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Osteoarthritis (OA) is a debilitating disease that predominantly impacts the
hip, hand, and knee joints. Its pathology is defined by the progressive
degradation of articular cartilage, formation of bone spurs, and synovial
inflammation, resulting in pain, joint function limitations, and substantial
societal and familial burdens. Current treatment strategies primarily target
pain alleviation, yet improved interventions addressing the underlying disease
pathology are scarce. Recently, exosomes have emerged as a subject of growing
interest in OA therapy. Numerous studies have investigated exosomes to offer
promising therapeutic approaches for OA through diverse in vivo and in vitro
models, elucidating the mechanisms by which exosomes from various cell
sources modulate the cartilage microenvironment and promote cartilage repair.
Preclinical investigations have demonstrated the regulatory effects of exosomes
originating from human cells, includingmesenchymal stem cells (MSC), synovial
fibroblasts, chondrocytes, macrophages, and exosomes derived from Chinese
herbal medicines, on the modulation of the cartilage microenvironment and
cartilage repair through diverse signaling pathways. Additionally, therapeutic
mechanisms encompass cartilage inflammation, degradation of the cartilage
matrix, proliferation and migration of chondrocytes, autophagy, apoptosis,
and mitigation of oxidative stress. An increasing number of exosome carrier
scaffolds are under development. Our review adopts a multidimensional
approach to enhance comprehension of the pivotal therapeutic functions
exerted by exosomes sourced from diverse cell types in OA. Ultimately, our
aim is to pinpoint therapeutic targets capable of regulating the cartilage
microenvironment and facilitating cartilage repair in OA.
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1 Introduction

Osteoarthritis (OA), recognized as the prevailing joint
pathology globally, is distinguished by the degradation of
articular cartilage, formation of bone redundancy, subchondral
bone sclerosis, and inflammation and fibrosis in the synovium,
predominantly affecting joints such as the hip, hand, and knee. This
degenerative process leads to functional constraints and impairment
in joint functionality. Current pharmacological interventions,
serving as palliative measures, fail to halt or reverse the relentless
advancement of the ailment, culminating in the necessity for joint
replacement (Fan et al., 2022). Hence, there exists a pressing
imperative to innovate novel therapeutic modalities that not
only arrest but also potentially reverse the trajectory of OA. In
OA, intricate biomechanical transformations transpire within
the cartilage and chondrocytes, involving cartilage deterioration,
mechanical stress, and modifications in the composition of the
cartilage matrix, mediated by vital agents comprising matrix-
degrading enzymes and inflammatory cytokines (Chen L. et al.,
2024). While chondrocytes reside in a quiescent state in the
pristine joint environment marked by diminishedmetabolic activity
and regulated exchange of matrix constituents, upon injury to
articular cartilage, chondrocytes mount a reparative response,
paradoxically exacerbating arthritic progression due to constrained
vascular supply to the cartilage matrix. Resultantly, an accelerated
process of cartilage matrix degradation outpaces the chondrocytic
synthesis of new matrix elements (Adam et al., 2024; Lee et al.,
2024). Consequently, emphasis on the pivotal role of chondrocytes
in the therapeutic paradigm of OA is warranted. Damage to
articular cartilage or an inflammatory response accelerates joint
degeneration, representing a significant pathological manifestation
of OA.The challenges associated with repairing cartilage damage are
attributed to the absence of blood supply, innervation, and lymphatic
tissue within the joint cavity, compounded by the negative pressure
environment resulting from ischemia and hypoxia (Chen J. et al.,
2024). Formerly extolled as a promising intervention approach,
cell-based therapy has manifested some efficacy through intra-
articular instillations of pertinent cells, such as mesenchymal stem
cells, showing promise in mitigating inflammatory cascades and
alleviating pain (Zelinka et al., 2022; Copp et al., 2023). Conversely,
empirical evidence underscores the potential unpredictability
of cellular therapeutics, evoking adverse sequelae encompassing
joint discomfort, edema, swelling, and even grave ramifications
like carcinogenesis (Shang et al., 2023). These limitations are
also evident in the loss of grafted cells, cellular senescence,
apoptosis, hypertrophy, inflammation, and necrosis (Steinert et al.,
2007; Alahdal et al., 2021). Exosomes (Exo) wield paramount
significance in intercellular signaling mechanisms, serving as
pivotal conduits for biological communication among cellular
entities to regulate a myriad of physiological processes. Operating
as vital signaling moieties, exosomes orchestrate the transfer of
proteins, lipids, and nucleic acids, constituting a significant role in
diverse physiopathological processes including tissue restitution
and immune surveillance (Xu X. et al., 2024). Capitalizing on
the multifaceted functions of exosomes, the manipulation of the
cartilage microenvironment and facilitation of cartilage repair hold
profound therapeutic promise in tackling OA (Yue et al., 2024).
Despite elucidative advancements in delineating the molecular

underpinnings by which exosomes foster cartilage regeneration,
a comprehensive exploration of the diverse cellular origins of
exosomes influencing cartilage repair in OA remains a nascent
domain. Therefore, a meticulous review delineating the regulatory
efficacy of exosomes derived from distinct cellular reservoirs in
orchestrating cartilage healing in OA is warranted to furnish a
seminal reference for subsequent investigational pursuits.

2 Overview of extracellular vesicles
and exosomes

Extracellular vesicles (EVs) are lipid-membrane vesicles secreted
by cells into the extracellular space. They exhibit diameters
ranging from 30 nm to 2,000 nm and encompass three subtypes:
microvesicles, exosomes, and apoptotic vesicles. EVs comprise
approximately 0.1% of the RNA content found in parental cells and
exhibit diversemechanisms through which they influence biological
processes. This involves proteins and biologically active lipid ligands
present on the vesicle surface mediating membrane fusion by
engaging cell surface receptors. Consequently, vesicles release their
contents—comprising transcription factors, oncogenes, non-coding
RNAs, mRNAs, and infectious particles—to recipient cells, thus
modulating their functions (Andaloussi et al., 2013; Lin et al., 2016).
Among extracellular vesicles, exosomes are extensively researched
and can be emitted by all cell types. These membranous structures
have been detected in various bodily fluids, including plasma,
urine, saliva, lymph, and synovial fluid (Doyle and Wang, 2019). A
schematic diagram of exosomes is shown in Figure 1.

Several techniques exist for the extraction, isolation,
and purification of exosomes, albeit lacking uniform
standards. Common methodologies encompass differential
ultracentrifugation, density gradient centrifugation, kit-based
procedures, magnetic bead-based immunoaffinity capture, and size-
exclusion chromatography (SEC). The rationale for these solutions
is grounded in the unique physical and molecular biological
properties of exosomes. While numerous methods for exosome
isolation exist, each presents specific limitations (Ma X. et al., 2024).
Ultracentrifugation leverages the size differential between exosomes
and other components in the cell culture supernatant for effective
separation. Although ultracentrifugation is regarded as the gold
standard for exosome isolation, it is time-consuming, requires
expensive centrifuge equipment, and is prone to contamination
by various impurities (e.g., other particles, viruses, lipoprotein
particles, and protein complexes). Additionally, it may cause
structural disruption of the exosomes, potentially affecting
downstream analyses (Yang et al., 2020). These disadvantages
further restrict the applicability of ultracentrifugation. In contrast to
ultracentrifugation, density gradient centrifugation operates on the
principle that different vesicle types exhibit varying densities and
sedimentation rates. The two primary methods include optiprep
densitymedium separation and sucrose densitymedium separation.
This method necessitates the use of a density gradient medium.
Under high centrifugal force, the particles within the samplemigrate
at varying rates and remain suspended in the solution without
the need for layering. This separation technique is particularly
suitable for the purification of large-volume samples. However, this
method is time-consuming, cumbersome, and susceptible to sample
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FIGURE 1
Exosome biorelease and uptake process. (A) Exosomes originate from diverse sources, with current research emphasizing those derived from human
tissues, plants (including herbs), and animal tissues. The cell types of exosomes exhibiting therapeutic potential for OA include BMSCs, ADSCs, SMSCs,
HucMSCs, Fibroblasts, Chondrocytes, Macrophages, Osteoclasts, HUVECs and herbs. (B) The biogenesis of exosomes occurs in four distinct stages: 1.
Endocytosis, during which the cell membrane invaginates to form early endosomes; 2. Packaging of contents, wherein early endosomes further
mature into late endosomes; 3. Fusion of late endosomes to form multivesicular bodies (MVBs); 4. MVBs subsequently fuse with the cell membrane to
release their contents into the extracellular compartment, thereby forming exosomes. Recipient cells internalize exosomes via endocytosis, direct
fusion, or ligand-receptor interactions. Through the release of materials encapsulated within exosomes (e.g., proteins, nucleic acids, lipids,
metabolites), exosomes exert influence on the metabolic processes of recipient cells, including cell proliferation, migration, apoptosis, and autophagy,
thereby further impacting the OA process. Schematic drawing reference from Chen J. et al. (2022). BMSCs, bone marrow mesenchymal stem cells;
ADSCs, adipose mesenchymal stem cells; SMSCs, synovial mesenchymal stem cells; HucMSCs, human umbilical cord mesenchymal stem cells;
HUVECs, human umbilical vein endothelial cells.

damage (Zhu et al., 2019). To enhance the specificity and targeting
of exosome isolation, the magnetic bead-based immunoaffinity
capture technique can be employed (Jiawei et al., 2022). This
method employs immunological techniques to specifically recognize
and isolate exosomal membrane proteins, such as CD9, CD63,
and CD81, resulting in significantly higher purity compared to
exosomes isolated solely based on physical properties (Tauro et al.,
2012). However, the differential expression of exosomal membrane
proteins frequently results in insufficient exosome yield. Size
exclusion chromatography separates exosomes based on molecular
weight and size and is currentlymore widely utilized for the removal
of mixed proteins and lipids from exosome samples (Gámez-
Valero et al., 2016). This method is advantageous for preserving the
biological activity of exosomes; however, it necessitates expensive
equipment, is time-consuming, and is best suited for processing
small sample volumes (Gheinani et al., 2018). Nevertheless,
the application of size exclusion chromatography for exosome

extraction has garnered increasing attention in recent years
(Yang et al., 2020). Notably, differential ultracentrifugation, the
pioneering technique for exosome isolation, persists as the preferred
method in current exosome research (Doyle and Wang, 2019;
Fan et al., 2024; Yue et al., 2024).

3 Association of exosomes with OA

Exosomes exert their distinct functions via intercellular
signaling, influencing key physiological processes like development,
cell proliferation, differentiation, and metabolism. Increasing
research indicates the vast potential of exosomes in tissue
regeneration, disease therapy across various conditions, and
in conferring protective effects to the body (Tang et al., 2014;
Chen C. Y. et al., 2022; Wei et al., 2023). Exosomes hold significance
in orthopedic degenerative ailments such as OA, osteoporosis,
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and disc degeneration. Studies have highlighted 46 distinctively
expressed miRNAs linked to processes like inflammation,
autophagy, chondrocyte viability, differentiation, homeostasis,
metabolism, and extracellular matrix degradation in individuals
with OA (Cong et al., 2017). Due to their enhanced targeting
capacity and simple storage and management feasibility (Li S. et al.,
2024), exploring miRNAs further holds promise in elucidating
OA pathogenesis and potentially altering the disease
trajectory.

OA is therapeutically characterized by a variety of disease
processes and pathologies, which complicates the development of
universally effective treatments (Hart, 2022). Treatment strategies do
not focus solely on a single joint’s pathology; instead, they integrate
behavioral, psychosocial, educational, and physical interventions
(Kolasinski et al., 2020). Based on the treatment modality,
approaches may be categorized into two primary types: non-
pharmacological and pharmacological (Kolasinski et al., 2020;
Katz et al., 2021). Non-pharmacological interventions, including
walking, swimming, tai chi, yoga, cognitive behavioral therapy
(CBT), and acupuncture, have been shown to enhance joint
function in patients with OA (Bannuru et al., 2019). Conversely,
pharmacological approaches primarily consist of non-steroidal
anti-inflammatory drugs (NSAIDs) (Conaghan et al., 2008), the
development of disease-modifying OA drugs, and regenerative
medicine (Cho et al., 2021). Stem cells have been rigorously
investigated in tissue regeneration research due to their capacity for
redifferentiation and the advantageous components found in their
secreted factors. Given the instability of stem cells in the human
body, their secreted exosomes are regarded as a safer alternative for
the next-generation of cell-based therapies (Alcaraz et al., 2019).

4 Exosomes originating from various
cellular sources

4.1 Mesenchymal stem cell-derived
exosomes

Mesenchymal stem cells (MSCs), possessing self-renewal and
differentiation capabilities, demonstrate significant potential in
OA therapy. Serving as pivotal cells in regenerative approaches,
reports exist on the transplantation of MSCs sourced from
diverse origins such as bone marrow, adipose tissue, synovium,
blood, and umbilical cord (Wen et al., 2012; Chen et al., 2016;
Chen et al., 2014; Fu et al., 2016; Otsuki et al., 2018). In contrast to
conventional cell transplantation techniques, extracellular vesicles
(EVs) present a safer and innovative avenue for the prevention
and treatment of OA. Progressive research findings increasingly
indicate that the therapeutic benefits of stem cell transplantation
may be facilitated through the actions of their extracellular
vesicles (Nguyen et al., 2021; Rizzo et al., 2023). Exosomes
from stem cells, such as MSCs, carry essential growth factors
and other bioactive molecules that promote tissue repair and
regeneration, facilitating healing processes and enhancing cell
communication (José, 2024). Hence, there is a critical need to
investigate the mechanism by which exosomes sourced from MSCs
modulate the cartilage microenvironment and facilitate cartilage
restoration.

4.1.1 Bone marrow mesenchymal stem cells
-derived exosomes

The Wnt/β-catenin pathway is a well-established signaling
cascade linked to bone formation, tissue regeneration, and joint
equilibrium, playing a crucial role in the development of OA
(Huang et al., 2020; Feng et al., 2024). Activation of theWnt signaling
pathway induces the stabilization and nuclear translocation
of β-catenin, thereby further activating target gene expression
related to cartilage degradation, inflammation, and bone regrowth
(Usami et al., 2016; Aziz et al., 2024). The Wnt signaling pathway
is categorized into two modes based on β-catenin dependence:
the β-catenin-dependent mode, referred to as the classical Wnt/β-
catenin signaling pathway, and its counterpart, known as the
non-classical pathway. The classical Wnt pathway is initiated by
the binding of Wnt to the Wnt receptor (i.e., Frizzled) and the
Wnt co-receptor (i.e., lipoprotein receptor-related protein-LRP-
5/6), which subsequently induces conformational changes in
the downstream molecular complex. The downstream molecular
complex comprises dishevelled, glycogen synthase kinase 3β
(GSK3β), axin, adenomatosis polyposis coli (APC), β-catenin,
and other associated proteins. Alterations in the interactions
and phosphorylation order of constituent proteins disrupt the
phosphorylation of the amino-terminal structural domain of β-
catenin, leading to its stabilization and nuclear translocation. This
process, in turn, stimulates the transcription of target genes in
conjunction with T-cell factors and lymphoid enhancer-binding
factors (TCF/LEF), among others. Wnt-associated proteins exhibit
differential expression in various regions of cartilage (Witte et al.,
2009). Notably, Wnt4, Wnt5a, Wnt5b, Wnt11, and Wnt14 are
significantly differentially expressed in cartilage, perichondrium,
and surrounding tissues (Hartmann and Tabin, 2000). Wnt4
and Wnt14 are predominantly localized in articular cartilage
(Hartmann and Tabin, 2001); Wnt5a is highly expressed in cartilage
spanning the epiphysis to the metaphysis (Church et al., 2002);
Wnt5b is primarily expressed in the prehypertrophic region;
and Wnt11 is predominantly found in chondrocytes during
embryonic limb development. Notably, the activation of the Wnt/β-
catenin pathway must be tightly regulated to facilitate normal
cartilage development, as either excessive activation or insufficient
activation of this signaling pathway can lead to skeletal diseases
(Yuasa et al., 2009; Dao et al., 2012).

Exosomes originating fromBMSCs have been shown to enhance
cartilage regeneration through the stimulation of chondrocyte
proliferation and migration while preventing apoptosis, mainly
mediated by the Wnt/β-catenin pathway. Subsequent investigations
have identified that the distinctive molecular underpinnings of
BMSC-derived exosomes involve the enrichment of miR-127-
3p, miR-92a-3p, miR-140-3p, along with proteins associated with
cellular adhesion and tissue restoration capabilities (Mao et al., 2018;
Dong et al., 2021; Hu Y. et al., 2023; Wang L. et al., 2024).

The PI3K/AKT/mTOR pathway stands as a critical cellular
cascade governing cell proliferation, motility, growth, and
metabolism, essential for maintaining the homeostasis of joint
tissues and implicated in the pathogenesis of OA (Sun et al., 2020).
Glucose, insulin, growth factors, and cytokines all activate the
PI3K/AKT/mTOR signaling pathway (Engelman et al., 2006). These
molecules function by activating receptor tyrosine kinases (RTKs)
and G protein-coupled receptors (GPCRs), thereby stimulating
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PI3K to produce phospholipids and activate downstream proteins,
including AKT and the mammalian target of rapamycin complex 1
(mTORC1) (De Santis et al., 2019). Protein kinase B (AKT) serves
as a crucial signaling molecule within the PI3K pathway. Once
activated, AKT translocates to various cellular compartments to
activate several downstream substrates, including protein kinases,
E3 ubiquitin ligases, small G-protein modulators, metabolic
enzymes, transcription factors, and cell cycle regulators (Manning
and Toker, 2017). A key downstream branch of AKT is mTORC1.
Phosphorylation of AKT promotes the phosphorylation of
mechanistic target of rapamycin kinase (mTOR) at Ser2448 and
directly activates mTORC1. Altered mTORC1 activity subsequently
affects its effectors, including S6 kinase 1 (S6K1), eukaryotic
translation initiation factor 4E binding protein 1 (4EBP1), and
unc-51-like kinase 1 (ULK1). Among these, S6K1 and 4EBP1
promote the translation of mRNAs for hypoxia inducible factor
1 subunit alpha (HIF-1α), cyclin D1, and myelocytomatosis
oncogene (c-Myc), thereby participating in processes such as cell
cycle regulation and angiogenesis (Laplante and Sabatini, 2012).
Notably, mTORC1 serves as a major regulator of unc-51 like
autophagy activating kinase 1 (ULK1) and is associated with the
initiation of autophagy. Treatment with rapamycin, an inhibitor
of mTORC1, enhances ULK1 kinase activity; conversely, the
promotion of mTORC1 activity effectively inhibits ULK1 activity
(Park et al., 2016; Nnah et al., 2019). Furthermore, ULK1 can form
a complex by binding to autophagy related 13 (ATG13) and fak
family kinase-interacting protein (FIP200), acting as a node that
translates autophagic signaling into the initiation of autophagic
biological processes (Ganley et al., 2009). These observations
suggest that the PI3K/AKT/mTOR signaling pathway is critical
for maintaining cellular homeostasis and is closely associated with
various biological processes, including the cell cycle, cell survival,
inflammation, metabolism, and apoptosis (Cravero et al., 2009;
Tang et al., 2018).

Research has revealed that exosomes derived from BMSCs
mediate KLF 3-AS 1, activating the PI3K/Akt/mTOR pathway. They
also competitively adsorb miR-206 to enhance G protein-coupled
receptor kinase interacting ArfGAP 1 (GIT 1) expression, thereby
fostering chondrocyte proliferation and inhibiting apoptosis.
Consequently, KLF 3-AS 1 emerges as a promising candidate
for therapeutic interventions aimed at enhancing articular
cartilage repair (Liu et al., 2018a; Wen et al., 2022). Another
investigation demonstrated that exosomes derived from BMSCs
treated with decellularized extracellular matrix (dECM) enhanced
the expression of miR-3473b, mediating the phosphatase and
tensin homolog (PTEN)/protein kinase b. (AKT) pathway to
ameliorate cartilage damage in a similar manner (Liu et al., 2018b).
Additionally, BMSC-derived exosomes exhibit the ability to suppress
chondrocyte apoptosis by mediating miR-326 and targeting the
histone deacetylase 3 (HDAC3), signal transducer and activator of
transcription 1 (STAT1), and nuclear factor kappa b (NF-κB)/p65
signaling pathways (Xu and Xu, 2021).

Mechanical stress plays a crucial role in stimulating cell
proliferation and differentiation. Studies have demonstrated that
low-intensity pulsed ultrasound (LIPUS) promotes the inhibition of
inflammation, enhances chondrocyte proliferation, and stimulates
cartilage matrix synthesis through mechanisms closely associated
with the NF-κB pathway (Liao et al., 2021). Additionally, pulsed

electromagnetic fields (PEMF) at 75 Hz have shown comparable
efficacy in these processes (Xu et al., 2023). Furthermore, exosomes
derived from BMSCs overexpressing miRNA-210 have shown
potential in safeguarding chondrocytes from damage responses
in inflammatory conditions via this pathway (He et al., 2020).
Besidesmechanical factors, proteins influenced bymechanical stress
have been linked to cartilage restoration. Research has indicated
that the transfection of exosomes from bone marrow endothelial
cells (BMECs) with silenced Piezo1 lentivirus not only hampers
the inflammatory response but also enhances cartilage repair
processes (Li et al., 2021). These findings imply that Piezo1 may
hinder OA therapy and holds potential as a target for therapeutic
interventions.

Macrophages are the predominant immune cells in synovial
tissue involved in inflammation and tissue damage repair processes.
Studies have shown that both BMSCs-Exos and HucMSCs-
Exos possess the ability to modulate macrophage polarization
from the M1 to M2 type (Li X. et al., 2024; Tian et al.,
2024). Furthermore, BMSCs-Exos have been found to suppress
inflammation and enhance cartilage repair by orchestrating the
glutamic-oxaloacetic transaminase 1 (GOT1)/c-c motif chemokine
receptor 2 (CCR2) pathway, resulting in increased expression
of NF-E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1),
thereby inhibiting macrophage iron death (Peng et al., 2023).
Additionally, MSCs exposed to aging and inflammatory conditions
demonstrate reduced effectiveness in alleviating the pathological
progression of OA (Jérémy et al., 2024). This indicates that
while bone marrow MSCs have the potential to differentiate
into cartilage, the cellular microenvironment and physiological
conditions are crucial factors influencing the functionality of
the exosomes they secrete. Moreover, BMSCs-Exos promote
chondrocyte mitochondrial autophagy by regulating dynamin-
related protein 1 (Drp1) expression, leading to the inhibition
of chondrocyte apoptosis and cartilage matrix degradation
(Tang et al., 2021).

Using pharmacological agents known for promoting cartilage
regeneration and chondroprotection to treat BMSCs, followed by the
extraction of exosomes for studying their effects on chondrocytes,
represents valuable research strategies for elucidating drug
mechanisms and exploring the therapeutic potential of the exosomal
pathway (Wang and Xu, 2021). In vitro studies have demonstrated
the substantial anti-inflammatory, antioxidant, antidiabetic, and
immunomodulatory properties of fucoidan. Particularly noteworthy
is the enrichment of miR-146b-5p in fucoidan-treated BMSCs-
Exos, which effectively inhibited tumor necrosis factor receptor-
associated factor 6 (TRAF 6) activation, leading to the attenuation
of inflammatory reactions and preservation of extracellular matrix
integrity (Lou et al., 2023). Transforming growth factor-β1 (TGF-
β1) is synthesized and secreted by chondrocytes, where it remains
latent in the extracellular matrix (ECM) of various tissues before
activating and stimulating chondrocytes to produce essential ECM
elements. When BMSCs-Exos were exposed to TGF-β1, enhanced
cartilage repair efficacy was observed compared to BMSCs-Exos
treatment alone. Discrepancies in the levels of miR-373 and miR-
483 within their exosomal content were evident, alongside increased
expression of miR-135b following TGF-β1 treatment, which in turn
downregulated sp1 transcription factor (Sp1), ultimately facilitating
cartilage repair (Wang et al., 2018).
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In conclusion, the remarkable potential for OA treatment is
evident, owing to the exceptional delivery capacity and diverse
biological functionalities exhibited by exosomes released byBMSCs.

4.1.2 Adipose-derived mesenchymal stem cells
-derived exosomes

Adipose-derived stem cells (ADSCs), owing to their ease of
procurement and notable chondrogenic differentiation potential
in treating articular cartilage injuries, are categorized based on
their origin as either infrapatellar fat pad (IPFP) or subcutaneous
fat-derived MSCs. Notably, ADSCs exhibit superior chondrogenic
capabilities compared to other MSCs and display resilience to
inflammatory influences, thereby attracting significant research
focus and scrutiny (Liao et al., 2022).

Kartogenin (KGN) is recognized as a potent stimulator
of mesenchymal stem cells for chondrocyte differentiation.
Studies have demonstrated that KGN effectively promotes
chondrogenic differentiation in synovial MSCs (Xu et al., 2021).
Furthermore, in comparative analyses with exosomes derived
from BMSCs, exosomes obtained from MSCs pre-treated with
KGN exhibited enhanced chondrogenic matrix formation and
reduced levels of matrix degradation in both in vitro and in
vivo investigations (Liu C. et al., 2020). These findings suggest
that utilizing a chondrocyte inducer like KGN may enhance the
bioefficacy of exosome preparation.

Cellular autophagy, the process wherein aging organelles fuse
with and are degraded by lysosomes through autophagosomes,
represents the cellular mechanism through which cells utilize their
components to uphold biological equilibrium. Notably, mTOR
functions as a negative regulator of autophagy, and inhibiting
mTOR enhances cellular autophagy, thereby contributing to the
protection of articular cartilage (Caramés et al., 2012). Several
studies have validated that exosomes derived from infrapatellar
fat pad stem cells can confer chondroprotective and reparative
effects by modulating the mTOR autophagy pathway via miR-
100-5p and inducing autophagy through miR-429 targeting of
fasciculation and elongation protein zeta-2 (FEZ 2) (Wu et al.,
2019; Meng C. et al., 2023). To simulate the impact of exosomes
released in a hypoxic microenvironment on chondrocytes, research
has compared the effects of exosomes generated by ADSCs on
chondrocytes under normoxic and hypoxic conditions. Results
revealed that hypoxic conditions can upregulate the expression
of chondrocyte proliferation genes (NDRG family member
3 [NDRG3], collagen type II alpha 1 chain [Col2a1]), while
downregulating the expression of chondrocyte matrix-degrading
genes, such as matrix metallopeptidase 13 (MMP-13), ultimately
facilitating cartilage repair (Zhao J. et al., 2023). Additionally,
ADSCs-Exos suppresses the Wnt/β-catenin pathway by targeting
Wnt3 andWnt9a withmiR-376c-3p (Li F. et al., 2023), leading to the
attenuation of cartilage matrix degradation and synovial membrane
fibrosis. Conversely, exosomes released from ADSCs treated
with protoelastin (TE) enhance chondrocyte extracellular matrix
synthesis by transporting miR-451-5p, which contributes to OA
progression (Meng S. et al., 2023). ADAMTS has been identified as a
potential arthritis biomarker. Intriguingly, ADSCs-Exos can deliver
miR-93-5p to target ADAMmetallopeptidasewith thrombospondin
type 1 motif 9 (ADAMTS9), inhibiting the inflammatory

response and decelerating cartilage damage progression
(Li Y. et al., 2023).

Oxidative stress triggers inflammatory and matrix catabolic
pathways in articular cartilage, contributing to cartilage damage
(Chen G. et al., 2024). Additionally, members of the peroxiredoxin
family exhibit protective effects against oxidative stress-induced
cartilage injury. Studies have demonstrated that exosomes
from adipose mesenchymal stem cells mitigate chondrocyte
oxidative stress, alleviate endoplasmic reticulum stress, and
boost the expression of the autophagy marker microtubule-
associated protein 1 light chain 3 beta (MAP1LC3B), with
peroxiredoxin 6 (Prdx6) and miR-486-5p playing pivotal roles
(Guillén et al., 2021; Wang et al., 2022).

4.1.3 Synovial mesenchymal stem cells -derived
exosomes

Synovial mesenchymal stem cells (SMSCs) exhibit
multidirectional differentiation potential and have been utilized
in experimental interventions in animal models of OA (Fan et al.,
2009; To et al., 2019; Wang et al., 2020; Wang et al., 2021).
However, the precise mechanism of action remains to be elucidated.
extracellular vesicles derived from synovial mesenchymal stem
cells (SMSCs-Exos) exhibiting elevated expression of miR-302c
have the capability to target ADAM metallopeptidase domain 19
(ADAM19), facilitating chondrocyte proliferation, suppressing
cartilage inflammation and ECM degeneration, thereby fostering
the repair of osteoarthritic cartilage (Kong et al., 2023b). Bone
morphogenetic protein (BMP), a crucial growth factor within
the transforming growth factor β (TGF-β) superfamily, is
intricately linked to the maintenance and repair of cartilage
homeostasis. Notably, SMSCs-Exos exhibiting elevated levels of
bone morphogenetic protein 7 (BMP-7) facilitated the polarization
ofmacrophages towards theM2phenotype, leading to inflammation
reduction and improvement in pathological alterations within the
cartilage (Sun et al., 2023). Neurofibrillar protein-1 (NRP-1) is a
transmembrane protein expressed across various tissues and has
been recently implicated in the regulation of bone metabolism.
Additionally, matrilin-3 (MATN-3) serves as a pivotal matrix
protein secreted by chondrocytes, constituting the third member
of the ECM protein family. Studies demonstrated that SMSCs-
Exos upregulated miR-485-3p to suppress NRP-1 expression.
Furthermore, these vesicles delivered MATN-3 to concomitantly
modulate the interleukin 17a (IL-17)-mediated activation of
the PI3K/AKT/mTOR pathway, resulting in the inhibition of
cartilage matrix degradation (Long et al., 2023; Qiu et al., 2024).
Furthermore, studies have revealed that SMSCs-Exos are enriched
in miR-140-5p and miR-212-5p, which target and suppress e74
like ets transcription factor 3 (ELF3) expression, resulting in the
downregulation of inflammatory mediators (interleukin 6 [IL-6],
c-c motif chemokine ligand 2 [MCP-1], tumor necrosis factor α
[TNF-α], cyclooxygenase-2 [COX-2], and inducible nitric oxide
synthase [iNOS]). Additionally, miR-140-5p enhances chondrocyte
proliferation and migration capacity without compromising
the integrity of the cartilage matrix, representing a promising
avenue for potential cartilage repair applications (Tao et al., 2017;
Zheng et al., 2022).
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4.1.4 Other stem cells-derived exosomes
Human umbilical cord mesenchymal stem cells (HucMSCs)

are recognized for their angiogenic and osteogenic properties
(Wang et al., 2023; Yang et al., 2024). Within chondrocytes, the
involvement of NADPH oxidase 4 (NOX4) in oxidative stress
processes is pivotal. Studies have revealed a downregulation of
miR-21-5p expression in cartilage tissues from patients with
osteonecrosis of the femoral head. It was elucidated that SRY-box
transcription factor 5 (SOX5) could enhance enhancer of zeste
homolog 2 (EZH2) transcription, collectively counteracting the
effects of miR-21-5p. Simultaneously, miR-21-5p demonstrated the
ability to suppress both SOX5 and enhancer of zeste 2 polycomb
repressive complex 2 subunit (EZH2) expression (Fang et al., 2022),
thus fostering angiogenesis and bone repair. Moreover, the delivery
ofmiR-100-5p andmiR-23a-3p to chondrocytes targetedNOX4 and
phosphatase and tensin homolog (PTEN), consequently promoting
AKT expression to mitigate oxidative stress and apoptosis, thereby
facilitating cartilage regeneration (Hu et al., 2020; Li X. et al., 2021).
In the realm of cartilage restoration, umbilical cord MSCs and
pluripotent stem cell-differentiated MSCs showcased superiority
over adipose MSCs. Notably, pluripotent stem cell-differentiated
MSCs exhibited greater efficacy than synovial MSCs, followed by
bone marrow MSCs, in OA treatment (Zhu et al., 2017; Li Q. et al.,
2021; Xu T. et al., 2024). Long non-coding RNAs (lncRNAs),
acting as “molecular sponges,” can absorb specific miRNAs, thereby
suppressing their target gene expression. For instance, lncRNA H19
within HucMSCs-Exos can absorb miR-29b-3p, elevate TGF-β1
and SMAD family member 3 (Smad3) levels, and inhibit forkhead
box o3 (FoxO3) expression, thereby propelling cartilage repair and
regeneration (Yan et al., 2021). As the exploration of various MSC
types continues to expand, the potential of additionalMSCs remains
to be unraveled in future investigations.

4.2 Synovial fibroblasts-derived exosomes

Synovial fibroblasts have garnered increased attention owing
to their close proximity to articular cartilage within synovial
tissue, comprising macrophage-like synoviocytes and fibroblast-like
synoviocytes (Damerau et al., 2024; Hu Z. et al., 2024). Exosomes
derived from both cell types have been identified as contributors
to the exacerbation of cartilage inflammatory responses through
modulation of the TLRs/NF-κB pathway (Ma T. et al., 2024).
Notably, the pronounced impact of macrophage-like synoviocytes
and the ability of fibroblast-like synoviocyte exosomes to induce
macrophage glycolysis activation, consequently fostering M1
cell polarization, but HIF 1α inhibited this process, highlight
novel insights into the role of fibroblast-like synoviocyte-derived
exosomes in inflammatory-induced cartilage damage (Liu B. et al.,
2024; Wang H. et al., 2024). Distinct variations were observed in the
impact of small molecule RNAs from synovial fibroblast exosomes
on chondrocytes; for instance, miR-19b-3p and miR-106b were
identified to exacerbate articular cartilage damage (Liu D. et al.,
2020; Kong et al., 2023a), whereas miR-182-5p, miR-214-3p, miR-
126-3P, and miR-142-5p exhibited potential in promoting articular
cartilage repair (Zhou et al., 2021; Zeng et al., 2022; Ji et al., 2023;
Lai et al., 2023). Furthermore, the enrichment of miR-106b in
synovial fibroblast exosomes, targeting pyruvate dehydrogenase

kinase 4 (PDK4) andmodulating theRANKL/RANK/OPGpathway,
underscored its role in advancing cartilage damage progression,
thus identifying miR-106b as an actionable target (Liu D. et al.,
2020). Moreover, the interaction between miR-106b and long non-
coding RNA H19 in competition for miR-106b adsorption offers
a promising avenue to reverse cartilage damage and facilitate
cartilage repair (Tan et al., 2020). Iron death, characterized by
redox homeostasis disruption,mitochondrial dysfunction, and iron-
dependentmetabolic processes, emerges as a distinctivemode of cell
demise impacting cartilage inflammatory responses. Noteworthy
findings indicate that miR-19b-3p, transported by fibroblast-
like synoviocyte exosomes, inhibits solute carrier family seven
member 11 (SLC7A11), thereby exacerbating chondrocyte iron
death and cartilage damage (Kong et al., 2023a). Collectively, the
adverse impact of synovial fibroblasts on cartilage repair pathways
underscores the destructive consequences of inflammation on
cartilage integrity, emphasizing the imperative focus on inhibiting
inflammation for successful cartilage repair strategies.

4.3 Chondrocytes-derived exosomes

Chondrocyte-derived exosomes exhibit similarity to
chondrocytes, ensuring a more reliable safety profile (Chen J. et al.,
2024). Regenerated cartilage from BMSCs-Exos displays a fibrous
nature, in contrast to the hyaline cartilage formation facilitated
by chondrocyte-derived exosomes, maintaining chondrocyte
phenotype integrity over an extended period (Chen J. et al., 2024).
However, exosomes derived from degenerative chondrocytes
have the potential to hasten the process of cartilage calcification
(Liu Q. et al., 2022). Notably, a study investigating exosomes
from osteoarthritic chondrocytes revealed their ability to inhibit
autophagy related 4B cysteine peptidase (ATG4B) expression
via miR-449a-5p, impeding macrophage autophagy and leading
to reactive oxygen species (ROS) accumulation. This suggests
a possible exacerbation of OA progression by miR-449a-5p,
underscoring the significance of chondrocyte physiological
conditions in determining the efficacy of miR-449a-5p for
cartilage repair (Ni et al., 2019).

Research has elucidated the mechanosensitivity of condylar
cartilage, demonstrating its ability to interpret mechanical stimuli
into biochemical signals (Zhao et al., 2017). Furthermore,
examination of individual chondrocyte cells from distinct weight-
bearing zones within the tibial plateau has unveiled differential
gene expression patterns in response to varying mechanical loads,
emphasizing the importance of studies on chondrocytes under
differing stress conditions (Wang J. et al., 2024). Circular RNAs
(circRNAs) have emerged as key players in OA development,
with a specific focus on circ-PRKCH, which exhibits significant
involvement in disease progression. Elevated levels of Circ-PRKCH
and ADAM metallopeptidase with thrombospondin type 1 motif
5 (ADAMTS 5) were detected in cartilage from arthritis patients,
concomitant with decreased miR-502-5p expression. Subsequent
investigations unveiled that Circ-PRKCH sequesters miR-502-
5p, modulating ADAMTS 5 expression to drive inflammatory
processes in articular cartilage. Additionally, interleukin 1 beta
(IL-1β)-treated chondrocytes were found capable of transporting
circ-PRKCH via exosomes, hinting at its potential as a biomarker
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(Liu Z. et al., 2022). Conversely, another study reported upregulation
of Circ_0001846 and WNT 5B in OA patients and IL-1β-
treated chondrocytes, accompanied by decreased miR-149-
5p levels. Subsequent analyses demonstrated that silencing of
Circ_0001846 reversed IL-1β-induced proliferation, apoptosis,
migration, inflammation, and extracellular matrix degradation in
chondrocytes. Furthermore, miR-149-5p hindered these processes
by targeting WNT 5B. These results suggest that Circ_0001846,
originating from chondrocytes in OA patients, sequesters miR-149-
5p, subsequently disrupting its involvement in theWNT 5B axis and
compromising its chondroprotective effects, thereby contributing to
cartilage damage (Zhu et al., 2021), offering a promising avenue for
potential OA therapies.

4.4 Macrophages-derived exosomes

Macrophages, pivotal cells in bone immunity, undergo
differentiation into pro-inflammatory M1 macrophages and
anti-inflammatory M2 macrophages (Hu K. et al., 2023),
crucial for regulating bone metabolism and maintaining bone
homeostasis. Research demonstrated that exosomes derived from
M1 macrophages upregulated the expression of interleukin 6 (IL-6),
interleukin-8 (IL-8), matrix metallopeptidase 1 (MMP1), matrix
metallopeptidase 3 (MMP3), matrix metallopeptidase 9 (MMP9),
and matrix metallopeptidase 13 (MMP13) in chondrocytes.
Subsequent investigations indicated that this impact was intricately
linked to the suppression of glycogen synthase kinase 3 beta
(GSK3β) and axis inhibition protein 2 (Axin2) expression by miR-
1246, ultimately activating the Wnt/β-catenin pathway. Thus, this
elucidated the mechanism by which M1 macrophage exocytosis
exacerbates cartilage damage (Zhang et al., 2024). Furthermore, M2
macrophages perform a critical anti-inflammatory function during
the advancement of OA. Studies indicated that exocytosis from
M2 macrophages downregulates the PI3K-Akt-mTOR pathway,
leading to the suppression of IL-1β, IL-6, and TNF-α expression,
ultimately promoting cartilage restoration (Da-Wa et al., 2021).
Moreover, by sequencing M1 and M2 macrophage exosomes,
miR-26b-5p and miR-127-3p were significantly upregulated in
M2-Exos, while miR-134-5p was significantly downregulated.
Validation of miR-26b-5p in vitro showed that it inhibited toll
like receptor 3 (TLR3) expression, thereby preventing chondrocyte
hypertrophy, promoting the differentiation ofM1-typemacrophages
to M2-type macrophages, and suppressing inflammatory responses
(Qian et al., 2024). Stimulating macrophage polarization from
pro-inflammatory M1 towards anti-inflammatory M2 using
exosomes could represent a promising therapeutic strategy for OA
management. A flowchart depicting exosome origins and altered
cartilage biology is shown in Figure 2.

4.5 Herbal medicine-derived EVs

The secretion of extracellular vesicles (EVs) by plant cells has
long been a subject of scrutiny owing to the presence of their robust
cell walls. Nevertheless, advancements in research methodologies
have increasingly unveiled compelling evidence supporting the
capacity of plant cells to discharge plant-derived vesicles (PDVs)

(Regente et al., 2009; Liu N. J. et al., 2020; Niu et al., 2023).
These PDVs, characterized as intricate exosome-like structures with
diverse and multifunctional traits, exhibit exceptional absorption
capabilities in organisms (Garaeva et al., 2021). This property not
only mitigates the longstanding challenge of limited bioavailability
of active plant constituents but also opens avenues for the utilization
and development of extracellular lipid nanoparticles (ELNs) as
biotherapeutic agents and carriers for drug delivery (Cong et al.,
2022; Zhao Y. et al., 2023). In recent times, there has been a
surge in reports focusing on the use of herbal remedies for
the management of bone and joint disorders. Contemporary
studies have demonstrated that bioactive compounds extracted
from medicinal herbs contain active ingredients that confer
anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects
(Li and Zhang, 2020). The methodology for isolating vesicles
rich in biologically potent substances from herbal remedies has
reached a state of maturity, offering a novel perspective for the
prospective application of herbal medications in addressing bone
and joint ailments (Liu Y. et al., 2024). Notably, Morinda Officinalis
encompasses a diverse range of anti-osteoporosis active constituents,
and extracellular vesicles obtained from Morinda Officinalis exhibit
the ability to stimulate osteoblast proliferation anddifferentiation via
the mitogen-activated protein kinase (MAPK) pathway (Cao et al.,
2024). Furthermore, extracellular vesicles sourced from Rhizoma
Drynariae can modulate the ER-alpha (ERα) pathway to promote
the differentiation of BMSCs into osteoblasts for the management
of orthopaedic conditions (Zhao et al., 2024). Collectively, these
investigations suggest that extracellular vesicles derived from herbs
present a promising avenue for the effective treatment of OA.

4.6 Other types of cells -derived exosomes

Exosomes originate from a diverse array of sources, among
which are exosomes derived from osteoclasts that likely play a
pivotal role in modulating bone metabolism (Stegen and Carmeliet,
2024). Research has indicated that exosomes originating from
osteoclasts have the capability to modulate the transforming growth
factor beta 1 (TGF-β1)/SMAD family member 2 (Smad2) signaling
pathway throughmiR-212-3p, thereby expediting the degradation of
cartilage matrix. This highlights the potential benefit of suppressing
miR-212-3p expression to facilitate cartilage repair, while also
identifying the TGF-β1/Smad 2 axis as a plausible target for
enhancing cartilage restoration (Dai et al., 2024). Furthermore,
exosomes released by osteoclasts have been implicated in hastening
the progression of OA. Conversely, the downregulation of RAB27A,
member RAS oncogene family (Rab 27a), achieved through the
inhibition of key miRNA processing enzymes or small interfering
RNAs, results in diminished exosome secretion from osteoclasts,
subsequently mitigating the advancement of OA (Liu et al., 2021).

Excessive free radicals in the joints trigger oxidative stress,
posing a risk for the degradation of the cartilage matrix and
the progression of OA (Da et al., 2024). Exosomes extracted
from human umbilical vein endothelial cells (HUVEC-Exos)
intriguingly stimulated the production of reactive oxygen species
(ROS) in chondrocytes. Additionally, they suppressed autophagy
and P21 expression, diminishing chondrocyte resilience to oxidative
stress, consequently fostering chondrocyte apoptosis, which
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TABLE 1 Mechanism of different cell-derived exosomes in the cartilage repair process of osteoarthritis.

Source of EVs miRNA Signal pathway Mechanism of action References

BMSCs KLF 3-AS 1 adsorbs miR-206 PI3K/Akt/mTOR
Promote chondrocyte proliferation;
inhibit chondrocyte apoptosis

Liu et al. (2018a), Wen et al. (2022)

miR-3473b PTEN/AKT Liu et al. (2018b)

miR-326 STAT1/NF-κB/p65 Inhibit chondrocyte apoptosis Xu and Xu (2021)

miR-210 NF-κB Inhibit inflammatory response He et al. (2020)

ADSCs miR-100-5p mTOR Promote chondrocyte autophagy Wu et al. (2019)

miR-429 FEZ 2
Inhibit chondrocyte degradation;
inhibit synovial fibrosis

Meng S. et al. (2023)

miR-376c-3p Wnt/β-catenin Li F. et al. (2023)

miR-93-5p ADAMTS9 Inhibit inflammatory response Li Y.et al. (2023)

SMSCs miR-485-3p PI3K/AKT/mTOR Inhibit cartilage matrix
degradation

Long et al. (2023), Qiu et al. (2024)

miR-140-5p Promote chondrocyte proliferation
and migration; protect cartilage
matrix

Tao et al. (2017)

miR-212-5p ELF3 Inhibit inflammatory response Zheng et al. (2022)

miR-302c ADAM19 Promote chondrocyte
proliferation; inhibit inflammation;
inhibit ECM degradation

Kong et al. (2023b)

HucMSCs miR-21-5p Promote angiogenesis; promote
bone repair

Fang et al. (2022)

miR-100-5p NOX 4
Inhibit oxidative stress in
chondrocytes; inhibit apoptosis

Li X. et al. (2021)

miR-23a-3p PTEN/AKT Hu et al. (2020)

LncRNA H19 Adsorb miR-29b-3p Enhance chondrocyte activity;
promote chondrocyte migration;
promote cartilage matrix
formation; inhibit chondrocyte
apoptosis and senescence

Yan et al. (2021)

Fibroblast lncRNA H19 Adsorb miR-106b;
RANKL/RANK/OPG

Inhibit cartilage matrix
degradation; promote chondrocyte
proliferation and migration

Tan et al. (2020)

Chondrocyte miR-214-3p ATF 7/TLR 4; RUNX 1/VEGFA Promote M2 macrophage
polarisation; attenuate
inflammatory response; promote
angiogenesis

Lan et al. (2023)

RNACirc_0001846 Adsorb miR-149-5p/WNT Promote chondrocyte proliferation
and migration; inhibit chondrocyte
apoptosis; inhibit cartilage matrix
degradation; inhibit inflammatory
response

Zhu et al. (2021)

(Continued on the following page)
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TABLE 1 (Continued) Mechanism of different cell-derived exosomes in the cartilage repair process of osteoarthritis.

Source of EVs miRNA Signal pathway Mechanism of action References

M2 macrophage miR-26b-5p TLR 3 Inhibit chondrocyte hypertrophy; promote M1 to M2 differentiation; inhibit
inflammatory response

Qian et al. (2024)

Osteoclast miR-212-3p TGF-β1/Smad 2 Accelerate cartilage matrix degradation Dai et al. (2024)

BMSCs, bone marrow mesenchymal stem cells; ADSCs, adipose mesenchymal stem cells; SMSCs, synovial mesenchymal stem cells; HucMSCs, human umbilical cord mesenchymal stem cells;
EVs, extracellular vesicles; PI3K/Akt/mTOR, phosphoinositide 3-kinase/protein kinase b/mammalian target of rapamycin; PTEN/AKT, phosphatase and tensin homologue deleted
fromchromosome 10/protein kinase b; STAT1/NF-κB/p65, signal transducer and activator of transcription 1/nuclear factor kappa b subunit 1/p65-relA; FEZ 2, fasciculation and elongation
protein zeta 2; Wnt, wingless; ADAMTS9, ADAM metallopeptidase with thrombospondin type 1 motif 9; ELF3, e74 like ETS transcription factor 3; ADAM19, ADAM metallopeptidase domain
19; NOX 4, NADPH oxidase 4; RANKL/RANK/OPG, TNF-related activation-induced cytokine/TNF receptor superfamily member 11a/TNF receptor superfamily member 11b; ATF 7/TLR 4,
activating transcription factor 7/toll like receptor 4; RUNX 1/VEGFA, runt-related transcription factor 1/vascular endothelial growth factor A; TLR 3, toll like receptor 3; TGF-β1/Smad 2,
transforming growth factor beta 1/mothers against decapentaplegic homolog 2; miRNA, microRNA.

FIGURE 2
Flowchart and summary of exosomes from different sources. BMSCs, bone marrow mesenchymal stem cells; ADSCs, adipose-derived mesenchymal
stem cells; SMSCs, synovial mesenchymal stem cells; HUVECs, human umbilical vein endothelial cells; ECM, extracellular matrix; mRNA, coding RNA;
DNA, deoxyribonucleic acid; ncRNA, non-coding RNA; circRNA, circular RNA.

hampers the repair of OA cartilage (Yang et al., 2021). This
observation suggests that the vasculature has an adverse impact on
cartilage repair. Inhibiting exosome secretion from intra-articular
vascular endothelial cells could potentially serve as a therapeutic
approach. Due to its close proximity to the cartilage, the articular
subchondral bone plays a pivotal role in the investigation of
cartilage repair (Hu Y. J. et al., 2024). Studies have demonstrated a
close association between exosomes originating from osteoblasts
in the articular subchondral bone and cartilage degeneration.
Subsequent investigations unveiled that this mechanism is linked
to miR-210-5p, and inhibiting miR-210-5p substantially resulted in
chondroprotective effects (Wu X. et al., 2021). Table 1 and Figure 3
depict a summary of the mechanisms by which exosomes from
various cell types impact cartilage repair.

5 Engineered exosomes

Exosomes present a promising avenue for OA treatment
(Xavier et al., 2023); however, they rely on specific matrix
components to ensure enduring repair. Scaffold materials utilized
in musculoskeletal disorders encompass organic elements (e.g.,
fibrin, hyaluronic acid, chitosan, collagen, alginate, and silk fibroin),
inorganic compounds (e.g., hydroxyapatite, tricalcium phosphate,
glass ceramics, and titanium), and biodegradable substances
(e.g., polycaprolactone, polylactic acid [PLA], polyglycolic
acid, and polylactic-co-glycolic acid [PLGA]) (Wu N. et al.,
2021; Rahman et al., 2022; Zhang et al., 2023; Yuan et al.,
2024). Furthermore, 3D cell culture systems have undergone
comprehensive investigation in current studies (Lee and Lee, 2022).
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FIGURE 3
Summary of cartilage microenvironment regulation and cartilage repair mechanisms by different cellular exosomes. (A) A depicts the observed
changes in injury and knee joint structure in knee OA cases, offering insights into the structural impacts of the condition (B) B illustrates the process of
plasmid transfection of exosomes and genetic modification to enhance the targeting of exosomes, indicating potential avenues for novel treatment
approaches (C) C delineates the specific molecular mechanisms through which exosomes from various cellular origins exert their biological effects on
chondrocytes, providing a detailed understanding of the biological interactions involved in the disease. BMSCs, bone marrow mesenchymal stem cells;
ADSCs, adipose mesenchymal stem cells; KGN, kartogenin; miR, microRNA.

The 3D system’s capability to culture a higher number of cells
concurrently for increased exosome production, in conjunction
with the hypoxia-induced cell aggregation that stimulates cells
to produce growth factors, has proven advantageous in fostering
cartilage repair (Duan et al., 2022). In vitro studies demonstrated
that 3D-Exos exhibited enhanced capacity in regulating the

microenvironment of the joint cavity, with sequencing revealing
its association with elevated miRNA expression; however, further
investigation is required to elucidate the precise molecular
mechanism (Yan et al., 2023).

To enhance the sustained release effect of exosomes, a study
combined gelatin hydrogel with BMSCs-Exos, demonstrating its
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ability to maintain release for 14 days with an exosome release
rate of 80%. This combination was shown to modulate immunity
to support the repair of damaged cartilage, indicating a significant
potential for the application of biomaterials and extracellular
vesicles (Guan et al., 2022a). The advent of CRISPR technology in
2012 has offered promise for disease treatment. By incorporating
chondrocyte affinity peptide (CAP) at the N-terminus of the
exosome surface protein Lamp 2b to create exosomes targeted at
chondrocytes, the efficiency of biosignalling within the exosome
can be significantly enhanced, improving the exosome’s targeting
capabilities (Liang et al., 2022). Lithium-containing scaffolds have
been shown to effectively enhance cartilage regeneration. Treatment
of BMSC-derived exosomes with lithium-containing blocking glass
ceramics (Li-BGC) can employ miR-455-3p to inhibit histone
deacetylase 2 (HDAC2) and enhance histoneH3 acetylation, thereby
promoting cartilage regrowth. This validates the critical role of
lithium ions in promoting cartilage formation (Liu et al., 2023).
To mimic the normal anatomical structure of cartilage, a double-
layer gel was utilized to simulate cartilage and subchondral bone
matrix components, combined with cartilage-derived exosomes.
The results indicate an enhancement in chondrocyte migration
ability, contributing to articular cartilage repair (Nikhil and
Kumar, 2022). Chondroitin sulfate, a glycosaminoglycan secreted by
chondrocytes, promotes cartilage regeneration and pain relief. By
combining exosome carriers with pro-cartilage repair cytokines like
chondroitin sulfate, not only is the release of exosomes promoted,
but it also aids in cartilage matrix formation in a drug-delivery
manner, providing valuable insights for the design and development
of exosome carriers (Guan et al., 2022; Zhang et al., 2021). These
findings suggest that incorporating cartilage repair-related cytokines
into exosome-carrying hydrogels shows promising applications for
cartilage repair.

6 Discussion

Given that chondrocytes are the sole cell type found within
cartilage, this review centers its attention on the impact of various
cellular exosomes on chondrocytes. The influence of exosomes
derived from different cellular origins on regulating the OA
cartilage microenvironment and aiding in cartilage repair involves
the modulation of multiple essential pathways and downstream
genes. These effects significantly alter the biological functions of
chondrocytes, particularly in terms of suppressing inflammation,
remodeling the cartilage matrix, enhancing chondrocyte
proliferation, regulating autophagy and apoptosis, promoting
directed migration to injury sites, influencing mitochondrial
metabolism, and reducing oxidative stress. Engineered exosomes
have demonstrated enhanced precision in targeting and more
pronounced interventional effects, representing a pivotal technology
for advancing clinical investigations related to exosomes. However,
there remains a scarcity of studies on the differences in the efficacy
of exosomes in facilitating cartilage repair across various cell types.
It is crucial to identify the optimal donor cells for exosomes and
explore potential synergistic or antagonistic effects among exosomes
released by diverse cell sources.

While the role of pertinent signaling molecules in exosomes
for promoting cartilage repair is extensively demonstrated, existing

studies have primarily focused on both cellular and animal models.
Notably, there is a lack of clinical trials assessing the use of
exosomes forOA treatment. TreatmentwithMSC-derived exosomes
(MSC-Exos) has demonstrated significant preclinical efficacy in
animal models of OA (Zhou et al., 2022). Although clinical reports
on the use of MSC-Exos in osteoarthritis patients are limited,
cases involving graft-versus-host disease (Kordelas et al., 2014)
and chronic kidney disease (Nassar et al., 2016) indicate good
tolerability following systemic administration of exosomes. This
suggests that clinical studies on exosomes are still in the exploratory
phase but hold positive implications for future research. Developing
highly standardized manufacturing protocols for the production of
clinical-grade exosome products with essential bioactivities presents
a significant challenge for clinical research groups. Figueroa-
Valdés et al. (2025) pioneered the standardized development and
intra-articular validation of clinical-grade extracellular vesicles
derived from human umbilical cord mesenchymal stem cells
(HucMSCs). Consistency in exosome production was achieved
through the establishment of a standardized production protocol.
The potential for standardized production of exosomes for clinical
translation can be further validated by identifying intra-exosomal
miRNA and protein profiles. The efficacy and safety of HucMSCs-
Exos were further validated through in vitro cell and animal
studies. Finally, twelve patients with moderate knee OA received a
single dose of HucMSCs-Exos via intra-articular injection and were
followed for 12 months. The results indicated no adverse effects and
demonstrated significant, long-lasting improvements in pain and
dysfunction throughout the 12-month follow-up period. Imaging
studies revealed that the administration of HucMSCs-Exos via
intra-articular injection in OA patients did not result in structural
joint destruction nor promote the progression of cartilage damage.
This clinical study validates, for the first time, the initial safety of
exosome therapy in knee osteoarthritis (KOA) and has significant
implications for future clinical studies involving exosomes.

Consequently, exploring the efficacy and safety of exosomes
holds critical clinical importance. However, before their practical
application, it is imperative to address potential safety risks,
ensure exosome purity, and optimize their yield. Therefore, further
investigation into suitable scaffolds, safer and more effective
bioactive factors, utilization of plant and animal sources, and
exploration of genetic modification techniques is essential to
establish more favorable conditions for exosomes, validating their
safety and efficacy in human contexts. Despite the challenges, the
ongoing research progress signifies the increasingly vital role of
exosomes in OA prevention and treatment, with exosome therapy
poised to emerge as a key option for early OA treatment and
prevention.
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