking Proteins) play a pivotal role in
maintaining the structure and dynamic nature of the GC, as well

as in promoting cell cycle progression by modulating the correct
formation of the spindle, chromosome segregation and cytokinesis.
This section summarises the roles played by GC-resident proteins in
regulating cell cycle progression as well as spindle formation during
mitosis (Figure 2) and the main molecular mechanisms underlying
these functions (Figure 3).

2.1 GRASPs (Golgi Reassembly And
Stacking Proteins)

The GRASPs (Golgi Reassembly And Stacking Proteins),
GRASP65 and GRASP55, are structural components of the Golgi
ribbon (Barr et al., 1997; Shorter et al., 1999) localised at the cis-
Golgi (Hu et al., 2015) and the medial/trans-Golgi (Zhao et al.,
2017), respectively. These proteins tether adjacent membranes
(Rabouille and Linstedt, 2016), thereby facilitating the formation
of the Golgi ribbon. The pro-ribbon role is inhibited when these
proteins are subjected to multiple phosphorylation events which
lead to progressive GC disassembly during mitosis (Colanzi et al.,
2007; Feinstein and Linstedt, 2008; Vinke et al., 2011; Cervigni et al.,
2015; Valente and Colanzi, 2015; Ayala and Colanzi, 2017; Ayala
et al., 2020). In particular, the JNK2-mediated phosphorylation of
GRASP65 on Ser274 is a key event in promoting Golgi unlinking
(Cervigni et al., 2015), which in turn promotes the activation and the
recruitment of AURKA at the CE, as described in the introduction
(Colanzi et al., 2007; Corda et al., 2012; Barretta et al., 2016;

FIGURE 2
Roles of GC proteins during cell cycle. A schematic representation of the roles played by the GC-resident proteins during cell cycle progression
is shown.
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Mascanzoni et al., 2024). Consequently, AURKA depletion results in
impaired GC architecture (Kimura et al., 2018), compromised CEs
and spindle, and consequently, chromosome alignment defects and
lagging chromosomes, ultimately leading to aneuploidy (Hoar et al.,
2007). In addition, GRASP65 serves a role in the formation of the
bipolar spindle and the progression of the cell cycle. Indeed, the loss
of GRASP65 has been demonstrated to induce the formation of
multiple aberrant spindles, which in turn causes metaphase arrest
and cell death (Sütterlin et al., 2005). Furthermore, GRASP65
contributes to MTs cytoskeleton organisation, stabilising newly
nucleated MTs and consequently leading to their acetylation
(Ayala et al., 2019). This modification of MTs is crucial for
maintaining the structure and location of the GC through the
stimulation of Golgi stack clustering. During the G2 phase of the
cell cycle, the acetylation of tubulin is inhibited by the JNK/ERK-
mediated phosphorylation of GRASP65 on Ser274, which in turn
favours the Golgi unlinking and cell cycle progression (Ayala et al.,
2019). Interestingly, the stabilisation of the newly nucleated MTs is a
specifically GRASP65-dependent process in which GRASP55 plays
no role (Ayala et al., 2019).

Recently, a novel molecular mechanism involved in GC
fragmentation through GRASP55 phosphorylation has been
identified. In detail, Golgi-localised Gβγ has been demonstrated
to mediate the mitotic GC fragmentation and G2/M cell cycle
transition through the activation of PKD, which in turn induces
the phosphorylation of GRASP55 (Rajanala et al., 2021).

2.2 GM130

The cis-Golgi-localised GM130 belongs to the Golgin family, a
group of proteins that are structural components of the GC. These
proteins have long coiled-coil domains that extend from the GC to
connect cytoskeletal components and membranes (Lowe, 2019).
GM130, comprising six coiled-coil domains, is pivotal for ribbon
organisation, MTs nucleation, spindle assembly and cell
polarisation, due to its interaction with a multitude of proteins,
including GRASP65, Tuba, Cdc42, p115 and AKAP450
(Mascanzoni et al., 2022). Impairment of these interactions or
depletion/downregulation of GM130 renders cells more
susceptible to autophagy, tumour formation, metastasis
(Brandstaetter et al., 2014) and altered trafficking, which causes
GC disruption and subsequent neurodegeneration (Liu C. et al.,
2017). For instance, it has been reported that the loss of GM130 can
hamper cell polarity in some breast cancer cells, thus impacting on
their cell migration and invasion, underlying that losing GM130 as a
regulator of polarity renders cells more prone to accumulate defects
that culminate in tumourigenesis and metastasis (Baschieri et al.,
2015). Moreover, it has been observed that the loss of GM130 in a
knockout mouse model impairs GC structure of cerebellar Purkinje
cells, which, as a consequence, suffer from an altered trafficking,
eventually culminating in a loss of cell viability, atrophy and ataxia
(Liu C. et al., 2017). The above-mentioned phenotypes are the ones
observed also in other neurodegenerative diseases (Huang et al.,

FIGURE 3
Mechanistic details of GC proteins action during mitosis. The main pathways involving the GC-resident proteins in centrosome maturation and
spindle formation are displayed. Additional details on the underlying molecular mechanisms are in the text.
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2021). Notably, GM130 mutation leads to critical skeletal muscle
developmental defects and microcephaly in zebrafish (Shamseldin
et al., 2016). Collectively, these data support the idea that GM130 has
an impressive role in the organisation and function of the GC.
Furthermore, GM130 is crucial for the morphology, positioning and
functionality of the CE during interphase, and consequently also
during metaphase. Indeed, the depletion of GM130 has been
observed to cause the formation of aberrant, non-functional CEs
that are mislocalised above the nucleus and are deficient in
nucleating the radial MT array during interphase (Kodani and
Sütterlin, 2008). These aberrant interphase CEs subsequently
influence the formation of non-functional multipolar spindles
during mitosis, resulting in cell cycle arrest in metaphase and
ultimately cell death (Kodani and Sütterlin, 2008).
GM130 regulates the organisation and function of the CE by
activating a Golgi-localised pool of Rho GTPase Cdc42 (Kodani
et al., 2009). At the GC, GM130 forms a trimeric complex with a
Golgi-localised subset of Cdc42 and a Golgi-localised subset of its
specific GEF (guanine nucleotide exchange factor) Tuba. The
binding of GM130 to Tuba stimulates the interaction of Tuba
with Cdc42, thereby facilitating the efficient activation of Cdc42,
which in turn regulates the organisation of the CEs (Kodani et al.,
2009). Furthermore, an additional molecular mechanism through
which GM130 controls the formation of the mitotic spindle has been
elucidated (Wei et al., 2015). In the early stages of mitosis, the
mitotic kinase Cdk1 phosphorylates GM130 on Ser25, which
induces the dissociation of GM130 from p115. This, in turn,
facilitates the mitotic disassembly of the GC into vesicles and
clusters of membranes (Levine et al., 1996; Nakamura et al.,
1997; Lowe et al., 1998; 2000) which concentrate around the
spindle poles by metaphase (Jokitalo et al., 2001). Concurrently,
Cdk1 induces nuclear envelope breakdown, thereby releasing the

TPX2/importin α complex into the cytoplasm. Furthermore,
Cdk1 phosphorylates importin α at Ser62, reducing its affinity for
TPX2 while enhancing its interaction with GM130 (Guo et al.,
2021). Consequently, GM130 binds importin α via its N-terminal
classical nuclear localisation signal, thus recruiting importin α to the
Golgi membranes clustered at the spindle poles and liberating the
spindle assembly factor TPX2 into the cytoplasm (Wei et al., 2015).
Subsequently, TPX2 interacts with AURKA which in turn triggers
the nucleation of astral MTs from Golgi clusters at the spindle poles
(Wei et al., 2015), thereby controlling the correct spindle orientation
(Guo et al., 2021), and at the chromosomes (Kufer et al., 2002;
Anderson et al., 2007). Finally, GM130 captures and bundles the
nascent mitotic MTs, thereby playing a role in spindle assembly
(Wei et al., 2015). It is noteworthy that GM130 has also been
observed to cooperate with the MAPK (mitogen-activated protein
kinase) pathway, specifically ERK3 (Li et al., 2010) and JNK2
(Huang et al., 2011), in the regulation of spindle organisation
during mitosis. However, the precise molecular mechanism by
which this occurs remains to be elucidated.

2.3 p115

p115 is a peripheral membrane protein that is localised in both
the GC intermediate compartment and cis-Golgi vesicles. It is
involved in the trafficking from the ER to the GC (Alvarez et al.,
1999) and in GC reassembly after mitosis (Shorter and Warren,
1999; Dirac-Svejstrup et al., 2000). The correct functioning of p115 is
regulated by phosphorylation (Brandon et al., 2003), which also
mediates the interactions of p115 with GM130 and giantin
(Nakamura et al., 1997; Lesa et al., 2000; Linstedt et al., 2000;
Seemann et al., 2000). During the interphase, p115 interacts with

FIGURE 4
Roles of GC proteins during oogenesis. The cartoon represents schematically the roles played by the GC-resident proteins during oogenesis.
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GM130 via its C-terminus and γ-tubulin, a component of γTuSC
and γTuRC (MT polymerisation small and large complexes),
through its N-terminal armadillo fold. This interaction facilitates
the recruitment of γ-tubulin to Golgi membranes, thereby enabling
the formation of non-centrosomal microtubule-organising centres.
Conversely, p115 localises at spindle poles throughout mitosis due to
the interaction of its N-terminal armadillo-like domain with γ-
tubulin, thereby playing a role in the establishment of MTOCs
(centrosomal microtubule-organising centres) (Radulescu et al.,
2011). Whereas the depletion of p115 leads to the complete
fragmentation of GC (Puthenveedu and Linstedt, 2004; Radulescu
et al., 2011), it does not affect the structure of CEs in interphase
(Radulescu et al., 2011); however, it results in the loss of centrosomal
integrity during mitosis. This leads to the formation of multipolar
spindles with misaligned chromosomes and, ultimately, spindle
collapse in late mitosis. Despite the collapse of the spindles, the
p115-silenced cells do not undergo mitotic arrest or mitosis-related
apoptosis. This phenotype is in contrast to that observed under the
depletion of GM130 and GRASP65, where the formation of multiple
CE-like structures is the result of CE overduplication in interphase,
which causes aberrant spindle formation, mitotic arrest and
apoptosis (Sütterlin et al., 2005; Kodani et al., 2009). These
findings identify p115 as a key factor in maintaining the mitotic
spindle. Furthermore, p115-silenced cells exhibit aberrant
cytokinesis, characterised by the failure to form cytokinetic
bridges, which lead to the generation of binucleated cells
(Radulescu et al., 2011).

2.4 Tankyrase-1

Tankyrase-1 is a PARP (poly (ADP-ribose) polymerase) that
utilises the NAD+ (nicotinamide adenine dinucleotide) as a substrate

for the addition of multiple ADP-ribose moieties to itself and target
proteins. It is a peripheral membrane protein that has been observed
to localise to several subcellular structures, including the GC (Chi
and Lodish, 2000; Bottone et al., 2012), spindle poles (Smith and de
Lange, 1999), nuclear pore complexes (Smith and de Lange, 1999)
and telomeres (Smith et al., 1998). The subcellular localisation of
tankyrase-1 is subjected to change throughout the cell cycle,
according to the interaction with specific binding partners.
During interphase, tankyrase-1 forms a complex with GMD
(GDP-Mannose-4,6-Dehydratase), the enzyme responsible for the
initial step in fucose synthesis, within the cytoplasm (Bisht et al.,
2012). Upon entry into mitosis the interaction between GMD and
tankyrase-1 is reduced, resulting in tankyrase-1 interaction with
NuMA (Nuclear Mitotic Apparatus) and TRF1. The former
mediates tankyrase-1 localisation at spindle poles, while the latter
is responsible for its localisation at telomeres (Bisht et al., 2012).
Subsequently, in telophase, these protein interactions are lost (Smith
and de Lange, 1999; ChangW. et al., 2005) causing the reassociation
of tankyrase-1 with GC (Chi and Lodish, 2000). The interaction
between GMD and tankyrase-1 specifically inhibits the PARP
activity of tankyrase-1, thus preventing the proteasomal
degradation of tankyrase-1 mediated by automodification.
Similarly, this interaction has been demonstrated to inhibit the
PARsylation of target proteins mediated by tankyrase-1 (Bisht
et al., 2012). It is therefore proposed that the GMD-tankyrase-
1 complex may serve as a readily available reservoir of tankyrase-1,
maintaining the protein in an inactive state until it interacts with
other binding partners. Tankyrase-1 catalytic activity is markedly
elevated during mitosis and plays a central role in the correct
assembly of the mitotic spindle and the maintenance of telomeric
chromatin (Chang P. et al., 2005; ChangW. et al., 2005; Chang et al.,
2009; Ha et al., 2012). The catalytic activity and protein interaction
of tankyrase-1 are subjected to precise modulation during mitosis,

FIGURE 5
Mechanistic details of GC proteins action during oogenesis. The main pathways involving the GC-resident proteins in spindle assembly and
positioning as well as meiotic resumption are displayed. Additional details on the underlying molecular mechanisms are explained in the text.
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facilitated by phosphorylation via a range of kinases, including
GSK3 (Glycogen Synthase Kinase) (Yeh et al., 2006) and Plk1
(Ha et al., 2012). GSK3 phosphorylates tankyrase-1 on multiple
serine (Ser978, Ser987 and Ser991) and threonine (Thr982) residues
(Yeh et al., 2006), thereby modulating the interaction with its
substrates (including NuMA) and/or other spindle-associated
proteins, thus consequently promoting the efficient PARsylation
and spindle formation (Sbodio and Chi, 2002; Chang P. et al., 2005;
Chang W. et al., 2005; Chang et al., 2009; Yeh et al., 2006). In
addition to GSK3, the mitotic serine/threonine kinase Plk1 directly
binds to and phosphorylates tankyrase-1 on multiple serine and
threonine residues, including Thr839, Thr930, Ser978/Thr982, and
Thr1128. These phosphorylation events facilitate the localisation of
tankyrase-1 at the spindle poles and telomeres, and also enhance its
stability and PARP activity (Ha et al., 2012). The depletion of
tankyrase-1 causes defects in bipolar spindle assembly, the
formation of multipolar spindles, chromosome scattering, the
lack of disjunction of sister chromatids, and MT defects such as
abnormal bending angles, curling or twisting (Chang P. et al., 2005).
These defects result in the activation of a Mad2-dependent spindle
checkpoint, which in turn causes pre-anaphase mitotic arrest with
fully paired sister chromatids (Chang P. et al., 2005). Tankyrase-1
performs these functions by modulating the structural integrity of
the spindle poles and/or relevant protein interactions required for
spindle structure and function through the PARsylation of several
substrates (Chang P. et al., 2005). In this context, the protein targets
include NuMA (ChangW. et al., 2005; Chang et al., 2009), MERIT40
(Zheng et al., 2019), TRF1 (Ha et al., 2012) and Miki (mitotic
kinetics regulator) (Ozaki et al., 2012). NuMA is a coiled-coiled
protein that shuttles between the interphase nuclei, the mitotic/
meiotic spindle poles and the mitotic cell cortex. In these locations, it
contributes to nuclear formation, bipolar spindle assembly and
mitotic spindle positioning, respectively (Kiyomitsu and Boerner,
2021). It is also noteworthy that PARP3, another member of the
PARP family, forms a protein complex with tankyrase-1 andNuMA.
PARP3 plays a decisive role in this protein complex, whereby it
markedly enhances the catalytic activity of tankyrase-1, thereby
facilitating the auto-ADP ribosylation of tankyrase-1 and,

subsequently, the PARsylation of NuMA. This ultimately controls
specific mitotic functions, including spindle stabilisation and
telomere integrity (Boehler and Dantzer, 2011; Boehler et al.,
2011). In accordance with these functions, PARP3 depletion
results in metaphase arrest, the accumulation of multipolar and
bipolar spindles with splayed MTs, chromosome misalignment and
persistent telomere fusions. These phenotypes are reminiscent of
those observed following the depletion of tankyrase-1 (Chang P.
et al., 2005) and NuMA (Haren et al., 2009; Silk et al., 2009).
MERIT40 is a core subunit of the deubiquitinase BRISC complex,
which specifically hydrolyses K63Ub (Lys63-linked polyubiquitin
chains). BRISC is involved in maintaining spindle structure and
function through modulating the ubiquitination level of NuMA
(Yan et al., 2015). MERIT40 interacts with tankyrase-1, and this
interaction is essential for the localisation of MERIT40 at spindle
poles, the correct assembly of the bipolar spindle and the
chromosome alignment (Zheng et al., 2019). TRF1, a duplex
telomeric DNA-binding protein, is a component of a six-protein
complex called shelterin, which is involved in maintaining genome
stability by protecting telomeric DNA from unregulated
degradation, recombination and end-to-end fusion (Smith et al.,
2020). TRF1 functions as a regulator of the telomerase enzyme,
controlling its access to telomeric DNA. The PARsylation of
TRF1 inhibits its binding to the telomeres, thus allowing the
telomerase to access the telomeres and elongate them (Muoio
et al., 2022). During mitosis, the tankyrase-1-mediated
PARsylation of TRF1 ensures the efficient resolution of
telomeres, thus preventing the chromosome ends from
undergoing telomeric fusions (Ha et al., 2012; Muoio et al.,
2022). Miki, which is localised at the GC during interphase, is
involved in the promotion of prometaphase. Indeed, in the late G2 to
prophase transition, tankyrase-1 PARsylates Miki at the GC, which
is a prerequisite for PARsylated Miki translocation to mitotic CEs
and spindles, where Miki localises from the prophase to metaphase.
Subsequently, during telophase Miki accumulates at the midbodies.
PARsylated Miki participates to CE maturation by promoting the
accumulation of γ-tubulin, GCP2, CG-NAP/AKAP450 and
kendrin/pericentrin, the major components of the γ-TuRC (γ-

FIGURE 6
GC serves as storage centre for signalling molecules involved in cell fate commitment. Upon mitotic GC fragmentation, proteins associated to the
GC and involved in the commitment of cell fate are released into the cytosol thus affecting the cell fate decision. See the text for further details.
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tubulin ring complex), at mitotic CEs. Specifically, PARsylated Miki
targets and anchors CG-NAP, a large scaffold protein that provides a
platform for localising γ-TuRC, thus enabling the subsequent MT
nucleation that is required for the proper chromosome alignment
and segregation during mitosis. In accordance with this function,
Miki depletion leads to prometaphase delay or arrest, chromosome
misalignment and the subsequent accumulation of multinucleated
cells (Ozaki et al., 2012).

2.5 RINT-1

RINT-1 is localised at the ER (endoplasmic reticulum), GC andCEs
(Hirose et al., 2004; Arasaki et al., 2006; Lin et al., 2007). This protein is
involved in a number of cellular processes through its interaction with a
variety of distinct binding partners. The interaction with RAD50, a

member of the SMC (structural maintenance of chromosomes) protein
family, mediates RINT-1 involvement in the regulation of the G2/M
checkpoint (Xiao et al., 2001). Moreover, RINT-1 acts as a scaffold
protein, facilitating the interaction between p130, a member of the Rb
protein family, and RAD50. This role is crucial in regulating telomere
length (Kong et al., 2006). These data provide compelling evidence that
RINT-1 plays a critical role inmaintaining genomic stability. This role is
further emphasised by the finding that RINT-1 deficiency in neuronal
progenitor cells results in chromosomal aberrations including sister
chromatid fusion and fusion of telomers. These chromosomal defects
give rise to the formation of DNA bridges, which subsequently impair
chromosome segregation (Grigaravicius et al., 2016a). RINT-1 forms a
complexwith ZW10 (Zeste white 10) and syntaxin 18, whichmodulates
membrane trafficking between the ER and the GC (Arasaki et al., 2006).
It is noteworthy that the interaction of ZW10 with dynein-dynactin via
dynamitin, a subunit of the dynein accessory complex dynactin,

TABLE 1 Cell division-related GC-resident proteins in cancer.

Gene Tumour type showing the
highest rate of genetic
alterationsa

Rate of genetic
alterations (%)b

Correlation between gene
expression and overall
survivalc

Number of patients in each
data set without patient
stratificationc

GM130 Uterine Corpus Endometrial Carcinoma 7.19 High expression high survival (logrank
p = 0.052)

n = 543

Tankyrase-1 Uterine Corpus Endometrial Carcinoma 10.97 The expression does not correlate with
overall survival

n = 543

p115 Uterine Corpus Endometrial Carcinoma 4.92 High expression high survival (logrank
p = 0.024)

n = 543

STK16 Uterine Corpus Endometrial Carcinoma 4.35 High expression high survival (logrank
p = 0.00053)

n = 543

WHAMM Uterine Corpus Endometrial Carcinoma 4.92 The expression does not correlate with
overall survival

n = 543

FMNL1 Uterine Corpus Endometrial Carcinoma 7.57 The expression does not correlate with
overall survival

n = 543

Rab14 Uterine Corpus Endometrial Carcinoma 2.65 The expression does not correlate with
overall survival

n = 543

Rab35 Uterine Corpus Endometrial Carcinoma 2.27 The expression does not correlate with
overall survival

n = 543

RINT-1 Esophageal Adenocarcinoma 8.24 The expression does not correlate with
overall survival

n = 80

Mindbomb1 Pancreatic Adenocarcinoma 14.13 The expression does not correlate with
overall survival

n = 177

ACBD3 Breast Invasive Carcinoma 9.22 High expression low survival (logrank
p = 0.013)

n = 1,090

Arf1 Breast Invasive Carcinoma 9.14 The expression does not correlate with
overall survival

n = 1,090

Rab7A Lung Squamous Cell Carcinoma 6.78 The expression does not correlate with
overall survival

n = 501

Rab5A Bladder Urothelial Carcinoma 4.14 The expression does not correlate with
overall survival

n = 405

Rab23 Diffuse Large B-Cell Lymphoma 4.17 Not available Not available

GRASP65 Skin Cutaneous Melanoma 3.6 Not available Not available

aThe source of data is the website TCGA, PanCancer Atlas at link https://www.cbioportal.org.
bThe genetic alterations include mutations, amplifications, duplications, deletions, multiple alterations and structural variants. The source of data is the website TCGA, PanCancer Atlas at link

https://www.cbioportal.org.
cThe source of data is the website Kaplan-Meier Plotter Pan Cancer RNA-seq at the link https://www.kmplot.com.
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TABLE 2 Genetic mutations of the cell division-related GC-resident proteins detected in the tumor type showing the highest rate of genetic alterations.

Gene Tumour type showing the
highest rate of genetic
alterationsa

Genetic mutations (detected in the tumour type showing the highest rate of genetic alterations)b

Frameshift
insertion

Frameshift
deletion

Inframe
deletion

Fusion Missense Nonsense Splice

GM130 Uterine Corpus
Endometrial Carcinoma

None detected E516Sfs*42 Y989Tfs*9 None detected None detected A569T
R896C
R537C
A480T
R521C
A397V
A800T
E313D
V647M
R811H
L321F
Y846F
S869N
H106N
Q961R
R473Q
M528I
E750G
S953Y
A659V
R532H
R674C
A520V
E343D
V432A
L86I
E586K
R703Q
N110S
T70I
R896H
E884V
A358V
R543Q
R976C
R257G
G917W
A511T

E887* X382_splice
X118_splice

Tankyrase-1 Uterine Corpus Endometrial Carcinoma L562Pfs*10 T508Hfs*33 S1221Afs*34
H1100Tfs*59

S134del None detected R383Q
A1271T
R1076H
R646H
R79L
R1200Q
R1044W
R1180H
G367E
R1149Q
L951V
T833I
T938M
V1284I
A209T
P405L
H467Y
A549V
G693C
V300M
N1071D
A1202V
R781I
D709N
D432Y
A806T
G1092D
V635L
A430V
D794Y
L1305I
A244T
L841M
E441G
D501A
A443T
G1233C
A950S
E479K
A691T
M574I

R1149*
E419*
E959*
E1064*
Q1166*

X300_splice
X344_splice
X527_splice
X1,149_splice
X557_splice
X423_splice

(Continued on following page)
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TABLE 2 (Continued) Genetic mutations of the cell division-related GC-resident proteins detected in the tumor type showing the highest rate of genetic
alterations.

Gene Tumour type showing the
highest rate of genetic
alterationsa

Genetic mutations (detected in the tumour type showing the highest rate of genetic alterations)b

Frameshift
insertion

Frameshift
deletion

Inframe
deletion

Fusion Missense Nonsense Splice

p115 Uterine Corpus Endometrial Carcinoma N227Kfs*10 N227Tfs*18 None detected None detected S533L
T110N
R168C
G524V
K627E
L305I
L906M
L915P
L392R
Q242R
A161V
G238D
R243H
T599M
S754F
A780T
T638I
L94F
T285A
F234V
A426T
L688F
T885A

Q669*
R327*
E85*

X171_splice
X211_splice

STK16 Uterine Corpus Endometrial Carcinoma None detected None detected None detected MAFF-STK16
Fusion

R50Q
P162L
R79H
W127R
D166E
R70C
R79C
D213N
S180F
K142R
Q304H
R19C
L52P
R215W
R280C
F230L
G157E

R64* X219_splice

WHAMM Uterine Corpus Endometrial Carcinoma None detected None detected P658del None detected A737T
A731V
R677Q
R698H
S558C
S503N
R773C
S799G
C435R
R549C
I747M
R420I
F621C
G270D
A248V
E346D
K608N
D265Y
M313I
P578T
L339F
L255F
V307A
L760F
A353V
S792Y
L482V

E502*
E280*
E283*
R345*

X262_splice
X312_splice

(Continued on following page)
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TABLE 2 (Continued) Genetic mutations of the cell division-related GC-resident proteins detected in the tumor type showing the highest rate of genetic
alterations.

Gene Tumour type showing the
highest rate of genetic
alterationsa

Genetic mutations (detected in the tumour type showing the highest rate of genetic alterations)b

Frameshift
insertion

Frameshift
deletion

Inframe
deletion

Fusion Missense Nonsense Splice

FMNL1 Uterine Corpus Endometrial Carcinoma None detected A81Qfs*7 V521Cfs*99 None detected None detected A1018T
G243D
R920H
R875H
V919M
S950L
V229I
A707V
R731H
G858D
A907V
K979N
G1063V
E976D
V1071A
R1080H
R992H
R122W
E759D
V221I
R641Q
E256D
K264N
A155S
N341H
R219H
F986I
E889D
K633N
F990C
Q75H
E311D
E166G
P1038S
A1064T
R860W

E413* X44_splice
X134_splice
X999_splice
X298_splice

Rab14 Uterine Corpus Endometrial Carcinoma F36Ifs*4 K35Nfs*18 T157Rfs*5 None detected None detected T67M
I44L
E137G
A168V
Y8C
R110M
L121I
G45S
R51I

None detected X157_splice

Rab35 Uterine Corpus Endometrial Carcinoma None detected None detected None detected None detected A139T
D89N
S22N
E94K
K173E
V157M
I47L
N109D

None detected None detected

RINT-1 Esophageal Adenocarcinoma None detected None detected None detected None detected R710W
S295P
R157C

None detected X729_splice

Mindbomb1 Pancreatic Adenocarcinoma None detected None detected None detected MIB1-
GREB1L
Fusion

S841P
D198N

None detected X926_splice

ACBD3 Breast Invasive Carcinoma None detected E348Nfs*21 None detected None detected E226K
R523T
E348Q
E212Q

None detected None detected

Arf1 Breast Invasive Carcinoma None detected E17Kfs*27 None detected None detected R149H
A137T

None detected None detected

Rab7A Lung Squamous Cell Carcinoma None detected None detected None detected None detected A135S S101I None detected None detected

(Continued on following page)
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mediates the movement of ZW10 along MT tracks to the centrosomal
region. Here, ZW10 arrests the spindle assembly checkpoint, a
surveillance mechanism that detects potential errors in the
attachment of kinetochores with spindle MTs (McAinsh and Kops,
2023). It is remarkable that both dynamitin and RINT-1 bind to
ZW10 in mutually exclusive manner. Furthermore, RINT-1
overexpression has been demonstrated to prevent the dynein-
dynactin-mediated movement of ZW10 to the CEs (Inoue et al.,
2008; Grigaravicius et al., 2016b). These findings thus indicate that
RINT-1 plays a regulatory role in kinetochore attachment to the spindle
through the modulation of ZW10 localisation (Inoue et al., 2008;
Grigaravicius et al., 2016b). Furthermore, RINT-1 is involved in
maintaining the dynamics of the GC throughout the cell cycle and
CE integrity (Lin et al., 2007). Indeed, in cells where RINT-1 has been
depleted, the GC loses its pericentriolar positioning and become
dispersed during interphase. During mitosis, the GC is partially
disassembled, resulting in an incomplete formation of Golgi haze.
Finally, the GC does not reassemble around the CE during
telophase (Lin et al., 2007). Furthermore, RINT-1 depletion leads to
the amplification of the CE during interphase, which in turn promotes
the formation of multipolar spindles and chromosome missegregation,
thus leading to chromosome instability (Lin et al., 2007). The alterations
in GC dynamics during cell cycle progression and the mitotic defects
deriving fromRINT-1 loss lead to a prolongedMphase andmitotic cell
death (Lin et al., 2007). While the underlying molecular mechanisms
remain to be elucidated, these findings indicate that RINT-1 is essential
for the accurate coordination of GC and CE dynamics during cell
division and the formation of a functional mitotic spindle.

2.6 Arf1 (ADP-ribosylation factor 1)

Arf1 (ADP-ribosylation factor 1) is a Ras-like GTP-binding protein
that is essential for maintaining the structure and function of the GC
(Donaldson and Jackson, 2000). It regulates membrane traffic at the GC
and endosomes. The constitutively active Arf1 mutant has been

demonstrated to impair a number of cellular processes, including
ER-to-Golgi and intra-Golgi transport (Dascher and Balch, 1994),
mitotic GC disassembly, chromosome segregation and cytokinesis
(Altan-Bonnet et al., 2003). With regard to its involvement in
mitosis, the fate and activity of Arf1 remain incompletely
understood. However, there is evidence suggesting that it may play a
role inmitotic GC breakdown. Arf1 is recruited to Golgi membranes by
a GEF, which facilitates the conversion of Arf1-GDP into its GTP-
bound form.Once activated, Arf1 recruits proteins that are necessary for
DNA replication, chromosome condensation, segregation and
cytokinesis, including actin, tankyrase-1, spectrin and Cdc42
(Drechsel et al., 1997; Smith and de Lange, 1999; Sütterlin et al.,
2001). This process is facilitated by the binding of effector molecules
(Donaldson and Klausner, 1994; De Matteis and Morrow, 2000). The
inactivation of Arf1 at an early stage of mitosis could facilitate the
controlled release of the aforementioned proteins into the cytoplasm,
thereby ensuring the optimal progression of mitotic events. In
conclusion, the model proposed by Altan-Bonnet et al. (2003)
suggests that Arf1 recruitment to Golgi membranes is early inhibited
during mitosis due to its conversion into an inactive GDP-bound state.
This subsequently permits the detachment of peripheral proteins from
Golgimembranes, leading toGCdisassembly, which is a prerequisite for
mitotic entry, chromosome segregation and cytokinesis. In addition, it
has been speculated that, once released, the GC proteins are relocated at
different subcellular structures, where they play key roles in different
cellular processes including spindle formation and cytokinesis. The
precise mechanism of this process is not yet fully understood, but it is
undoubtedly an intriguing area for further investigation. It can be
proposed that the inactivation of Arf1 represents an additional
mechanism for controlling mitosis (Donaldson and Jackson, 2000).

2.7 STK16 (Serine/Threonine Kinase 16)

STK16 (Serine/Threonine Kinase 16) is a GC-resident enzyme
that directly binds actin and regulates actin polymerisation/

TABLE 2 (Continued) Genetic mutations of the cell division-related GC-resident proteins detected in the tumor type showing the highest rate of genetic
alterations.

Gene Tumour type showing the
highest rate of genetic
alterationsa

Genetic mutations (detected in the tumour type showing the highest rate of genetic alterations)b

Frameshift
insertion

Frameshift
deletion

Inframe
deletion

Fusion Missense Nonsense Splice

Rab5A Bladder Urothelial Carcinoma None detected None detected None detected None detected Y151S
S107F

None detected None detected

Rab23 Diffuse Large B-Cell
Lymphoma

None detected None detected None detected None detected None detected None detected None detected

GRASP65 Skin Cutaneous
Melanoma

None detected None detected None detected None detected N62S
P203Q
L316F
E358D
Q435K
P207H
P27T
P298Q
R106S
P305Q
G197W
G357C

E344* None detected

aThe genetic alterations include mutations, amplifications, duplications, deletions, multiple alterations and structural variants. The source of data is the website TCGA, PanCancer Atlas at link

https://www.cbioportal.org.
bThe genetic mutations include frameshift insertions and deletions, inframe deletions, fusions, missense, nonsense and splicing variants. The data source is the website TCGA, PanCancer Atlas

at link https://www.cbioportal.org.
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depolymerisation dynamics through its kinase activity. In detail, low
concentrations of STK16 facilitate actin polymerisation, whereas
high concentrations induce actin depolymerisation (Liu J. et al.,
2017). By modulating the dynamics of actin, STK16 contributes to
maintenance of GC integrity and cell cycle progression. Indeed,
depletion of STK16 or inhibition of its kinase activity results in the
reduction in actin filaments, indicating an alteration in actin
dynamics. As a consequence, a number of effects have been
observed, including the induction of GC fragmentation, the
inhibition of G2/M transition and the arrest of prometaphase
and cytokinesis (Liu J. et al., 2017).

3 Role of Golgi complex resident
proteins in oogenesis

The germinal stem cells undergo an asymmetric division,
resulting in the production of two daughter cells. One of these
cells retains the stemness features (self-renewal), while the other
undergoes a differentiation fate that culminates in the production of
gametes through a distinctive cell division process known as meiosis.
In contrast to mitosis, meiosis comprises two cell divisions (defined
as Meiosis I and Meiosis II) and a single step of DNA replication,
resulting in the generation of haploid male and female gametes
(Hillers et al., 2017). In particular, in mammalian oogenesis, the two
successive divisions are asymmetric and drive to the formation of
two small polar bodies and the large and polarised egg, which retains
all maternal components necessary for embryo development (Sun
and Kim, 2013). This asymmetry is generated by the spindle
orientation and migration to the cellular cortex as a result of the
dynamic organisation of the cytoskeleton during both cellular
divisions (Brunet and Verlhac, 2011). In contrast to mitotic cells,
in which the CEs are directly responsible for the correct bipolar
spindle assembly (Namgoong and Kim, 2018), mammalian oocytes
lack CEs and the spindle formation is driven by multiple MTOCs
(Wu and Akhmanova, 2017). Although mitosis and meiosis exhibit
disparate patterns of spindle formation, they share similarities in the
involvement of GC proteins in regulating the appropriate assembly
of the spindle. As shown in Figure 4, the GC proteins that play a role
in this process include GM130, FMNL1, Arf1, Rab proteins and
WHAMM. Except for Arf1, the molecular mechanisms underlying
the involvement of GC proteins in regulating spindle assembly and
positioning during meiosis as well as meiotic resumption have not
been fully unravelled. Therefore, Figure 5 is mainly focused on the
signalling pathways through which Arf1 plays a crucial role in
these processes.

3.1 GM130

The function of GM130 in oogenesis has been insufficiently
studied and remains a topic of debate. In vitro experiments
demonstrate that during mouse oocyte maturation
GM130 regulates spindle assembly and migration, as well as
asymmetric cell division (Zhang et al., 2011). The depletion of
GM130 affects the localisation of proteins involved in spindle
organisation, including γ-tubulin and Plk1, as well as pMEK1/2,
which is involved in the extrusion of the polar body (Verlhac

et al., 2000). As a consequence, the spindles are observed to be
defective, exhibiting either an elongated morphology or an
aberrant number of poles. Furthermore, GM130 depletion
impairs spindle migration, resulting in the migration of only
one of the two spindle poles to the cortex. This ultimately leads to
the elongation of the spindle. If the spindle pole reaches the
cortex, the extrusion of a polar body larger than that of the
control oocytes is observed. Conversely, if the spindle only
elongates to a minimal extent and does not reach the cortex,
oocytes are arrested at metaphase I and unable to extrude the
polar body. In both instances, the process of asymmetric oocyte
division is disrupted (Zhang et al., 2011). Evidence suggests that
GM130 performs these functions in conjunction with ERK3 (Li
et al., 2010) and JNK2 (Huang et al., 2011), both of which are
members of the MAPK family. However, the detailed mechanism
through which this occurs has not been fully unravelled.
ERK3 depletion leads to the arrest of oocyte meiosis at the
metaphase I stage, a high incidence of abnormal spindles and
an incorrect chromosome alignment. This is due to an
interference in the attachment between kinetochores and MTs
and in the activation of the spindle assembly checkpoint
component BubR1 (Li et al., 2010). JNK2 co-localises with
centrosomal proteins, including γ-tubulin and Plk1, and plays
a role in spindle assembly and first polar body extrusion during
meiosis in mouse oocytes (Huang et al., 2011). Furthermore,
JNK2 has been observed at both meiotic spindle poles and the
centres of cytoplasmic MT asters, thereby supporting the
hypothesis that this protein may act as a component of
MTOCs during meiosis (Schuh and Ellenberg, 2007).

Although these studies emphasise the role of GM130 in oocyte
maturation, a more recent study performed on an oocyte-specific
GM130 knockout mouse model demonstrates that the
GM130 deficiency does not affect the ovulation and maturation
of oocytes, and thus the murine fertility rate (Jiang et al., 2020). It is
possible that these controversial findings could be explained through
the in vivo functional redundancy of the other Golgins expressed in
the mouse oocyte.

3.2 FMNL1 (Formin-like 1)

Formins are a family of proteins that act as actin nucleators.
FMNL1 (Formin-like 1) is a member of this family. Although
predominantly cytoplasmic, it also colocalises with GM130 at GC
and at the spindle poles in meiotic mouse oocytes, thereby
indicating its potential involvement in Golgi ribbon
maintenance (Colón-Franco et al., 2011) and spindle assembly
and positioning (Wang et al., 2015), respectively. FMNL1 is
involved in the oocyte asymmetric division. Depletion of this
protein causes defective spindle formation and the extrusion of
a large polar body with a slow rate of extrusion (Wang et al., 2015).
From a mechanistic perspective, FMNL1 exerts its actions through
participation in multiple signalling cascades, including RhoA/
FMNL1/MAPK, RhoA/FMNL1/GM130 and RhoA/FMNL1/
mDia1/Profilin1. These cascades are involved in the actin
assembly and spindle organisation (Fan and Sun, 2004; Xiong
et al., 2008; Wang et al., 2015; Yin and Sun, 2015; Zhang
et al., 2015).
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3.3 Arf1

Arf1 has been demonstrated to participate to the mouse oocyte
asymmetric division, both during meiosis I and meiosis II (Wang
et al., 2009). Indeed, depletion of Arf1 causes the symmetric division
during both meiotic divisions. In detail, Arf1 performs these
functions through two distinct mechanisms. During meiosis I,
Arf1 activates the MAPK signalling cascade, which is involved in
meiosis (Fan and Sun, 2004). During meiosis II, Arf1 modulates the
correct spindle orientation, which is essential for asymmetric
division, through the promotion of appropriate actin filament
assembly (Wang et al., 2009), in accordance with the role played
in modulating the dynamics of the actin cytoskeleton (Myers and
Casanova, 2008).

Recent evidence indicates that Arf1 localises to the spindle poles
during murine oocyte meiosis and is a pivotal factor in meiotic
resumption, MTs stability and spindle organisation (Zhang et al.,
2024). Arf1 depletion induces an increase in the expression of Myt1,
the inhibitory kinase of the cyclin B1/Cdk1 complex, and a decrease
in the expression of cyclin B1 and Cdk1. This results in the
inactivation of this complex and, consequently, the failure of
meiotic resumption. Furthermore, previous studies have
demonstrated the role of Myt1 in regulating the fragmentation of
GC during the G2 phase and the breakdown of GC into tubules and
vesicles during mitosis (Villeneuve et al., 2013). In accordance with
the aforementioned evidence, the depletion of Arf1 in oocytes,
through its effect on Myt1, results in an altered distribution of
GC, which is no longer enriched in the spindle periphery area but is
dispersed throughout the cytoplasm. Consequently, following
Arf1 depletion a reduction in AURKA expression and an
impairment of its activation and spindle poles localisation are
observed, which in turn affect the activation of Plk1, the AURKA
downstream target. This further impairs the activation of the cyclin
B1/Cdk1 complex, causing the failure of meiotic resumption (Zhang
et al., 2024). Moreover, the depletion of Arf1 results in additional
impairment of the AURKA-Plk1 signalling pathway due to the
decreased expression levels of Ran and TPX2, the downstream target
of Ran and the activator of AURKA. The defective activation of
AURKA-Plk1 signalling also hampers the correct assembly of
spindles, which appear smaller or fragmented, by affecting the
expression of the Histone deacetylase 6 and, consequently, MTs
stability (Zhang et al., 2024).

3.4 Rab proteins

The Rab GTPase proteins are recognised for their involvement
in the processes of vesicle budding, trafficking and fusion. They
facilitate the movement of vesicles along the cytoskeleton through
the interaction with actin and microtubule motor proteins. The
relationship between Rab proteins and the cytoskeleton is of great
significance, not only in the regulation of transport but also in the
reorganization of the cytoskeleton (Li and Marlin, 2015). A number
of Rabs have been demonstrated to influence meiotic spindle
morphology and positioning, as well as the attachment of MTs to
kinetochores (Shan and Sun, 2021). The following subsection
presents a few illustrative examples. It should be noted that,
although only Rab14 shows GC localisation, other Rabs are

described here in order to emphasise the relevant role of this
family of proteins in spindle formation during oogenesis.

During mouse oocyte maturation, Rab14 accumulates in the
cortex and the spindle periphery. It plays a critical role in
asymmetric division during meiosis. Indeed, its depletion results
in defective spindle migration and positioning, which in turn causes
the extrusion of large polar bodies (Zou et al., 2021). From a
molecular perspective, the depletion of Rab14 induces the
reduction in the expression of ROCK and phospho-cofilin, which
serves as the phosphorylation target of ROCK. Furthermore,
Rab14 deficiency impairs ROCK accumulation around the
spindle, indicating that Rab14 modulates the RhoA/ROCK/cofilin
signalling pathway (Zou et al., 2021), which mediates the actin
filament assembly required for the correct spindle migration during
mouse oocyte maturation (Duan et al., 2014; Duan et al., 2018). In
addition to Rab14, several Rabs have been demonstrated to drive
spindle organisation and migration during meiosis. Rab23 and
Rab35 have been shown to control spindle organisation during
oocyte meiosis by modulating tubulin acetylation (Wang et al., 2019;
Zhang et al., 2019). Specifically, Rab23 accumulates at the spindle
poles and promotes the migration of the motor protein Kif17 to
these locations. Kif17 exerts control over MTs arrangement through
its interaction with enzymes involved in the acetylation/
deacetylation of tubulin, namely αTAT and Sirt2. These enzymes
are responsible for the acetylation of tubulin in spindle meiotic
microfilaments. The depletion of Rab23 or Kif17 leads to alterations
in tubulin acetylation and, consequently, in MTs stability, which in
turn perturbs spindle formation and chromosome alignment.
Furthermore, the absence of Kif17 results in the reduction in
cytoplasmic actin levels, which in turn affects spindle migration
to the cortex. This leads to a failure in polar body extrusion and
defects in mouse oocyte meiotic maturation (Wang et al., 2019).
From a mechanistic perspective, Kif17 exerts control over the
assembly and distribution of cytoplasmic actin through
interactions with key components of the RhoA/ROCK/cofilin
pathway, including RhoA, ROCK1, phospho-LIMK and phospho-
cofilin, via its tail domain (Wang et al., 2019). It can therefore be
concluded that the Rab23-Kif17 complex is involved in the
organisation and migration of the spindle during meiosis,
exerting its influence on tubulin acetylation and actin filament
assembly, respectively. Similarly, Rab35 has been demonstrated to
promote MTs stability and meiotic spindle formation in oocytes by
modulating α-tubulin acetylation levels through its binding with
Sirt2 and αTAT. Furthermore, Rab35 has been shown to interact
with RhoA and control the RhoA/ROCK/cofilin pathway, thereby
modulating the actin-mediated spindle migration (Zhang et al.,
2019). It can be concluded that the depletion of Rab35 impairs
spindle migration in oocytes as a consequence of the failure of
asymmetric spindle positioning and the impairment of correct actin
assembly and tubulin acetylation (Zhang et al., 2019). Similarly,
Rab7 is implicated in spindle migration through its regulation of
actin dynamics via interaction with actin nucleation factors. Its
depletion results in aberrant spindle migration and asymmetric
division defects (Pan et al., 2020). Rab5A plays a role in the
establishment of the correct spindle length and kinetochore-MTs
attachment during meiosis. The knockdown of Rab5A causes the
formation of elongated spindles, characterised by misaligned
chromosomes, due to the failure of kinetochore-MTs attachment
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(Ma et al., 2014). These defects are dependent on the reduction in the
expression level and localisation of the nuclear matrix protein
CENPF (Centromere Protein F) at kinetochores during
metaphase, as well as an impairment in the disassembly of the
nuclear lamina during oocyte maturation. In light of these findings,
it has been proposed that the interaction between Rab5A and the
nuclear lamin regulates CENPF levels and localisation at
centromeres, which in turn determines the correct spindle length
and kinetochore-MTs attachment. These meiotic defects can
increase aneuploidy in eggs, resulting in reproductive disorders
(Ma et al., 2014). While these cited proteins represent only a
subset of Rab GTPase proteins involved in the proper
development of meiosis, this list highlights the critical role of
these proteins in meiotic spindle organisation and positioning.

3.5 WHAMM (WAS Protein Homolog
Associated with Actin, Golgi Membranes and
Microtubules)

WHAMM (WAS Protein Homolog Associated with Actin, Golgi
Membranes and Microtubules) constitutes a component of the
machinery responsible for the construction and maintenance of
the actin cytoskeleton. Indeed, it is a nucleation-promoting factor
which activates the Arp2/3 complex (actin-related protein 2/
3 complex) (Rottner et al., 2010). It is localised in the cis-Golgi
and tubulovesicular ERGIC (ER-Golgi intermediate compartment),
where it interacts with both the actin and MT cytoskeletons, thereby
regulating the membrane tubulation and dynamics during transport
from the ER to the GC (Campellone et al., 2008). WHAMM is
expressed during all stages of oocyte maturation and localises at the
meiotic spindle actin, a structure constituted by actin filaments which
permeate the spindle and are involved in spindle formation,
maintenance and migration, thus controlling chromosome
alignment (Mogessie and Schuh, 2017; Plessner et al., 2019).
During oocyte maturation, WHAMM is involved in the formation
and migration of the spindle to the cortex of the oocyte (Huang et al.,
2013; Jo et al., 2021). Indeed, the depletion of WHAMM impairs the
formation of spindle actin and the MTOC clustering and migration at
the spindle poles. This results in the formation of aberrant bipolar
spindles, which are characterised by increased spindle length and
chromosome misalignment. This, in turn, has been demonstrated to
drive increased chromosomal aneuploidy (Jo et al., 2021).
Furthermore, WHAMM depletion affects the correct actin pattern
in the oocyte and causes the disruption of actin cap formation, thus
impairing spindle migration (Longo and Chen, 1985; Leader et al.,
2002). This, in turn, causes the extrusion of a large polar body and a
failure of asymmetric division (Huang et al., 2013).

4 Golgi complex as a storage of
signalling molecules regulating
asymmetric cell division and cell fate

The accumulating evidence indicates that the GC plays a role in
asymmetric cell division, whereby both stem and progenitor cells
generate a daughter stem and progenitor cell (self-renewal),
respectively, and a cell with a differentiation committed fate. The

generation of daughter cells with intrinsic differences requires the
initial polarisation of the mother cell, which determines the
formation of two distinct cellular sides. Subsequently, cell fate
determinants (including proteins, organelles and even RNA) are
localised to only one side, and then the mitotic spindle is aligned
along the axis of cell polarity. This results in the segregation of cell
fate determinants predominantly into one of the two daughter cells
(Sunchu and Cabernard, 2020; Chao et al., 2024). In the mammalian
central nervous system, the Notch signalling pathway is responsible
for controlling binary fate decisions and plays a significant role in
the maintenance of progenitor cells (Pierfelice et al., 2011). Indeed,
Notch regulators, including Numb and Mindbomb1, have been
demonstrated to function as fate determinants. Numb is the
primary determinant of cell fate. Numb inhibits Notch signalling
by recruiting components of the ubiquitination machinery to the
Notch receptor, thereby promoting ubiquitination of the Notch at
the plasma membrane and subsequent degradation of the Notch
intracellular domain (McGill and McGlade, 2003). The function of
Numb in determining cell fate has been well documented in the
context of the embryonic nervous system. The asymmetric
segregation of cytosolic Numb to only one of the two daughter
cells results in an asymmetric cell division, thereby specifying the
progenitor fate over the neuronal fate (Petersen et al., 2002; Petersen
et al., 2004). However, Numb is also expressed in the neuronal
daughter cell (Zhong et al., 1997), where it is also essential for
neuronal survival and differentiation (Huang et al., 2005). The dual
function of Numb in sustaining the progenitor cell and promoting
neuronal differentiation can be attributed to the GC-mediated
subcellular distribution of the Numb interactor ACBD3 (Acyl-
CoA binding domain containing 3). ACBD3 interacts with Numb
and this interaction is necessary for the determination of cell fate.
ACBD3 localises at the GC in neurons and interphase progenitor
cells. The fragmentation of the GC during mitosis releases
ACBD3 into the cytosol, where it is free to bind Numb and thus
specify the fate of the progenitor cell (Figure 6). During telophase,
ACBD3 reassociates with the reforming GC. It can thus be
concluded that the process of GC fragmentation and
reconstitution during the cell cycle regulates the subcellular
distribution of ACBD3, which in turn affects the activity of
Numb. The latter is only able to specify the progenitor fate
during mitosis and/or shortly afterwards, when its partner
ACBD3 is also present in the cytosol. Subsequently, following cell
division, the association of ACBD3 with the GC enables newly
synthesised Numb proteins to promote neuronal differentiation
through their involvement in a distinct signalling pathway (Zhou
et al., 2007). Another Notch pathway regulator involved in neural
stem cells asymmetric division is Mindbomb1, a mono-ubiquitin
ligase that modulates the Notch ligands trafficking and promotes
their activity (Weinmaster and Fischer, 2011). In asymmetric cell
division, Mindbomb1 co-localises asymmetrically with centriolar
satellite proteins PCM1 and AZI1 at the daughter centriole in
interphase (Tozer et al., 2017). The asymmetric localisation of
Mindbomb1 results in the generation of daughter cells with
differing levels of this protein. Subsequently, the daughter cell
with the highest concentration of Mindbomb1 undergoes
differentiation. Mindbomb1 regulates fate decisions through the
unequal activation of Notch in daughter cells (Tozer et al., 2017).
Furthermore, an additional pool of Mindbomb1 was identified to be
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associated with the GC during interphase. Upon entering mitosis,
the Golgi-associated pool of Mindbomb1 is released into the cytosol
due to GC fragmentation (Figure 6) and subsequently recruited to
the mother CE, thereby compensating for the centrosomal
asymmetry of Mindbomb1. The symmetric localisation of
Mindbomb1 at both spindle poles drives to the equal inheritance
of Mindbomb1 by the daughter cells, which in turn induces
reciprocal Notch activation between daugther cells. This process
ultimately leads to the symmetric proliferative division, which
generates two progenitor cells (Tozer et al., 2017). In summary,
the GC serves as a repository for both cell fate determinants, such as
Mindbomb1, and their interactors, such as ACBD3. Its
fragmentation during mitosis enables the release of these factors,
thereby linking cell fate specification with cell cycle progression.

5 Involvement of cell division-related
GC-resident proteins in cancer

As previously outlined, GC plays a pivotal role in the regulation of
cell division, encompassing both mitosis and meiosis. When the
structure and/or function of several GC-resident proteins that
regulate these processes is dysregulated, cells may undergo
chromosomal instability and/or altered proliferation, which are two
of the hallmarks of cancer (Hanahan andWeinberg, 2011; Donizy and
Marczuk, 2019). Indeed, an increasing body of evidence indicates that
the mutation of genes encoding GC proteins involved in cell division
may be a potential trigger for cancer onset (Liu et al., 2021). To gain
further insight into this topic, we initially gathered data on the genetic
alterations of these GC proteins in cancer from the publicly available
TCGA database (https://www.cbioportal.org/). While the 16 proteins
under discussion in this review have been shown to undergo genetic
alterations in several tumour types, for the sake of brevity Table 1
presents only the tumour type in which the highest rate of genetic
alteration has been observed for each of them. The data presented in
Table 1 were gathered without patient stratification (i.e., without
considering stage, gender, race, grade, mutation burden, and
neoantigen load) and show the rate of genetic alterations (source
https://www.cbioportal.org), the correlation between overall survival
and gene expression, and the number of patients for each data set
(source https://www.kmplot.com, Pan-cancer RNA-seq). In addition,
Table 2 lists the genetic mutations detected in the tumour with the
highest rate of genetic alteration for each GC-resident protein. For
further details about the genetic alterations, the correlation with overall
survival and the genetic mutations in the other cancer types, the reader
is directed to the following sources: https://www.cbioportal.org and
https://www.kmplot.com. It is noteworthy that the tumour in which
8 out of the 16 GC proteins examined are predominantly mutated is
uterine corpus endometrial carcinoma (source: TCGA database,
PanCanAtlas), which is one of the most prevalent gynecological
malignancies (Zhao and Li, 2023). It is of note that 2
(GRASP65 and Rab5A) of the remaining 8 proteins exhibit high
mutation rates in the same cancer type, although these rates are
not the highest (see Table 1 and the website https://www.cbioportal.
org). Furthermore, the correlation between the gene expression of each
GC-localised protein and overall survival has been analysed in the
tumour in which these proteins exhibit the highest rate of genetic
alteration. The Kaplan-Meier Plotter indicates that elevated expression

of GM130, p115 and STK16 is associated with improved overall
survival, whereas high expression of ACBD3 is correlated with
reduced overall survival. No correlation was identified between gene
expression and overall survival for the remaining proteins (Table 1).
This information is in accordance with the findings of previous studies
which have demonstrated that these GC proteins could play a role in
the development of a number of tumour types. The behaviour of
GM130 in cancer is controversial, with studies indicating that it is
either downregulated [e.g., in colorectal and breast cancers (Baschieri
et al., 2014)] or upregulated [e.g., in gastric cancer, (Zhao et al., 2015);
in lung cancer (Chang et al., 2012)] in certain cancer types. The
inconsistency of the role of GM130 in affecting tumourigenesis
suggests that it plays different functions in a tumour context-
dependent manner, thus underlying the necessity to further deepen
this aspect. Tankyrase-1 is a well-established contributor to cancer
development (Seimiya, 2006; Haikarainen et al., 2014; Sagathia et al.,
2023), particularly in the context of colorectal cancer (Masuda et al.,
2015; Thorvaldsen, 2017). p115 has been demonstrated to stimulate
cancer in multiple organs. Indeed, p115 has been identified as a
mutated gene in different cancers, including liver cancer (Yoon
et al., 2021), gastric cancer (Li et al., 2013), colon cancer (Sui et al.,
2015), myeloma cells (Jin and Dai, 2016) and B-cell acute
lymphoblastic leukemia (Jaiswal et al., 2021). STK16 is a pivotal
player in regulating GC structure. Its overexpression has been
linked to the development of triple negative breast cancer (Zhu
et al., 2024) and the promotion of cancer progression in lung
(Wang et al., 2022) and colon (Peng et al., 2024) tissues. WHAMM
functions as a tumour suppressor in leukemia (Biber et al., 2021) and is
an unfavourable prostate cancer marker, whereas it is a
favourable cervical cancer marker (https://www.proteinatlas.org/
ENSG00000156232-WHAMM/pathology). FMNL1 is an oncogene
with a high mutation rate in numerous cancer models (Zhang et al.,
2020). Indeed, in some cases, it is downregulated, for example in
glioblastoma (Higa et al., 2019), although it is often overexpressed,
which has an unfavourable impact on the prognosis (Nie et al., 2020).
Examples of such studies include those on gastric cancer (Mansuri et al.,
2021), leukemia (Favaro et al., 2013; Chen et al., 2018), lymphomas
(Favaro et al., 2006; Gardberg et al., 2014) and kidney cancer (Ma et al.,
2021). The function of RINT-1 in tumour formation remains a topic
of debate, as it has been observed to act as both a tumour suppressor
and an oncogene. Indeed, RINT-1 haploinsufficiency in Rint-1+/−

mice promotes chromosomal instability, which in turn stimulates
the development of multiple tumours including lymphomas, lung
cancers, hepatocellular carcinomas, uterus and breast tumours. These
findings suggest a role for RINT-1 as a tumour suppressor (Lin et al.,
2007). Conversely, alternative evidence suggests that RINT-1 acts as an
oncogene. The Rint-1 genomic locus is amplified in multiple tumour
types, including glioblastomas (Beroukhim et al., 2010; Quayle et al.,
2012) and is overexpressed and mutated in human colorectal cancers
(Otterpohl andGould, 2017). Furthermore, it has been demonstrated to
stimulate in vivo tumour formation when over-expressed in primary
non-transformed astrocytes (Quayle et al., 2012). RINT-1 is frequently
referenced as a breast cancer, colon cancer and Lynch syndrome
predisposition gene (Park et al., 2014). However, an alternative
study has not provided any evidence to support the role of
RINT1 as a cancer susceptibility gene, thus emphasising the
necessity for further investigation (Li et al., 2016). The preferential
amplification of Mindbomb1 in pancreatic cancer with a worse
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prognosis has been demonstrated to promote metastatic progression
and chemoresistance (Fu et al., 2020). ACBD3 is typically upregulated
and plays a role in promoting tumour formation, particularly in breast
invasive carcinoma (Huang et al., 2018) and gastric cancer (Zheng et al.,
2021). In both cases, increased ACBD3 expression is associated with
poor survival outcomes. The role of GRASP65 in cancer remains a topic
of debate, with evidence suggesting that decreased expression may
contribute to carcinogenesis (Bui et al., 2021; Bajaj et al., 2022).
Arf1 overexpression has been demonstrated to stimulate the
proliferation and invasion of prostate, breast, and ovarian cancer
cells (Boulay et al., 2011; Davis et al., 2016; Schlienger et al., 2016;
Gu et al., 2017). Furthermore, elevatedArf1 expression in human breast
cancer specimens is associated with a poor prognosis for the patient
(Schlienger et al., 2016). The aberrant expression of Rab proteins has
been documented in numerous cancer types (Cheng et al., 2005; Chia
and Tang, 2009). Rab14 is overexpressed in gastric, ovarian and bladder
cancers and functions as an oncogene, stimulating tumour proliferation
and aggressiveness (Hou et al., 2016; Guo et al., 2017; Deng et al., 2023).
Similarly, Rab35, which is involved in regulating cell division, has been
demonstrated to act as an inducer of tumourigenesis (Gibieža and
Petrikaitė, 2021). Rab23 is overexpressed in diffuse-type gastric cancer,
where it serves as an invasion mediator gene (Hou et al., 2008), in
hepatocellular carcinoma, where its overexpression correlates
significantly with tumour size (Liu et al., 2007), and in muscle-
invasive FGFR3-non-mutated bladder cancers, suggesting its active
role in tumour progression (Ho et al., 2012). The role of Rab7A in
carcinogenesis is debated (Guerra and Bucci, 2019). Indeed, it has been
demonstrated to serve as a tumour promoter in breast cancer and
cholangiocarcinoma (Suwandittakul et al., 2017; Xie et al., 2019), while
it acts as a tumour suppressor in prostate cancer and glioblastoma
(Steffan et al., 2014; Wang et al., 2017). Furthermore, elevated levels of
expression have been observed in human gastric cancer specimens,
with increased expression correlating with a poor clinical prognosis
(Liu et al., 2020). Rab5A is overexpressed in several cancer types,
including breast and ovarian cancers, hepatocellular carcinoma and
oral squamous cell carcinoma (Zhao et al., 2010; Yang et al., 2011; Pan
et al., 2015; Geng et al., 2016; Zhang et al., 2017; Ma et al., 2020), where
it acts as an oncoprotein, stimulating cancer proliferation and invasion
and thus promoting the malignant phenotype.

The collective evidence thus suggests that these GC proteins play
a fundamental role in the biology of cancer cells. The functions of the
aforementioned proteins may appear to be contradictory in certain
instances. However, it is probable that these proteins act in a manner
that is dependent on the specific cell and tumour context in which
they bind different interactors, which may influence their activity.
Consequently, further studies are required in order to specifically
address the role of these GC-resident proteins in the process of
tumourigenesis.

6 Discussion and conclusion

The GC plays a pivotal role in cellular homeostasis. Indeed, its
structural and functional dysregulation has been linked to the
development of several diseases, including cancer, diabetes,
inflammation, infectious illnesses, neurodegenerative and
cardiovascular diseases (Zappa et al., 2018; Liu et al., 2021; Lee
et al., 2024). The underlying molecular mechanisms of these

disorders are primarily associated with alterations in vesicular
trafficking and glycosylation. In the context of cancer, alterations
in GC morphology lead to decreased levels of key GC components
such as giantin, GRASP65 and GM130. As a consequence, multiple
cellular processes are impacted, including protein glycosylation,
vesicular trafficking, extracellular matrix remodeling and
acidification, autophagy and redox homeostasis. This ultimately
facilitates cancer cell proliferation and malignant progression (Lee
et al., 2024). Furthermore, several GC-localised proteins (such as
GM130, Arf1, p115, PAQR3, GOLM1 and Golgin97) have been
demonstrated to regulate signalling cascades involved in
carcinogenesis including the MAPK, Wnt, TGFβ, NF-κB and
PI3K/AKT pathways (Spano and Colanzi, 2022). In addition to the
aforementioned molecular mechanisms, evidence suggests that
several GC-resident proteins are involved in cell cycle progression
through regulating the proper centrosome maturation, spindle
assembly and chromosome segregation. Consequently, structural
and functional abnormalities affecting GC-resident proteins may
result in aberrant cell division, ultimately leading to aneuploidy
and cancer. This review elucidates the roles played by the GC-
localised proteins in promoting the maturation of the CE/MTOC
as well as the formation and positioning of the spindle during mitosis
and meiosis and highlights the molecular mechanisms underlying
these actions. It is noteworthy that some of the proteins examined in
this review have been identified as players in the process of tumour
formation, functioning as either tumour suppressors or oncogenes. It
is possible that some of these proteins may appear to have a
controversial role; however, this is likely due to the influence of
the cell and tumour context on their behaviour, which is dependent on
the interaction with specific interactors. The relevance of GC-resident
proteins in the pathogenesis of cancer identifies them as potential
biomarkers for both diagnosis and prognosis, as well as potential
therapeutic targets for treatment. Among the GC-resident proteins
discussed in this review, WHAMM is a prostate cancer marker with
unfavourable prognostic implications, whereas it is a favourable
cervical cancer marker (https://www.proteinatlas.org/
ENSG00000156232-WHAMM/pathology). The overexpression of
Arf1 has been identified as a predictor of poor clinical outcome in
patients affected by triple negative breast cancer (Schlienger et al.,
2016). FMNL1 has been identified as an independent predictor of
poor prognosis and a promising therapeutic target in glioblastoma
multiforme, clear cell renal cell carcinoma and gastric cancer (Higa
et al., 2019; Nie et al., 2020; Ma et al., 2021). Similarly, increased
ACBD3 expression serves as a prognostic biomarker of poor survival
in breast (Huang et al., 2018) and gastric (Zheng et al., 2021) cancers.
Moreover, given that ACBD3 targeting in cellular and mouse models
of breast cancer impairs tumourigenesis, it may represent a suitable
therapeutic target for the breast cancer treatment (Huang et al., 2018).
Experiments performed on lung cancer cellular and mouse models
have demonstrated the therapeutic efficacy of GM130 targeting in
lung cancer treatment (Chang et al., 2012). Moreover, the multiple
functions played by tankyrase-1 suggest that this enzyme represents a
promising molecular target for cancer therapy (Lakshmi et al., 2017;
Thorvaldsen, 2017). It is noteworthy that, in addition to the
aforementioned proteins, additional GC proteins have been
identified as potential cancer biomarkers. For instance, TMEM165
(transmembrane protein 165) and serum GP73 (Golgi glycoprotein
73) have been identified as potential biomarkers for hepatocellular
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carcinoma diagnosis (Liu et al., 2011; Morota et al., 2011; Lee et al.,
2018). On the same line of evidence, elevated nuclear expression of
GS28 is associated with unfavourable outcomes for patients diagnosed
with cervical and colorectal cancers (Cho et al., 2016; Lee et al., 2017).

Over time, the research has led to the development of a wide
variety of drugs that target the GC through multiple mechanisms,
including the targeting of glycosylation, Golgi trafficking, proteins or
oncogenes involved in cancer development and progression as well
as the targeting of the STING (stimulator of interferon genes)
pathway, an innate immune response highly dependent on
vesicular trafficking (Zappa et al., 2018; Liu et al., 2021; Martins
et al., 2023; Vlad et al., 2023; Lee et al., 2024). Nevertheless, despite
the demonstration of anti-cancer activity of several molecules on
cellular and animal models of diverse cancer types, no
pharmacological agent targeting specifically the GC has been
approved for clinical use in cancer treatment (Zappa et al., 2018;
Liu et al., 2021; Martins et al., 2023; Vlad et al., 2023; Lee et al., 2024).
This evidence underscores the necessity for further investigation
into the molecular mechanisms through which GC proteins exert
their activity. The findings could lead to the identification of novel,
more sensitive and specific biomarkers for diagnosis and/or
prognosis, as well as molecular targets for cancer therapy. In
addition, given that candidate therapeutic targets have already
been identified, future research should aim to design and develop
small molecules for pharmacological intervention with high
targeting specificity and limited side effects, with a view to
exploring novel therapeutic avenues.
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