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Background: Vessel segmentation in fundus photography has become a
cornerstone technique for disease analysis. Within this field, Ultra-WideField
(UWF) fundus images offer distinct advantages, including an expansive imaging
range, detailed lesion data, and minimal adverse effects. However, the high
resolution and low contrast inherent to UWF fundus images present
significant challenges for accurate segmentation using deep learning
methods, thereby complicating disease analysis in this context.

Methods: To address these issues, this study introduces M3B-Net, a novel multi-
modal, multi-branch framework that leverages fundus fluorescence angiography
(FFA) images to improve retinal vessel segmentation in UWF fundus images.
Specifically, M3B-Net tackles the low segmentation accuracy caused by the
inherently low contrast of UWF fundus images. Additionally, we propose an
enhanced UWF-based segmentation network in M3B-Net, specifically
designed to improve the segmentation of fine retinal vessels. The
segmentation network includes the Selective Fusion Module (SFM), which
enhances feature extraction within the segmentation network by integrating
features generated during the FFA imaging process. To further address the
challenges of high-resolution UWF fundus images, we introduce a Local
Perception Fusion Module (LPFM) to mitigate context loss during the
segmentation cut-patch process. Complementing this, the Attention-Guided
Upsampling Module (AUM) enhances segmentation performance through
convolution operations guided by attention mechanisms.

Results: Extensive experimental evaluations demonstrate that our approach
significantly outperforms existing state-of-the-art methods for UWF fundus
image segmentation.
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1 Introduction

Clinical studies have demonstrated that alterations in the
morphology of fundus blood vessels are closely associated with
the progression of ocular diseases. By analyzing these vascular
changes, physicians can diagnose and evaluate the severity and
nature of various eye conditions. Ultra-WideField (UWF)
imaging, an advanced form of fundus imaging, has emerged as a
critical tool for disease analysis. With its expansive 200-degree field
of view, UWF imaging provides a significantly broader depiction of
vascular and disease-related features compared to conventional
color fundus imaging, which is typically limited to a 45-degree
range. Fundus fluorescein angiography (FFA) images are regarded
as the gold standard for clinical vascular detection due to their
superior contrast and precise diagnostic information. However, FFA
imaging is invasive and carries potential side effects, limiting its
broader applicability. In contrast, UWF imaging is a non-invasive
modality that offers high-resolution visualization of fundus
structures across a panoramic field of view exceeding 200°. This
technology enables detailed detection and analysis of peripheral
retinal vessels and focal areas of pathology, such as those seen in
diabetic retinopathy and venous obstruction. UWF fundus imaging
excels in capturing intricate views of peripheral retinal vessels and
lesions, providing rich pathological information that significantly
enhances clinical analysis (Nguyen et al., 2024; Liu et al., 2023; Chen
et al., 2023; Zhang et al., 2021). In computational fundus image
analysis, vascular segmentation stands out as a foundational and
extensively studied task. Accurate delineation of fundus vascular
structures is essential, serving as a prerequisite for effective disease
diagnosis and assessment (Yang et al., 2023).

Over the past decade, significant progress has been made in
fundus vessel segmentation, driven by advancements in filtering
(Zhang et al., 2016; Soares et al., 2006; Memari et al., 2017),
morphological (Fraz et al., 2013; Imani et al., 2015; Kumar and
Ravichandran, 2017), statistical (Orlando et al., 2016; Yin et al., 2012;
Oliveira et al., 2018), and deep learning algorithms (Wu et al., 2018;
Yan et al., 2018; Ryu et al., 2023). Among these, deep learning
techniques have demonstrated particularly remarkable potential in
medical image processing. The Key contributions include the
window-based and sliding window approaches for neural cell
membrane segmentation in microscopy images proposed by
Ciresan et al. (2012), and the integration of multi-scale 3D
Convolutional Neural Networks (CNNs) with Conditional
Random Fields (CRFs) for brain lesion segmentation presented
by Kamnitsas et al. (2017). The introduction of end-to-end Fully
Convolutional Networks (FCNs) (Long et al., 2015) marked a
transformative milestone in biomedical image segmentation.
Among these, U-Net, an iconic encoder-decoder architecture
introduced by Ronneberger et al. (2015), has gained widespread
recognition for its ability to effectively integrate multi-resolution
features. U-Net’s superior performance in medical image
segmentation has spurred the development of numerous refined
iterations and enhanced versions (Fu et al., 2016; Gibson et al.,
2018). To further improve segmentation performance, several multi-
stage models have been proposed. For instance (Yan et al., 2018),
developed a three-stage deep learning model for fundus blood vessel
segmentation. Additionally, weakly supervised and semi-supervised
approaches have been explored to address the challenge of sparsely

labeled medical image data (Perone and Cohen-Adad, 2018).
extended the Mean Teacher method for MRI segmentation, while
(Seeböck et al., 2019) proposed a Bayesian U-Net for abnormality
detection in OCT image segmentation. Despite these advancements,
challenges such as segmentation inaccuracies and limited
adaptability persist. Moreover, relatively few studies have focused
on Ultra-WideField imaging modalities, underscoring the need for
further exploration in this domain.

Compared to color fundus images, limited research has focused
on the extraction of integrated vascular structures in Ultra-
WideField (UWF) fundus images. There has been research
focused on the analysis and diagnosis of ophthalmic diseases
based on UWF images (Tang et al., 2024; Deng et al., 2024; Wan
et al., 2024) proposed a new segmentation algorithm for
peripapillary atrophy and optic disk from UWF Photographs
(Ding et al., 2020). introduced a deep-learning framework for
efficient vascular detection in UWF fundus photography (Ong
et al., 2023). employed U-Net (Ronneberger et al., 2015) to
segment UWF fundus images for recognizing lesions associated
with retinal vein occlusion. Recently (Wang et al., 2024), developed a
pioneering framework utilizing a patch-based active domain
adaptation approach to enhance vessel segmentation in UWF-
SLO images by selectively identifying valuable image patches.
Additionally, they constructed and annotated the first multi-
center UWF-SLO vessel segmentation dataset, incorporating data
from multiple institutions to advance research in this area. Similarly
(Wu et al., 2024), released the first publicly available UWF retinal
hemorrhage segmentation dataset and proposed a subtraction
network specifically for UWF retinal hemorrhage segmentation
(Ju et al., 2021). explored a modified Cycle Generative
Adversarial Network (CycleGAN) (Zhu et al., 2017) to bridge the
domain gap between standard and UWF fundus images, facilitating
the training of UWF fundus diagnosis models. Despite these
advancements, feature extraction for UWF fundus images
remains underdeveloped, and the accuracy of blood vessel
segmentation in UWF fundus images requires further improvement.

The study of blood vessel segmentation in UWF fundus images
presents several complex challenges. Firstly, one of the primary
challenges is the complex backgrounds and uneven illumination
characteristic of UWF fundus images, which result in low contrast
between blood vessels and surrounding tissue, making feature
extraction more difficult. In contrast, Fundus Fluorescence
Angiography (FFA) images offer substantially higher contrast for
blood vessels, enabling more precise extraction of vascular features.
This distinction highlights the potential of using FFA images as
high-quality references to improve the accuracy of vascular feature
extraction in UWF fundus images. In this context, style transfer—an
unsupervised image generation technique—has emerged as a
powerful tool for image style conversion and enhancement.
Owing to its flexibility and effectiveness, style transfer algorithms
are increasingly employed across a range of multimodal medical
imaging tasks.

For example (Tavakkoli et al., 2020), introduced a deep learning
conditional GAN capable of generating FFA images from fundus
photographs. Their proposed GAN produced anatomically accurate
angiograms with fidelity comparable to FFA images, significantly
outperforming two state-of-the-art generative algorithms. Similarly
(Ju et al., 2021), employed an enhanced CycleGAN (Zhu et al., 2017)
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to facilitate modal shifts between standard fundus images and UWF
fundus images, effectively generating additional UWF fundus
images for training purposes. This approach addressed challenges
related to data scarcity and annotation. Inspired by these
advancements in leveraging style transfer for downstream tasks,
our research explores cross-modality-assisted feature extraction in
UWF fundus images using style transfer models. Specifically, this
thesis proposes a style transfer model to optimize the extraction of
critical blood vessel features during the conversion from UWF to
FFA images. This methodology aims to enhance the accuracy of
retinal vessel segmentation in UWF fundus images.

Feature selection involves eliminating redundant or irrelevant
features from a set of extracted features to improve performance.
Recent advancements in image super-resolution have showcased the
enhancement of low-resolution (LR) images by aligning LR and
reference images in the feature space and fusing them using deep
architectures. For instance (Wan et al., 2022), proposed a novel
ternary translation network that transforms aged and pristine
photos into a shared latent space. Pairwise learning is employed
to translate between these latent spaces, generating quality-
enhanced photos. Furthermore, several studies have utilized
semantic consistency across diverse images as a form of
bootstrapping during training, achieved by computing feature
similarity (Wu et al., 2023). Inspired by these advancements, we
explore search matching within the feature space for feature
selection in a multi-stream framework. By identifying key
features in UWF fundus images within the segmentation
network, our approach achieves more precise segmentation of
low-contrast retinal vessels.

Secondly, in addition to the challenge of low contrast, the high-
resolution nature of UWF imaging poses a significant limitation to
segmentation accuracy. Computational constraints have led many
recent studies to adopt a patch-based approach for segmenting
images (Wang et al., 2024). However, this method often
disregards the interaction between local patches and the global
context, resulting in segmentation inaccuracies, particularly in
delineating edge details. To address this limitation, recent
research has advocated for combining global and local features
through multi-stream networks to enhance contextual awareness.
These approaches have successfully mitigated the loss of contextual
information inherent in patch-based segmentation methods.
Building on these advancements, we propose incorporating a
local-aware context module into the retinal vessel segmentation
network for UWF images. This module aims to overcome the issue
of blood vessel fragmentation by effectively integrating global and
local information, thereby improving segmentation accuracy for
high-resolution UWF fundus images.

Our contributions are summarized as follows:

• We propose a multi-modal, multi-branch framework, named
M3B-Net, which is based on a style transfer strategy. This
framework leverages the conversion of UWF fundus images to
FFA images to enhance segmentation tasks for UWF fundus
images. M3B-Net comprises two primary components: a style
transfer network and a segmentation network.

• we incorporate a Selective Fusion Module (SFM) into the
segmentation network to address the challenges of low
contrast in UWF image segmentation. The SFM performs

feature space matching to extract key features in the latent
space, mitigating issues such as blood vessel fragmentation.

• We introduce a multi-scale local perception fusion module
(LPFM) into the segmentation network according to the high-
resolution nature of UWF fundus images. This module
enhances the network’s ability to discern contextual
information effectively.

• We propose a multi-level attention upsampling module
(AUM) to improve the segmentation of fine blood vessels.
This module aims to mitigate feature loss during the
upsampling process, enabling more precise segmentation of
delicate vascular sr = tryctures in UWF fundus images.

2 Methods

2.1 Dataset

In this work, we validate the efficacy of our method using two
datasets: a proprietary dataset and the publicly available PRIME-
FP20 dataset (Ding et al., 2020).

• The private dataset used in this study was collected at Ningbo
Yinzhou People’s Hospital. The fundus UWF image dataset
was captured using an Ultra-WideField Laser Scanning
Ophthalmoscope of Optos 200Tx with a resolution of
3900 × 3072. The paired FFA images were obtained by a
Heidelberg Spectralis HRA Instrument of the same unit,
with a resolution of 768 × 868. Based on this data, we
constructed a UWF-FFA dataset (UWF-GAN) and a
dataset for segmentation (UWF-SEG). The UWF-GAN
dataset consists of 120 aligned UWF image patches and
FFA image patches, which are intercepted and aligned from
the paired whole UWF fundus images and FFA images. The
UWF-SEG dataset comprises 65 UWF fundus images, each
annotated with pixel-level vessel labels for evaluating
segmentation performance. The vessel labels of the UWF
fundus images were annotated by an experienced
ophthalmologist using the Pair annotation tool. All images
were collected with explicit patient consent, and we rigorously
adhered to data security regulations by meticulously
anonymizing all personal information to ensure patient
privacy adequately. Figure 1 illustrates examples of the
original UWF fundus images, the preprocessed UWF
images, and the corresponding paired FFA image. We

FIGURE 1
(A) Original UWF image. (B) Preprocessed UWF image. (C) FFA
image paired with the UWF image.

Frontiers in Cell and Developmental Biology frontiersin.org03

Xie et al. 10.3389/fcell.2024.1532228

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1532228


utilize histogram equalization to preprocess UWF fundus
images, effectively highlighting the vascular structures. Both
our method and the comparison methods use the
preprocessed images as input.

• The PRIME-FP20 dataset was designed to support the
development and evaluation of retinal vessel segmentation
algorithms for UWF fundus images. It contains 15 high-
resolution UWF fundus images acquired using the Optos
200Tx camera (Optos plc, Dunfermline, United Kingdom).
Each image is paired with a labeled binarized vascular map
and a binarized mask that delineates the effective data area
within the image. Additionally, a corresponding FFA image
was simultaneously captured for each UWF fundus image. All
images in the dataset feature a resolution of
4000 × 4000 pixels.

2.2 Framework overview

The proposed framework is illustrated in Figure 2, comprising
two main components: a segmentation network for UWF fundus
images and a style transfer network that generates FFA images from
UWF fundus images. The segmentation network includes an
encoder with a Local Perception Fusion Module (LPFM), a
Selective Fusion Module (SFM), a decoder equipped with a
Multi-level Attention Upsampling Module (AUM), and an
auxiliary tiny encoder-decoder structure. Meanwhile, the style
transfer network utilizes a CycleGAN-based architecture (Zhu
et al., 2017).

Our method consists of four stages. Stage 1: Use small patches to
pre-train a transfer network to obtain FFA features. Stage 2: Use
middle patches to pre-train an encoder, aiming to reduce
computational overhead during segmentation network training.
Stage 3: Similarly, large patches are used to pre-train a large-scale
encoder. Stage 4: Freeze the network parameters from the first three
stages and begin training the entire segmentation network. In the

fourth stage, UWF fundus images X from the dataset are
simultaneously fed into both the segmentation network and the
style transfer network initially. In the segmentation network, the
LPFM processes the UWF images, extracting a feature map Z1. This
feature map is passed through the decoder with the multi-level AUM
and subsequently processed by a compact U-shaped network to
produce the final blood vessel segmentation results. Concurrently, in
the CycleGAN-based style transfer network, the UWF images
undergo encoding and decoding, resulting in another feature
map Z2. During the training phase, Z1 and Z2 are subjected to a
search and matching process via the SFM, which aligns the feature
maps from both networks. This alignment establishes a
correspondence between the UWF and FFA images. Supervision
for both networks is provided through a loss function based on
paired UWF and FFA image biplets. The SFM filters the most
relevant Z1, which is subsequently fed into the downstream
segmentation framework. The following sections provide detailed
descriptions of the vessel segmentation network, the Selective Fusion
Module, and the Multi-level Attention Upsampling Module.

2.3 Vessel segmentation network

The large size of UWF fundus images presents a challenge in
balancing segmentation accuracy and computational efficiency for
blood vessel segmentation networks. Traditional methods, such as
down-sampling, patch cropping, and cascade modeling, struggle to
achieve this balance effectively. In this paper, we propose an
innovative cropping strategy to address this issue. We utilize an
efficient approach by randomly extracting smaller patches from the
original UWF image (size 3900 × 3072), resulting in patches of size
256 × 256, referred to as ‘small patches’. From these small patches,
we generate medium and large patches with dimensions of
512 × 512 and 768 × 768, respectively. Centered on the small
patch, we expand it by a factor of two to obtain a middle patch
of 512 × 512, and similarly, expand it by a factor of three to obtain a

FIGURE 2
The proposed framework M3B-Net for blood vessel segmentation in UWF fundus images.
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large patch of 768 × 768. All three patch sizes are then resized to a
uniform size of 256 × 256 and simultaneously input into three
ResNet (He et al., 2016) feature extractors. The feature extractors
for the medium and large patches are pre-trained, and their
parameters are fixed during the segmentation process. This
results in three distinct sets of feature maps corresponding to
different scales.

After that, we apply the Local Perception Fusion Module
(LPFM) to enhance the contextual positional features of the
small patches across different scales. The process of the LPFM is
illustrated in Figure 3. First, we compute the inner products between
the small patch and both the medium and large patches, obtaining
attention maps through softmax activation. These attention maps
are then used to generate new feature maps by performing inner
product operations with the small patches. The resulting feature
maps are regularized, and their weights are reassigned before being
fused to form the final feature vector. Finally, these fused results are
passed through the Selective Fusion Module (SFM), followed by the
decoder and a small U-Net, to generate the final vessel binary mask.

In the subsequent sections, we introduce the specifics of the
selective fusion module and the multi-level attention upsampling
module, which constitute components of the proposed
segmentation network.

2.4 Selective fusion module

The details of the module are displayed in Figure 2. As a crucial
component for linking the two feature maps generated by the
segmentation network and style transfer network, the SFM is
based on knowledge related to feature engineering. Specifically,
we propose to select FFA features to replace the broken blood
vessel features ensuring that redundant information does not
negatively impact segmentation performance. Initially, the
network calculates the similarity between the feature map Z1

output from the encoder of the segmentation network and the

feature map Z2 output from the encoder of the style transfer
network. The similarity is computed using the Euclidean
distance, as shown in Equation 1 below:

d �
�����������∑n
i�1

xi − yi( )2√
(1)

Where xi and yi denote the pixel values of the two feature maps,
respectively, and n denotes the number of pixels of the featuremaps. It is
worth noticing that the images in this study are rich in information, and
based on the limitation of computational resources and time cost, this
study carries out partial sampling computation on the feature maps for
local similarity comparison. We set a threshold and range of 0.5 to
confirm the strength of similarity. Eventually, SFM will fuse the feature
map Z2 with high similarity to the feature map Z1 to generate the
fusion featureM. If the similarity between the two featuremaps is low, it
indicates thatZ2 does not provide more valuable information for vessel
segmentation, and only Z1 is passed to the subsequent network layers.

Following the selection and fusion operations, multi-modal
information is introduced in this study, which provides higher
recognisability for retinal blood vessel segmentation. Additionally,
similarity calculation and screening also avoid the interference of
irrelevant features on the network when generating FFA images.

FIGURE 3
The details of the local perception fusion module framework.

FIGURE 4
The details of the multi-level attention upsampling module.
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2.5 Multi-level attention upsampling module

As shown in Figure 4, this module is designed to address the
issue of vascular information loss during upsampling. The multi-
level AUM primarily comprises two compact double convolutional
blocks, denoted as E1 and E2, which utilize an attention mechanism
to capture feature representations at different levels. First, the feature
map M generated by the SFM is input into E1, the detailed
architecture of which is depicted in Figure 4. E1 comprises two
convolutional paths of different scales: path a serves as the primary
path and encompasses two 7 × 7 convolutional layers, while path b
consists of a single 7 × 7 convolutional layer. After the feature map
M passes through path a and path b, two feature mapsZa andZb are
obtained. We calculate the attention weightW1 ofZa with respect to
Zb by employing Za as the query(Q), key(K) and Zb as value (V).
Subsequently, we perform element-wise multiplication between Zb

and the weight W1, and fuse the product with Za to acquire the
upsampling result, integrating feature information across diverse
scales. This result is then forwarded to E2, the structure of which is
illustrated in Figure 4. E2 closely resembles the architecture of E1,
with the key difference being the scale of convolution operations.
Similar to E1, E2 comprises two convolutional paths c and d, with
path c serving as the primary path. After passing through both paths,
we obtain two distinct feature maps, denoted as Zc and Zd.
Subsequently, these feature maps undergo attention computation
and fusion steps to yield the decoded result. The process is
represented by Equations 2–5:

A1 � Att C2 C1 M( )( ), C2 C1 M( )( ), C3 M( )( ) (2)
Output* � C2 C1 M( )( ) + A1 (3)

A2 � Att C5 Output*( ), C5 Output*( ), C4 C1 M( )( )( ) (4)
Output � C5 Output*( ) + A2 (5)

Where A1, Output*, and A2 are the intermediate values
computed by the module for the feature map. A1 and A2

represent attention weight, while Output* represents the output
of E1. Output refers to the final output of the module, and Attn
represents the attention mechanism. C1, C2, C3, C4, C5 correspond
five different convolutional layers.

By employing multi-scale convolutions and integrating an
attention mechanism, this study enhances retinal blood vessel
segmentation with improved structural comprehensiveness. The
module excels at fusing feature information across different
scales, thereby reducing information loss and omissions during
the upsampling process. As a result, it more effectively addresses
the challenge of incomplete segmentation of fine retinal blood
vessels in UWF fundus images.

3 Results

3.1 Implementation details

In the experiment, UWF fundus images are preprocessed using
the contrast adaptive histogram equalization method to enhance the
contrast of the images. The UWF-SEG dataset contains a total of
65 images, with 20 images allocated to the test set and the remaining
45 images utilized for training purposes. The PRIME-FP20 dataset

consists of 15 images, with 10 images used for training and the
remaining 5 images for testing. To ensure consistency, all images are
resized to dimensions of 1024 × 1024 pixels, with small patches
resized to 256 × 256 pixels. Data augmentation techniques,
including random flipping and rotation, are applied during the
experiments. The training process spans 200 epochs, enabling the
model to converge and effectively capture underlying patterns
within the data.

In the experimentation of the proposed method, the model was
implemented using PyTorch 3.8 and trained on a workstation
equipped with four NVIDIA GeForce RTX 3090 GPUs. A batch
size of 5 was used for the UWF-SEG dataset, and 2 for the PRIME-
FP20 dataset throughout the training process. The initial learning
rate for the vascular segmentation network was set to 0.0004, with a
weight decay rate of 0.0005. The Adam optimizer was employed for
gradient updates.

3.2 Evaluation metrics

To evaluate the performance of the proposed retinal vessel
segmentation method, four widely adopted metrics are used in
this work, namely,: the Dice Similarity Coefficient (Dice),
Sensitivity (Sen), and Balanced Accuracy (BACC). In the
evaluation of the method, the sigmoid function was used as the
activation function for the final output, and the confusion matrix
was calculated (comprising True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN)) to evaluate the
accuracy of the method. The relevant formulas and their significance
are as follows:

• Dice Similarity Coefficient (Dice) = 2 × TP/(2 × TP +
FP + FN).

• Sensitivity (SEN) = TP/(TP + FN).
• True Positive Rate (TPR) = TP/(TP + FN).
• True egative Rate (TNR) = TN/(FP + TN).
• Balanced Accuracy (BACC) = (TPR + TNR)/2.

Where True Positives (TP) represent the number of samples
correctly classified as positive, False Positives (FP) refer to samples
incorrectly classified as positive, True Negatives (TN) are the
samples correctly classified as negative, and False Negatives (FN)
are the samples incorrectly predicted as negative when they should
have been positive.

3.3 Comparison with state-of-the-
art methods

A comprehensive series of comparative experiments were
conducted in this section to demonstrate the effectiveness of the
proposed method. These experiments included both quantitative
and qualitative analyses, evaluating the performance on both public
and private test sets. Several state-of-the-art approaches in fundus
vessel segmentation were selected for comparison in this study,
including CE-Net (Gu et al., 2019), CS-Net (Mou et al., 2021),
TransUnet (Chen et al., 2021), SwinUnet (Cao et al., 2022), U-Net
(Ronneberger et al., 2015), ResUnet (Xiao et al., 2018) and
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ConvUNext (Han et al., 2022). All these methods have
demonstrated superior performance in fundus image analysis. To
ensure the fairness of the experiments, identical image preprocessing
and cropping techniques were applied across all methods, and the
datasets were divided into the same training test sets.

3.4 Performance of vessel segmentation on
the private dataset UWF-SEG

The metrics analysis shows that the proposed method
outperforms other methods in terms of the effectiveness of
retinal blood vessel segmentation in UWF fundus images.
Specifically, the M3B-Net method presented in this chapter
surpasses other methods across all evaluated metrics (Dice, Sen,
and BACC) as demonstrated in Table 1. For example, on the private
UWF-SEG dataset, our method achieves improvements of
approximately 5.19%, 3.35%, and 1.60% in Dice, Sensitivity, and
BACC, respectively, compared to the ConvUNext model (Han et al.,
2022). Additionally, our method provides more detailed vascular
information, facilitating a finer observation of the retinal vessels.
This improvement is primarily attributed to the proposed
framework’s focus on enhancing the vascular signal while
minimizing the influence of background noise during the
reconstruction process.

This significant performance improvement can be attributed to
the proposed method’s enhanced capability in segmenting fine
retinal blood vessels in UWF fundus images. Specifically, the
proposed method utilizes cross-modal image style transfer to
achieve effective feature enhancement. During the learning
process, the selective fusion module enables the segmentation
network to select two feature maps based on correlation
calculations, which significantly improves the recognition of fine
retinal vessels. This approach mitigates the risk of information loss
that can occur when directly applying enhancement techniques.
Furthermore, given the wide imaging range of UWF fundus images,
the study incorporates a local perceptual fusion module and a multi-
level attention upsampling module. These modules ensure that
global information is effectively integrated during the encoding

process while minimizing the loss of vascular details during the
decoding stage.

As shown in Figure 5, the original image from the private UWF-
SEG dataset, along with the segmentation results from our method
and other comparative approaches, are presented. From the figure, it
is evident that TransUnet (Chen et al., 2021), a network structure
based on the attention mechanism, is better at capturing both local
and global feature relationships than traditional convolutional
neural networks. However, the segmentation results exhibit
obvious under-segmentation, which indicates that it is more
seriously affected by the artifacts and lesion areas in the UWF
images during the segmentation process. Additionally, other
comparative methods show obvious vessel breaks and
unrecognized small vessel ends in the segmentation results. In
contrast, our method can more effectively identify the small
vessels in UWF fundus images, reducing under-segmentation
while also mitigating the over-segmentation issues, as highlighted
in the orange boxes in Figure 5.

3.5 Performance of vessel segmentation on
the PRIME-FP20

Similar to the experimental evaluation metrics for the private
dataset, this study also conducts both quantitative and qualitative
analyses of all methods on the public PRIME-FP20 dataset. As
shown in Table 1, a comparison of the experimental results from
our method and other segmentation approaches on the public dataset
demonstrates the superior performance of our method. Specifically, on
the PRIME-FP20 dataset, our method shows a 3.14% improvement in
the Dice score compared to CE-Net (Gu et al., 2019) and outperforms
the ConvUNext (Han et al., 2022) by 2.52% in SEN and 1.16% in
BACC. These results highlight the effectiveness of our method.
Furthermore, our method performs better on the public dataset than
on the private dataset, primarily due to the segmentation challenges
introduced by lesion regions in the private dataset.

Additionally, we present both the over-segmentation and under-
segmentation results of our proposed method and other
comparative methods in Figure 6. It is evident that our method

TABLE 1 The vessel segmentation results of different methods on UWF-SEG dataset and FRIME-FP20 dataset.

Methods UWF-SEG FRIME-FP20

BACC(%) ↑ Sen(%) ↑ Dice(%) ↑ BACC(%) ↑ Sen(%) ↑ Dice(%) ↑

U-Net (Ronneberger et al., 2015) 85.34 ± 1.22 71.88 ± 2.62 73.14 ± 0.82 78.90 ± 3.03 57.88 ± 6.08 70.92 ± 4.73

ResUnet (Diakogiannis et al., 2020) 86.54 ± 0.90 74.52 ± 1.71 75.67 ± 0.68 86.74 ± 1.21 73.72 ± 2.43 79.24 ± 1.93

CE-Net (Gu et al., 2019) 87.71 ± 1.66 77.55 ± 3.35 72.64 ± 0.55 88.07 ± 1.02 76.44 ± 2.06 79.88 ± 1.65

CS-Net (Mou et al., 2021) 79.69 ± 3.66 60.18 ± 7.54 68.50 ± 5.54 81.06 ± 2.87 62.24 ± 5.76 73.61 ± 4.49

TransUnet (Chen et al., 2021) 83.95 ± 1.64 68.82 ± 3.39 74.75 ± 0.76 88.12 ± 0.85 76.54 ± 1.72 79.70 ± 1.37

SwinUnet (Cao et al., 2022) 85.24 ± 1.47 71.80 ± 2.98 73.64 ± 0.94 81.65 ± 1.64 63.78 ± 3.39 68.74 ± 1.72

ConvUNext (Han et al., 2022) 88.67 ± 1.27 79.10 ± 2.55 73.35 ± 0.36 91.99 ± 1.31 84.65 ± 3.34 78.06 ± 1.44

Previously Proposed (Li et al., 2023) 89.30 ± 1.22 79.96 ± 2.57 78.13 ± 0.73 92.09 ± 0.59 84.93 ± 1.25 81.97 ± 0.82

Ours 90.27 ± 1.87 82.45 ± 3.80 78.54 ± 0.44 93.15 ± 0.73 87.17 ± 1.53 83.02 ± 0.70
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is more effective in recognizing fine vessels and vessels in low-
contrast regions. As shown in the orange boxes of Figure 6, although
all methods tend to under-segment fine blood vessels near vessel
terminals, our method demonstrates superior vessel recognition
compared to the others. Furthermore, methods such as SwinUnet
(Cao et al., 2022), TransUnet Chen et al. (2021), and CE-Net (Gu
et al., 2019) exhibit more pronounced over-segmentation, primarily
due to interference from artifacts and lesion areas. In contrast, our
method mitigates the impact of these artifacts and noise, thereby
reducing the over-segmentation problem.

4 Discussion

4.1 Ablation studies

To evaluate the performance of the proposed method for retinal
vessel segmentation and to further assess the effectiveness of each

individual component, this section establishes various baselines for
comparison. Extensive experiments are conducted on the publicly
available dataset PRIME-FP20, utilizing identical image
preprocessing and cropping methods across all baseline methods.
As shown in Table 2, LPFM, SFM, and AUM components represent
the local perception fusion module, the selective fusion module, and
the multi-level attention upsampling module, respectively. The
symbol √ denotes the inclusion of a component, while ×
indicates its exclusion. A comparative analysis of rows 3 to
6 demonstrates that the inclusion of each component
significantly improves the results, highlighting their effectiveness.
Specifically, incorporating the LPFM component alone improves
our method’s BACC, Sen, and Dice metrics by 1.11%, 2.21%, and
0.63%, respectively. Adding the SFM component alone outperforms
the baseline method by 2.45%, 4.98%, and 2.09%, respectively.
Including the AUM component alone surpasses the baseline
method by 1.04%, 2.09%, and 0.96%, respectively. The SFM
significantly enhances the segmentation performance of the

FIGURE 5
Vessel segmentation results of UWF fundus images by different methods on UWF-SEG dataset, where the white, green, and red represent true
positive, false negative, and false positive, respectively.

FIGURE 6
Vessel segmentation results of different methods on PRIME-FP20 dataset, where the white, green, and red represent true positive, false negative,
and false positive, respectively.
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method by introducing FFA features from the style transfer
network. The LPFM enhances the network’s multi-scale
perception capability, while the AUM notably improves the
results, particularly the sensitivity, indicating that it reduces
feature loss during the upsampling process. Additionally, as
depicted in rows 7 to 9 of Table 2, the combination of any two
out of the three components also enhances performance.
Specifically, adding the SFM yields a greater improvement than
combining LPFM and AUM, suggesting that FFA features play a
crucial role in enhancing retinal blood vessel segmentation in UWF
fundus images. Finally, our method achieves better performance by
integrating all these components.

To further demonstrate the effectiveness of our method and its
components, LPFM, SFM, and AUM. We also conducted the

GradCAM (Selvaraju et al., 2017) visualization of the output
from the final layer of the network decoder, as shown in
Figure 7. As observed in Figures 7B, C, and Figure 7D, the
orange boxes indicate stronger responses to small blood vessels
compared to Figure 7A, particularly in Figure 7C. This demonstrates
the effectiveness of the designed components and underscores the
advantages of incorporating the FFA modality for low-contrast
vessel segmentation. Ultimately, by combining all three
components, our method achieves superior vessel segmentation
performance.

5 Conclusion

We propose an FFA-assisted multi-branch segmentation
framework, named M3B-Net, for retinal blood vessel
segmentation in UWF fundus images. This framework addresses
the challenges of low segmentation accuracy and image boundary
artifacts, which are caused by low contrast and the wide imaging
range of UWF fundus images. To overcome these issues, M3B-Net
integrates a segmentation approach based on style transfer,
incorporating a selective fusion module and a multi-level
attention upsampling module within the network. Comparative
experiments are conducted on two datasets to highlight the
superiority of our method, while ablation studies on a public
dataset validate the effectiveness of each component. The
experimental results demonstrate that our method achieves
optimal performance in vessel segmentation of UWF fundus
images, successfully overcoming the difficulties associated with
segmenting fine blood vessels in these images.

UWF image segmentation enables the precise identification of
retinal structures and lesions, facilitating the early detection of

TABLE 2 The vessel segmentation results of different baseline methods on
PRIME-FP20 dataset.

Methods BACC(%)↑ Sen(%) ↑ Dice(%) ↑

LPFM SFM AUM

× × × 86.37 ± 1.46 73.15 ± 2.97 79.28 ± 1.08

√ × × 87.48 ± 1.26 75.36 ± 2.56 79.91 ± 1.90

× √ × 88.82 ± 1.38 78.13 ± 2.83 81.37 ± 0.64

× × √ 87.41 ± 1.01 75.24 ± 2.06 80.24 ± 1.05

√ × √ 91.49 ± 1.04 83.63 ± 2.14 82.34 ± 0.73

× √ √ 91.05 ± 0.82 82.67 ± 1.67 82.85 ± 0.55

√ √ × 92.60 ± 0.75 85.94 ± 1.53 82.73 ± 0.70

√ √ √ 93.15 ± 0.73 87.17 ± 1.53 83.02 ± 0.70

FIGURE 7
It is the GradCAM visualization of the output from the final layer of the network decoder. Specifically, (A) The result obtained without adding any
components. (B) The result LPFM. (C) The result of SFM. (D) The result with AUM. (E) The result of SFM + AUM. (F) The result of LPFM + SFM + AUM.
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diseases such as diabetic retinopathy, age-related macular
degeneration, and retinal vein occlusion. Early detection can lead
to timely interventions and better patient outcomes. Automated
segmentation reduces the reliance on manual annotations,
minimizing inter-observer variability and improving diagnostic
consistency. This helps ophthalmologists make more accurate
and reliable clinical decisions. Therefore, we believe that our
method better serves clinical applications by improving retinal
vessel segmentation accuracy in UWF fundus images through the
integration of the FFA image modality. However, our method may
not be very efficient in terms of computational resource
consumption. In the future, we will focus on addressing this issue.
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