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Mechanotransduction is a crucial property in all organisms, modulating cellular
behaviors in response to external mechanical stimuli. Given the high mobility of
vocal folds, it is hypothesized that mechanotransduction significantly contributes
to their tissue homeostasis. Recent studies have identified mechanosensitive
proteins in vocal fold epithelia, supporting this hypothesis. Voice therapy, which,
involves the mobilization of vocal folds, aims to rehabilitate vocal function and
restore homeostasis. However, establishing a direct causal link between specific
mechanical stimuli and therapeutic benefits is challenging due to the variability in
voice therapy techniques. This challenge is further compounded when
investigating biological benefits in humans. Vocal fold tissue cannot be
biopsied without significant impairment of the vibratory characteristics of the
vocal folds. Conversely, studies using vocal fold mimetic bioreactors have
demonstrated that mechanical stimulation of vocal fold fibroblasts can lead to
highly heterogeneous responses, depending on the nature and parameters of the
induced vibration. These responses can either aid or impede vocal fold vibration
at the physiological level. Future research is needed to determine the specific
mechanical parameters that are biologically beneficial for vocal fold function.

KEYWORDS

mechanotransduction, mechanosensitive channels, vocal foldmimetic bioreactor, vocal
fold vibrations, mechanical stimulation

Introduction

It is well established that phonotrauma can result in vocal fold inflammation,
hemorrhage, and development of mass lesions (Kleinsasser, 1982; Abitbol, 1988;
Courey et al., 1996). When vocal folds are in prolonged intensive motion,
mechanical stimuli bring about biological changes such as the destruction of the
epithelial layer (Kojima et al., 2014; Kimball et al., 2021), and secretion of pro-
inflammatory markers (Verdolini et al., 2003; Li et al., 2011; Verdolini-Abbott
et al., 2012) which represent the initial stage of wound healing. While some limited
evidence exists that mobilizing the vocal folds with voice therapy may be more
beneficial than complete rest (Verdolini-Abbott et al., 2012), recent reviews in this
area show that voice therapy protocols vary significantly in how mechanical
stimulations are imposed on the vocal folds along with treatment duration
(Desjardins et al., 2017; Alegria et al., 2020; Barsties et al., 2020). Furthermore,
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treatment efficacy from voice therapy becomes more ambiguous
due to different outcome measures. So far, very little is
understood about vocal fold mobilization and its biological
impact on the micro and macrostructure of the vocal folds.
Understanding the biological effects of induced mechanical
stimuli on vocal fold tissues is crucial and has the potential to
inform the underlying mechanism behind voice therapies and
wound-healing processes.

When mechanical stimuli are induced, cells within the vocal
folds shift their behaviors through mechanotransduction, leading
to biological and physiological changes at the macroscopic level.
Mechanotransduction refers to the process by which biochemical
intracellular changes occur after external mechanical stimuli are
induced to cells. Mechanical stimuli can be any sort of external
force, including stretching tension, shear force, compressive
force, and hydrostatic or osmotic pressures. It is believed that
the ability to sense mechanical stimuli originates very early in
organisms, as it is highly preserved in all Bacteria, Archaea, and
Eukarya domains (Martinac and Kloda, 2003). Understandably,
mechanotransduction has proven to be a critical property in
maintaining homeostasis, such as in the cardiovascular system or
in bone structure formation, where the ability to sense shear
stresses resulting from fluid flow and movement is critical for
regulating vascular pressure and osteogenesis (Lammerding et al.,
2004; Haga et al., 2007; Wang et al., 2009). It has been recognized
that mechanotransduction is achieved by activating mechanosensitive
(MS) channels located on the surface of cells. These gated MS
channels open upon activation, leading to an influx of ions
such as K+, Ca2+, and Na+. The influx of these ions then acts as
modulators in downstream intracellular changes that ultimately
influence cell migration, apoptosis, differentiation, proliferation,
and gene expressions (Mayr et al., 2000; Grossi et al., 2007; Zhu
et al., 2023). Some MS channels are known to be non-selective
cationic channels, such as the PIEZO and most TRP superfamily
channels (Owsianik et al., 2006; Coste et al., 2010). In contrast,
other channels, such as Shaker (Kv 1.1), TREK1, TRAAK, and
NAV 1.5, are known to be selective channels to a single type of
ions (Maingret et al., 1999; Beyder et al., 2010; Brohawn et al.,
2012; Hao et al., 2013). To be considered as an MS channel,
Arnadóttir and Chalfie (2010) proposed four criteria: 1) channel
must be expressed temporally and spatially in a mechanosensory
organ, 2) removal of the channel must directly eliminate
mechanical response, 3) alteration of the properties of these
channels must correspondingly alter the mechanical response,
and 4) heterologous expression of the channel must be gated
mechanically. Mechanotransduction in vocal fold tissue is
particularly of interest, as vocal folds are known to be in
constant oscillatory motion from airflow during voice
production and homeostasis maintenance has a critical impact
on their vibratory functions. Therefore, investigation of biological
benefits from mechanotransduction of vocal fold tissues is a
promising field of research.

Accordingly, this paper offers a narrative review of the biological
effects of mechanical stimuli on soft tissues and the underlying
biophysical principles of mechanotransduction. We also discuss
ongoing research aimed at mimicking mechanical stimuli
comparable to native vocal fold vibration to quantify the
biological effects on vocal fold fibroblasts.

Vocal fold biology

The vocal fold consist of three biologically distinct layers:
epithelium, lamina propria, and the muscle layer (Figure 1). The
lamina propria is a connective tissue between the muscle layer and
the epithelium (Hirano, 1981), populated by ECM constituents such
as collagen, elastin, fibronectin, proteoglycans, and
glycosaminoglycans that contribute to biological homeostasis and
alter the rheological properties that affect vocal fold mucosal wave
(Gray et al., 1999). In scarred vocal fold tissues, increased densities in
fibronectin have been found, while decreased densities in
fibromodulin and decorin were observed (Thibeault et al., 2003).
Moreover, less dense and disorganized collagen fibers and decreased
elastin were also found (Thibeault et al., 2002). Changes in the ECM
during diseased states alter the viscoelasticity of the vocal folds
(Chan and Titze, 2006). Vocal folds with higher stiffness and
viscosity show less pliability, which hinders the ability to
accommodate a surface mucosal wave, resulting in difficulties in
achieving self-sustained oscillation. Accordingly, patients with
dysphonia show disrupted mucosal wave, experience difficulties
initiating phonation, and have shown increased perceived
phonatory effort (Chang and Karnell, 2004; Szkiełkowska et al.,
2019). Changes in ECM deposition are primarily attributed to a shift
in the behavior of vocal fold fibroblasts, which are most abundantly
found in the lamina propria (Catten et al., 1998; Gray, 2000). A
recent transcriptomic study in an attempt to create a laryngeal
cellular atlas by An et al. (2024) found similar results, showing
highest abundance of fibroblasts among non-epithelial/endothelial
cells of murine larynges, followed by phagocytes (primarily
macrophages) and lymphocytes.

Physical mechanisms of vocal fold
oscillation

In order to understand biological benefits and drawbacks from
mechanical stimulation of the vocal folds, it is important to
understand how native oscillatory motion of the vocal folds
occur during phonation. Vocal folds undergo self-sustained
oscillation, that is, net positive energy is added into the cyclic
movement of the vocal folds to compensate for the energy loss
due to friction and viscous properties of vibrating tissues (Titze,
1988). Self-sustained oscillation of the vocal folds from induced
airflow was first proposed by Van den Berg (1958). Van den Berg
argued that increasing subglottic pressure forces the vocal folds to
open, and the Bernoulli effect, which results in negative pressure in
the smaller orifice, pulls the vocal folds together. However, these
assumptions were refuted and refined in the 1980’s (Švec et al.,
2023). The negative Bernoulli effect is a unidirectional force that is
present during both glottal opening and closing phases, so it is
intuitive to realize that positive net transfer from the Bernoulli effect
will not occur, as the energy that is imparted to help close the vocal
folds will be canceled out with the same inhibitory force when vocal
folds are in the opening phase (Titze, 2019). Titze (1988) analytically
showed that a positive net energy transfer is achieved through a
cyclic transition from a convergent to a divergent (or from a
convergent to a less convergent) shape of the glottis, resulting in
varied intraglottal pressures (Figure 2). This shape change of the
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glottis is due to a time delay caused by the propagation of the
mucosal wave velocity in the inferior-superior direction, resulting in
a phase difference of displacement for the inferior and superior
glottal wall (Titze, 1988; Titze and Alipour, 2006). As a result of
Bernoulli’s principle of conservation of energy, intraglottal pressure
is higher during a convergent glottis and lower for a divergent glottis,

which exerts a pushing and pulling force on the vocal folds,
facilitating oscillatory motion. Through this mechanism,
aerodynamic energy is converted into kinetic movement of the
vocal folds, and oscillation is sustained (Thomson et al., 2005).

Research has been extensively performed to quantify parameters
that aid in self-sustained vocal fold oscillation. It was found that

FIGURE 1
Anatomy of vocal folds and their biological constituents. Vocal folds consist of 3 biologically distinct layers (epithelium, lamina propria, and the
muscle layer). Homeostasis in the lamina propria is achieved by the cells populating the area, majority of which are fibroblasts and macrophages.

FIGURE 2
Cyclic geometrical shape changes the vocal folds undergo during oscillation. The (A) convergent glottis generates higher intraglottal pressure than
the (B) divergent glottis, resulting in positive net energy transfer that sustains oscillation.
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configuration changes of the vocal tract to achieve higher inertive
properties (Titze, 2020), and configuration of the pre-phonatory
glottal geometry to achieve a near rectangular glottis (Chan et al.,
1997; Lucero, 1998) aid in self-sustained vocal fold oscillation.
Recently, theoretical derivation, computational models, and
experimental studies with canine larynges suggest that flow
separation in a divergent glottis also aids in the sustained
oscillation of the vocal folds by creating vortices that have a
negative pressure, which aids the vocal folds during the closing
phase (Farbos de Luzan et al., 2021; Sundström et al., 2022). When
the above factors aid self-sustained oscillation, they reduce
phonation threshold pressure (PTP), which refers to the
minimum initial lung pressure required to initiate and sustain
vocal fold oscillation (Titze, 1992a). Functionally, PTP is
regarded as an objective measure of voice effort and voice fatigue
(Titze, 1988). Higher PTP is generally unfavorable and is associated
with phonotraumatic voice disorders, such as vocal fold nodules,
polyps, scarring, fatigue, and during wound healing (Solomon and
DiMattia, 2000; Hirano et al., 2004; Rousseau et al., 2006; Wang
et al., 2010; Free et al., 2022). In contrast, lower PTP is directly linked
to ease of phonation (Titze, 1992a). Titze (1988) derived an analytic
expression for contributing factors to PTP for a rectangular glottis,
where PTP is proportional to mucosal wave velocity, viscous
damping coefficient, and pre-phonatory glottal half-width, and
inversely proportional to vocal fold thickness. Of these given
parameters, glottal half-width and vocal fold thickness are related
to the configuration of the glottal geometry that can be adjusted with
activations of the intrinsic laryngeal muscles (Vahabzadeh-Hagh
et al., 2017b; Vahabzadeh-Hagh et al., 2017a; Azar and Chhetri,
2022; Pillutla et al., 2023). On the other hand, mucosal wave velocity
is determined by the stiffness of the vibrating vocal fold tissue (Berke
and Gerratt, 1993; Sloan et al., 1993; Titze et al., 1993), which can
both be a result of biomechanical and biological changes in the vocal
folds. Previous biomechanical investigations indicate that mucosal
wave velocity is associated with changes in the stiffness of the vocal
folds during frequency variation (Titze et al., 1993). Meanwhile, it
has also been demonstrated that stiffness of the vocal folds is a
dynamic parameter known to increase from biological changes
resulting from phonotraumatic dysphonia as well (Jiang et al.,
1998; Motie-Shirazi et al., 2023). Moreover, the viscous damping
coefficient can also be determined by the biological compositions of
the vocal fold mucosa, which ultimately affect its rheological
properties (Chan and Titze, 1999; Gray et al., 1999; Thibeault
et al., 2002). For example, it was previously demonstrated from
rheological investigations from multiple studies that scarred vocal
folds are generally more viscous than normal vocal folds (Rousseau
et al., 2003). Therefore, biological changes in the vocal folds from
phonotrauma are not only related to the decreased perceptual
quality of the voice (Nuss et al., 2010; Gramuglia et al., 2014) but
may directly impact vocal effort and significantly alter vocal fold
vibration biomechanics due to an increase in PTP.

Damage to vocal fold tissues from
mechanical stimulation

As vocal folds oscillate, they are subjected to constant stress and
stimuli from air-induced force and laryngeal muscle adjustments

(Titze, 1994). Some representative types of stress that vocal folds are
exposed to during vibration are shown in Figure 3. Titze (1994)
suggested that physiology of the vocal fold vibration has a direct
causal effect to the disruption of biological homeostasis in the vocal
folds that results in voice disorders. Such examples of voice disorders
include the formation of benign masses of collagenous fibers such as
vocal fold nodules and polyps, usually found in the mid-
membranous portion of the vocal folds. It is generally believed
that these masses are formed from a certain type of mechanical stress
that occur during vocal fold impact, when two folds collide with each
other during the oscillatory cycle. Accordingly, vocal fold impact
stress have been extensively investigated with various phonatory
conditions using canine larynges, human participants, and
computational modeling and have shown that collision force is
highest in the mid-membranous location of the vocal folds, where
these benign masses are mostly seen (Jiang and Titze, 1994; Gunter,
2004; Tao and Jiang, 2007; Zhang, 2019; Motie-Shirazi et al., 2021).
Jiang and Titze (1994) used canine larynges and experimentally
demonstrated that pre-phonatory glottal configuration, stiffness of
the vocal folds, and subglottic pressure were determining
contributors to impact stress, with subglottic pressure showing a
markedly high correlation. Another study further demonstrated that
increased subglottic pressure results in high acceleration and
deceleration of the vibrating vocal folds during larger amplitude
vibration (Horácek et al., 2009), which results in a higher vocal fold
collision stress due to Newton’s second law of motion (Jiang et al.,
2001). More recently, computational modeling studies showed that a
smaller pre-phonatory glottal angle, lower transverse stiffness of the
vocal folds, higher lung pressure, and vocal tract shape with an
expanded oral cavity had a causal relationship to higher impact
stress (Zhang, 2019; Zhang, 2021). From a biological perspective,
computational modeling and analytical investigations show that an
increase in the viscosity of vibrating tissues leads to higher energy

FIGURE 3
Representative stresses the vocal fold is exposed to during
vocalization. Airflow displaces the vocal folds laterally, resulting in
compressive and tensile stress. Airflow also displaces the vocal fold
superiorly and inferiorly, resulting in shear stress on the medial
surface. Pitch changes during vocalization results in elongation of the
vocal fold, applying strain in the longitudinal direction. This leads to
increased stress in the anterior-posterior axis. Additionally, the
oscillatory motion causes the opposing vocal fold tissues to collide,
generating impact stress at the site of contact. Impact stress is highest
in the mid-membranous portion of the vocal fold (black arrow).
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dissipation as heat during energy transfer and generally results in
higher impact stress (Erath et al., 2017; Motie-Shirazi et al., 2021).
Moreover, it was also suggested that edematous vocal folds cause a
vicious feedback loop that results in a higher collision pressure and
higher viscosity dissipation, which leads to further swelling (Deng
et al., 2023). Swelling is a complex biological response of fluid
buildup due to vascular leakage and disruption in the
transcapillary fluid exchange, which can be caused by many
factors (Gou and Pence, 2016), including excessive mechanical
stimuli such as hyperfunctional voice use, which causes acute
tissue inflammation and edema. It was shown that excessive
vocal loading with high frequency and displacement of the vocal
folds are sufficient to induce microvessel rupture from elevated
intravascular pressure, resulting in an inflammatory response and
leakage of fluid (Czerwonka et al., 2008). When swelling occurs,
some compensatory behavioral adjustments to initiate and sustain
oscillation may take place, such as a stronger glottal closure or an
increase in the subglottic pressure that will again increase impact
stress and cause further swelling due to high amplitude vibration.
While these stresses are thought to occur during voice production,
most studies that investigated stresses acting upon the vocal fold
have been performed in silico, or from dissected animal larynges.
Quantifying the exact amount of stresses during native vocal fold
oscillation in humans proves to be a challenge for a number of
reasons. Such examples include probes disrupting the native vocal
fold vibration during measurements and insertion of such devices
shifting the geometry of the vocal tract, which affects vocal fold
vibratory parameters through non-linear source-filter interactions
(Titze, 2008). So while computational modeling studies offer a
conceptual framework of parameters related to various stresses
acting on the vocal folds, precise quantities of such stresses may
vary during natural vocal fold vibrations.

Beneficial mechanical stimulation of
the vocal folds in vivo: voice therapy

While some voice disorders are caused by large amplitude
mechanical forces, there are parameters of the voice that, when
changed, result in less impact stress and may prevent
phonotraumatic disorders. In other words, certain vibratory
stimulation of the vocal folds may be clinically and physically
advantageous. Two parameters related to vocal fold oscillation
and their clinical relevance have been suggested in the past: vocal
efficiency and vocal economy.

Vocal efficiency is defined as the transfer ratio of aerodynamic
energy to acoustic energy and is determined mathematically by
subglottic pressure, glottal airflow, fundamental frequency, and
maximum flow declination rate (MFDR) (Titze, 1992b). MFDR
refers to the peak rate at which the glottal airflow declines during the
closing phase, which is an important parameter as it is theoretically
and experimentally correlated with vocal intensity (Holmberg et al.,
1988; Titze and Sundberg, 1992). More recent studies indicate that
vortices resulting from flow separation in a divergent glottis during
self-sustained oscillation are a significant contributor to MFDR
(Sundström et al., 2022). Furthermore, it has been
mathematically demonstrated that narrowing the epilaryngeal
airway leads to impedance matching of the source and the load,

leading to maximum power transfer and increased vocal efficiency
(Titze, 2021). This was also validated experimentally by Guzman
et al. (2013) using a computer tomography scanner, where they
found an increase in higher harmonic energy during phonation
when participants narrowed their vocal tract after a semi-occluded
vocal tract exercise. In this study, the investigators believed that this
increase in higher harmonic energy was attributed to the narrowing
of the vocal tract, which better matched the impedance of the glottal
source. While vocal efficiency is informative in quantifying energy
transfer, this parameter has shown little clinical value as it does not
consider the cost-to-benefit ratio for vocal health (Titze, 1992b). For
example, it has been shown theoretically and experimentally that a
potentially hazardous “pressed voice” has a higher vocal efficiency
due to low glottal airflow (Grillo and Verdolini, 2008).

On the other hand, vocal economy is defined as the ratio of the
radiated acoustic power to the collision impact force of the vocal
folds, which can also be mathematically expressed as the ratio of
maximum flow declination rate to maximum area declination rate
(Berry et al., 2001; Titze, 2006a; Titze and Laukkanen, 2007). While
MFDR is indicative of acoustic output, maximum area declination
rate (MADR) refers to the peak velocity rate at which the glottal area
declines during the closing phase, which was proposed as an
indicator that can predict the phonotraumatic impact force
(Titze, 2006a). Nuances in the reliability of MADR in estimating
impact stress are debated in recent studies due to findings that
velocity just before impact is significantly reduced, especially at
lower intensities, showing more than 95% reduction fromMADR in
some cases (Horáček et al., 2021; DeJonckere and Lebacq, 2022).
Nevertheless, vocal economy has shown to have higher clinical
relevance, as it accounts for the damage inflicted on the vocal
folds during collision.

While this knowledge informs clinicians at a conceptual level of
how vocal folds may be more susceptible to damage from
mechanical stress, it is argued that vocal fold geometry and
stiffness properties co-vary with each other, and isolated changes
of these parameters would be impossible at the systemic level
(Zhang, 2023). Therefore, clinicians have adapted holistic
approaches to treat voice disorders and reduce impact stress,
aiming to restore health in the vocal folds (Stemple, 2005). Some
therapeutic approaches exist, such as Vocal Function Exercise,
Lessac-Madsen Resonant Voice Therapy, Smith Accent Method,
Stretch and Flow Phonation (also known as Casper-Stone Flow
Phonation), that impose mechanical stimulation in certain ways that
rehabilitate the vocal folds (Kotby et al., 1991; Stemple et al., 1994;
Schneider and Sataloff, 2007; Verdolini-Abbott, 2008; Verdolini-
Abbott et al., 2012). Within these approaches, there exists some
adaptation of phonating with a semi-occlusion of the vocal tract,
such as lip trills, humming, phonation into a tube submerged
underwater, or singing with rounded lips that results in lower
collision force of the vocal folds, thereby increasing vocal
economy (Titze, 2006b; Titze and Laukkanen, 2007; Horáček
et al., 2019). It is well established that such behavioral
adjustment to the vocal tract geometry will shift the nature of
vocal fold vibration to reduce impact stress, which serves as a
scientific rationale for the aforementioned voice therapies (Titze,
2006b). Decrease in impact stress or increase in vocal economy
during or after semi-occluded vocal tract exercises have been
demonstrated with computational and physical models (Titze,
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2006a; Titze and Laukkanen, 2007; Titze, 2008; Horáček et al., 2019;
Titze, 2020), as well as experimentally (Calvache et al., 2020) using
the quasi-output cost ratio (QOCR), a known parameter that
indirectly quantifies vocal economy in humans participants
through electroglottographic measures (Laukkanen et al., 2009).

Biophysical explanation for
mechanotransduction

Voice therapies have focused on inducing mechanical stimuli in
ways that are less detrimental to, or even potentially helpful to vocal
fold tissues during wound repair (Verdolini-Abbott et al., 2012). It
can be postulated that these stimuli are transmitted through
mechanotransduction, resulting in biological changes in cellular
behaviors. A brief synopsis of the underlying physical principles
is presented in this section. Mechanotransduction is achieved
through gating of MS channels due to external mechanical
stimuli. Two models have been proposed to demonstrate the
underlying biophysical principle for MS channel activation
(Figure 4). The “force-from-lipids” (FFL) model shows that
mechanical force applied to the lipid bilayer is the main
contributor that gate the channels (Martinac et al., 1990). The
FFL model can explain the gating of MS channels in the context
of hydrophobic mismatch and/or the changes in the membrane
curvature (Bavi et al., 2016b). When a lipid bilayer is stretched,
bilayers become thinner, and MS channels embedded in the bilayers
experience a hydrophobic mismatch; that is, the hydrophobic α-
helices of the MS channel are now thicker than the stretched bilayer.
This is followed by a conformity change in the α-helix protein to
minimize the mechanical strain on the bilayer. This results in helical

tilting, modulating the gatedMS channels to open/closed formations
(Hamill and Martinac, 2001). Local curvature changes can also
induce MS channel activation. Using a finite element model, Bavi
et al. (2016a) showed that local curvature radii of 50 nm are
sufficient to influence the activation of MS channels. Experiments
inserting amphipathic molecules into the lipid bilayer have been
shown to cause such effects on TREK, TRAAK, and
PIEZO1 channels (Patel et al., 1998; Syeda et al., 2016; Tsuchiya
et al., 2018).

The second explanation of the underlying biophysical principle
for MS channel activation can be done using the “force-from-
filament” (FFF) model. This model is predicated on the
assumption that the cytoskeleton and its interaction with the
extracellular matrix (ECM) play a major role in
mechanotransduction (Cox et al., 2019). This model was initially
proposed to describe mechanotransduction in auditory and
vestibular hair cells (Chalfie, 2009). In this model, filaments in
the ECM and cytoskeleton are either directly tethered to MS
channels or indirectly linked to the auxiliary proteins that are
bound to MS channels. When tension is applied, filaments from
both sides apply force on the MS channel, resulting in open/closed
formations (Ranade et al., 2015; Zhang et al., 2015). Duque et al.
(2022) used ultrasonic stimulation and showed that actin filaments
are involved in gating the TRPA1 channel, and Prager-Khoutorsky
et al. (2014) demonstrated that microtubules are involved in gating
the TRPV1 channel. It should be noted that these two models
explained here are not mutually exclusive, as
mechanotransduction involves a dynamic interaction between
both the lipid bilayers and filaments. A prime example
demonstrating these mechanisms was performed on the MS
TRAAK K+ channel, which was shown to be activated either

FIGURE 4
Two models that explain the biophysical principles underlying mechanosensitive channel activation. (A) Force-from-lipid model, where local
curvature and hydrophobic mismatch causes the ion channel to open, and (B) force-from-filament model, where channels are activated through the
influence of forces transmitted from the filaments located in the cytoskeleton or the extracellular matrix.
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from the lateral membrane tension or from the local membrane
curvature (Martinac and Hamill, 2002; Aryal et al., 2017). It is now
generally believed that both contribute to the activation of MS
channels, and one paradigm cannot be wholly separated from the
other (Cox et al., 2017, Cox et al., 2019).

PIEZO channels and their effect on
fibroblasts

Of the numerous MS channels that have been identified in the
human body, the role of PIEZO channels in wound healing in
fibroblasts is worth noting, as recent literature have identified
PIEZO channels in the laryngeal airway and vocal fold
epithelium (Lungova et al., 2020; Foote et al., 2022a; Foote et al.,
2022b). PIEZO1 and PIEZO2 are non-selective cation channels,
showing permeability to Na+, K+, Ca2+, and Mg2+ ions, with a slight
preference and highest affinity to CA2+ ions (Coste et al., 2010; Coste
et al., 2012; Gnanasambandam et al., 2015). PIEZO1 is inherently
mechanosensitive, suggesting that it can be activated by pure
mechanical stimuli such as stretch, pressure, or shear stress
(Syeda et al., 2016). PIEZO2 is closely associated with
proprioception, interoception, and somatosensation in organs
such as the bladder, lungs, and stomach and the sensation for
arterial blood pressure (Chesler et al., 2016; Umans and Liberles,
2018; Min et al., 2019; Prescott et al., 2020; Ma et al., 2022). As
PIEZO1 and PIEZO2 share similar structural properties (Saotome
et al., 2018; Zhao et al., 2018; Wang et al., 2019), it was originally
hypothesized that the gating mechanism for the two channels would
be similar. However, PIEZO1 has been shown to modulate gating by
membrane stretch alone (Cox et al., 2016), while PIEZO2 is less
sensitive to membrane tension (Young et al., 2022). It was
demonstrated that PIEZO2 is nonresponsive to negative
pressures while being preferentially activated from positive
pressures, that is, from the indentation of the membrane (Shin
et al., 2019).

Research regarding PIEZO channels in fibroblasts have
primarily been performed in cardiac tissues, which similar to
vocal fold tissues, are also constantly exposed to mechanical
stimuli (Stewart and Turner, 2021). PIEZO1 expression has been
directly linked to increased fibrosis in cardiac hypertrophy by
evoking Ca2+-mediated differentiation of fibroblasts into
myofibroblasts (Beech and Kalli, 2019; Zhang et al., 2021). Blythe
et al. (2019) found that through a PIEZO1 agonist-mediated
activation in murine cardiac fibroblast, a 2–4 fold increase in IL-
6 gene expression and a 3–4 fold protein increase in p38MAPKwere
detected, indicating that PIEZO channels may play a contributing
role in cardiac remodeling that may result in cardiac fibrosis (Ma
et al., 2012). From the above studies, it is shown that cardiac
fibroblasts play an important role in mediating inflammation and
fibrosis. Generalizing the behavior of cardiac fibroblasts when
exposed to mechanical stimuli to human vocal fold fibroblasts is
premature, given the demonstrated heterogeneity in gene expression
across fibroblasts from different tissue types (Foote et al., 2019). A
recent study by Zheng et al. (2024) investigated the role of
PIEZO1 in lung fibroblasts, which is more similar in
transcriptome profiles to vocal fold fibroblasts. In this study, the
investigators exposed human lung fibroblast cells to static tensile

stress, and found protein upregulation in α-SMA, Col1a1, and
fibronectin in fibroblasts with functioning PIEZO1 channels,
compared to fibroblasts with PIEZO1 inhibited or knocked out.
This suggests that attenuation of PIEZO1 expression may be a
potential therapeutic target in curing fibrosis. Given that PIEZO
channels mediate cellular responses in such ways that may
potentially be critical in vocal fold physiology, further
investigation of these mechanosensitive channels in vocal fold
cells could provide clinically relevant insights.

To our knowledge, only three studies have investigated PIEZO
channels in the vocal folds. Studies localizing the PIEZO channels in
the vocal folds showed that PIEZO1 is present in epithelial cells of
the mid-membranous vocal folds in mice, while PIEZO2 were
present in the sub- and supra-glottic regions (Foote et al., 2022a;
Foote et al., 2022b). While much remains to be uncovered, recent
studies indicate that the life cycle of vocal fold epithelial cells is
highly dependent on PIEZO1, similar to findings in renal epithelial
tissues (Eisenhoffer et al., 2012; Gudipaty et al., 2017). Lungova et al.
(2020) found that activation of PIEZO1 in epithelial cells of the vocal
folds may contribute to downstream signaling that results in vocal
fold epithelial stratification and changes in ECM stiffness. Foote
et al. (2022a) also found that PIEZO1 contributes to epithelial
remodeling after a chemical-induced vocal fold injury.
Meanwhile, PIEZO1 contributions in response to mechanical
stress are unknown and remain an objective for future
investigations.

Moreover, PIEZO channels have shown to be dynamically
expressed in fibroblasts depending on the substrate property on
which cells were seeded. Braidotti et al. (2024) found that in a softer
polydimethylsiloxane substrate, cardiac fibroblasts express lower
levels of the PIEZO1 gene, ultimately inhibiting differentiation
into myofibroblasts. Similar results were also shown by He et al.
(2024), where human dermal fibroblasts seeded in substrates with
higher mechanical stiffness resulted in higher expression levels of
PIEZO1, which ultimately led to increased fibrotic response. These
results are especially of interest because, unlike other organs, the
vocal folds constantly undergo dynamic changes in stiffness and
geometry during vocalization upon activation of the thyroarytenoid
(TA), cricothyroid (CT), and lateral cricothyroid (LCA) muscles
(Titze, 2014; Vahabzadeh-Hagh et al., 2017b). In practice, changes in
the fundamental frequency and the sound pressure level were shown
to have a direct cause-effect relationship with vocal fold stiffness
(Zhang, 2017). Furthermore, vibratory patterns observed during
modal and falsetto phonation is thought to be dependent on the
differential stiffness properties along the superior-inferior axis of the
vocal folds, mediated by the TA and LCA muscles (Titze, 2014).
Moreover, stiffness variations along the superior-inferior axis of the
vocal folds have been observed, with inferior portions exhibiting
higher stiffness in both canine and human vocal folds (Chhetri et al.,
2011; Chhetri and Rafizadeh, 2014). This heterogeneous stiffness
disparity increases under tensile strain, which would occur through
the activation of the CT muscle in vivo (Oren et al., 2014). This
implicates that depending on vocalization habits, localization and
expression of PIEZO1 in fibroblasts for individuals may differ
substantially. While PIEZO expressions in vocal fold fibroblasts
have not yet been directly investigated, future work regarding this
topic shows promising implications that advance our understanding
of how voice disorders develop in humans.
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Anti-inflammatory effects of
mechanotherapy on soft tissues and
fibroblasts

Advances in knowledge of mechanotransduction and
mechanobiology facilitated the development of new therapies that
utilize mechanical stimulation to manipulate cell behavior,
ultimately leading to tissue or organ repair. It has been
demonstrated at the cellular level that disrupting the mechanical
equilibrium by inducing force could promote tissue regeneration (Lo
et al., 2000; Engler et al., 2006). Extracorporeal shockwave therapy
(ESWT), a form of mechanotherapy, induces a transient burst of
positive pressure, rapidly followed by a variable lower pressure
(Ogden et al., 2001). These acoustic waves are detected by (MS)
channels in cells, which alter cellular behavior, leading to various
biological benefits. These benefits include reduced wound size
(Schaden et al., 2007), accelerated reepithelialization (Ottomann
et al., 2012), enhanced angiogenesis (Huang et al., 2017; Sundaram
et al., 2018), and increased fibroblast proliferation and collagen
synthesis (Yang et al., 2011). Cui et al. (2018) found dermal
fibroblasts harvested from human scar tissue stimulated with
ESWT showed lower gene expression and protein production
levels of TGF-β1, α-SMA, fibronectin, and Col1a1 compared to
controls after 24 h, implicating anti-fibrotic effects. Meanwhile,
Berta et al. (2009) reported that normal human dermal
fibroblasts showed an increase in TGF-β1 gene expression 6 and
9 days after ESWT, an increase in collagen I gene expression 12 days
after ESWT, and an increase in collagen III gene expression 9 and
12 days after ESWT with a significant decrease on day three
compared to the control group. Discrepancies in the biological
responses indicate that cells respond selectively to different
parameters of mechanical stimuli (Romeo et al., 2014). ESWT
dose-dependent cell behaviors were quantified, and it was shown
that ESWT can manifest both pro-inflammatory and anti-
inflammatory effects depending on the energy of the shockwave
and the number of pulses of shocks that were applied (Zhang et al.,
2014). ESWT has been shown to exhibit changes in cellular response
of macrophages as well. Polarization of macrophages to the anti-
inflammatory phenotype M2 macrophages were detected, with
higher protein expression of anti-inflammatory IL-10 secretion
after ESWT (Abe et al., 2014; Tepeköylü et al., 2015). It was also
shown that ESWT stimulation for 4 h resulted in a significant
downregulation in gene and protein expression of inflammatory
markers such as IL-1β, CCL5, CXCL9, and CXCL10 from
M1 macrophages (Sukubo et al., 2015).

The effects of ultrasonic irradiation have also been studied
extensively on soft tissues. Using low-intensity pulsed ultrasound
(LIPUS) has been found to increase protein expression of MS
channels, such as PIEZO1, Cav1.2, NCX1, TRPV1, and TRPM7
(Zuo et al., 2018; Yao et al., 2022; Zheng F. et al., 2024), promote cell
proliferation (Kobayashi et al., 2009; Puts et al., 2018; Tan et al.,
2021), ameliorate fibrosis (Aibara et al., 2020; Kun et al., 2021; Zhao
et al., 2021; Zhou et al., 2023), and promote ECM remodeling
(Zhang et al., 2016). In fibroblast cells, Zhou et al. (2004) showed
that 6 and 11 min of LIPUS exposures in human dermal fibroblasts
resulted in significant fibroblast proliferation after 24 h. Franco de
Oliveira et al. (2011) found similar results of higher proliferation
compared to the control group after 24, 48, 72, and 96 h in murine

lung fibroblasts. Moreover, Perrucini et al. (2021) found that
FGF7 and VEGF genes related to angiogenesis were upregulated
and found increased Col1a1 gene expression and decreased IL-6
inflammatory gene expression after 48 h of LIPUS stimulation.
Weng et al. (2022) found anti-inflammatory and anti-fibrotic
effects of LIPUS on neonatal rat cardiac fibroblasts, showing
downregulation of NLRP3-related inflammatory response and
downregulation of NOX4, implying decreased oxidative stress.
Macrophages have also shown behavioral changes in response to
LIPUS. Xu et al. (2023) found that after 6 weeks of LIPUS exposure,
approximately 3.5-fold and 5.5-fold upregulation in anti-
inflammatory IL-10 and CD163 gene expression were measured,
respectively. In this study, the investigators also measured the
phenotype changes of macrophages by quantifying the ratio of
M1 to M2 macrophages and found higher amounts of
M2 macrophages after LIPUS exposure. Similar to the
polarization changes in macrophages from ESWT exposure,
polarization to M2 macrophages from LIPUS stimulation was
also reported in other studies (da Silva Junior et al., 2017; Zhang
et al., 2019). Suppression of inflammatory effects was also seen in a
study by Feltham et al. (2021), where they found 5.2-fold
downregulation in protein expressions of IL-1β and suppression
of CD68+ macrophage infiltration after LIPUS stimulation in rats
with intra-articular fracture at the tibial plateau. Finally, a study by
Iacoponi et al. (2023) showed downregulation of gene and protein
expression of TNF-α, IL-1β, and IL-8 that was shown to vary from
dosage and frequency of LIPUS. In this study, they also used
mechanosensitive channel blockers to suggest that protein
expression of TNF-α, IL-1β, IL-4, IL-6, IL-8, IL-10, and IL-12p70
may be regulated by PIEZO and TRP channels.

When investigating mechanotherapy at the systemic level,
massage therapy has been associated with anti-inflammatory and
anti-fibrotic benefits. When investigating massage with
inflammation, Crane et al. (2012) found that a 10-minute
massage therapy immediately after exercise showed the
immediate effect of decreased expression in NFκB protein
content in a diet-controlled study with 11 human participants.
Correspondingly, the protein content of pro-inflammatory
cytokine IL-6 was also downregulated 2.5 h later, indicating that
mechanotransduction occurred rapidly in response to stretch,
leading to anti-inflammatory effects. White et al. (2020) found
similar anti-inflammatory effects of massage therapy in
9 athletes, where they reported quicker downregulation of TNF-
α, IL-6, IL-8, and MCP-1 after loading compared to the control
group. Rats exposed to massage therapy have shown decreased
protein levels of pro-inflammatory markers such as IL-1β, IL-18,
MCP-1, and TNF-α, increased protein levels of anti-inflammatory
marker IL-10, and inhibition of fibrotic response (Barbe et al., 2021a;
Barbe et al., 2021b). At a practical level, meta-analyses of soft tissue
mobilization after mechanical loading have been shown to relieve
pain and improve range of motion and flexibility (Cheatham et al.,
2016; Davis et al., 2020). However, high variation and lack of
rigorous controls in methodology and investigated parameters
used across studies indicate that comparisons across studies are
unreliable (Lima et al., 2020), arguably very similar to voice
therapy studies.

As mentioned above, mechanotherapy encompasses a wide
range of therapeutic approaches, each inducing diverse biological
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changes that are beyond the scope of this review. For a
comprehensive examination of the recent advances in specific
mechanotherapies, readers are encouraged to refer to the
following review articles (Frairia and Berta, 2011; Jiang et al.,
2019; Lima et al., 2020; Xu et al., 2021; Qin et al., 2022).
However, it can be seen from various studies that biological
outcomes of mechanical stimuli are highly dependent on cell
type, treatment method, and duration, as well as other technical
discrepancies among different experimental designs (Eagan et al.,
2007; Franco de Oliveira et al., 2011; Zhang et al., 2014; Tan et al.,
2021;Weng et al., 2022; Iacoponi et al., 2023). It is apparent that cells

are highly sensitive to various mechanical stimuli, and minute
changes in parameters, such as frequency, amplitude, or applied
duration, can result in heterogeneous cell behaviors. For example, in
a study to find the optimum parameters for ESWT on endothelial
progenitor cells, it was shown that using the energy of 0.04 mJ/mm2

per impulse, 60 more impulses of shock waves from 140 impulses to
200 impulses resulted in an approximate 30% downregulation of IL-
6 gene expression, while at a fixed rate of 140 impulses, increasing
the energy from 0.07 to 0.1 mJ/mm2 resulted in an approximate 40%
downregulation of IL-6 gene expression (Zhang et al., 2014).
Additionally, dermal fibroblasts subjected to cyclic short-duration

TABLE 1 Summary of study designs implemented in mechanical stimulation of fibroblasts using vocal fold mimetic bioreactors.

Fibroblast
source

Substrate type Stimulation
frequency

Strain Stimulation
type

Stimulation pattern
and duration

Titze et al.
(2004)

Human laryngeal
fibroblasts

Tecoflex substrate coated with
fibronectin

100 Hz 20% tensile
strain

Continuous
vibration

6 h

Webb et al.
(2006)

Human tracheal
fibroblasts

Tecoflex substrates coated with bovine
plasma fibronectin

0.25 Hz 10% tensile
strain

Cyclic strain 6 h

Branski et al.
(2007)

Rabbit vocal fold
fibroblasts

Collagen type I-coated Bioflex II plates 0.005/0.05/0.5 Hz 3/6/9/18%
tensile
strain

Cyclic strain 4/24/48 h of cyclic strain

Wolchok
et al. (2009)

Human laryngeal
fibroblasts

Polydimethylsiloxane and
polyurethane scaffolds coated with
fibronectin

100 Hz No strain Pulsed vibration 1.5 s on/30 s off for 6 h, rest
for 18 h per day for total of
3 days

Kutty and
Webb (2010)

Human dermal
fibroblasts

Methacrylated hyaluronic acid
hydrogels crosslinked to Tecoflex films

100 Hz No strain Pulsed vibration 2 s on/2 s off for 4 h per day
for total of 10 days

Gaston et al.
(2012)

Immortalized
human vocal fold
fibroblasts

Tecoflex substrate coated with human
fibronectin

200 Hz 20% tensile
strain

Continuous
vibration/strain

8 h of continuous vibration

Farran et al.
(2013)

Primary human
neonatal foreskin
fibroblasts

Collagen I – coated silicone
membranes

60/110/300 Hz No strain Continuous
vibration

1 h of continuous vibration

Latifi et al.
(2016)

Human vocal fold
fibroblasts

Thiol-modified heparin-bonded
hyaluronic acid and thiol-modified
gelatin hydrogel cross-linked with
polyethylene glycol acrylate

Approx. 100 Hz No strain Pulsed vibration 1 h on/15 min off/1 h on for a
total of 4 days

Kim et al.
(2016)

Human vocal fold
fibroblasts

Bioflex flexible culture plate coated
with type I collagen

205 Hz No strain Continuous
vibration

2/6/10 h of continuous
vibration

Kim et al.
(2018)

Human vocal fold
fibroblasts

Bioflex flexible culture plate coated
with type I collagen

205 Hz No strain Pulsed vibration 2 s on/2 s off for 4 h, with 1 h
rest before analyses

Kirsch et al.
(2019)

Immortalized
human vocal fold
fibroblasts

Bioflex flexible culture plate coated
with pronectin

50–250 Hz sweep No strain Pulsed vibration 1 min on/1 min off for 16 h
for total of 2 days

Hortobagyi
et al. (2020)

Immortalized
human vocal fold
fibroblasts

Bioflex flexible culture plate coated
with pronectin

50–250 Hz sweep No strain Continuous
vibration

4 h of continuous vibration
per day for total of 3 days
(72 h) and 1 h of rest before
analyses

Kim et al.
(2021)

Primary vocal fold
fibroblasts

Corning T75 flask with a hydrophilic,
negatively charged polystyrene
surface, modified by corona discharge
treatment

50/80/100/130 Hz No strain Continuous
vibration

0/1/3/6/24/48/72 h of
continuous vibration

Biehl et al.
(2023)

human vocal fold
fibroblasts

Tissue culture plastic treated flasks
coated with Tegaderm dressing

100 Hz No strain Continuous
vibration

1 and 2 h of continuous
vibration

Kirsch et al.
(2024)

Immortalized
human vocal fold
fibroblasts

Bioflex flexible culture plate coated
with pronectin

100–135 Hz sweep/
200–250 Hz sweep

No strain Continuous
vibration

30 s on/90 s off for 16 h per
day for total of 3 days

Frontiers in Cell and Developmental Biology frontiersin.org09

Cha and Thibeault 10.3389/fcell.2025.1501341

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2025.1501341


stretches designed to replicate the effects of repetitive motion injury
exhibit an inflammatory response. In contrast, strain models with
changes in some parameters that simulate the mechanical effects of
massage therapy have been shown to reverse this response (Meltzer
and Standley, 2007; Meltzer et al., 2010; Anloague et al., 2020). These
findings indicate that precise modulation of mechanical stimulation
parameters can elicit markedly different cellular outcomes.

Mechanical stimulation of fibroblasts
in vitro using vocal fold mimetic
bioreactors

It can be postulated that fibroblasts in the vocal fold lamina
propria will exhibit distinct behaviors in response to various
mechanical stress. Due to difficulties controlling unknown
variables among human participants, researchers have turned to
using bioreactors to impose mechanical force on vocal fold
fibroblasts and examine the differentiated cell behaviors. Table 1
shows specific details of the studies exposing fibroblasts to vocal fold
mimetic movement, and Figure 5 shows the corresponding
outcomes. For a recent comprehensive review solely focused on
vocal fold mimetic bioreactors, readers are referred to Gracioso
Martins et al. (2022).

Similar to studies that have investigated other cells stimulated
with mechanical force, the cellular behaviors of vocal fold fibroblast
in response to mechanical stimulation are heterogeneous and
dependent on the specific parameters of the vibratory forces.

Nevertheless, it is shown in Figure 5 that proteins or genes
related to collagen synthesis and ECM remodeling are generally
upregulated when exposed to mechanical stimulation. Higher levels
of collagen I and collagen III gene expression typically show up to
3 days from an initial dosage of mechanical stimulation. This may
indicate that while nuanced behaviors of vocal fold fibroblasts are
stimuli-dependent, ECM turnover seems to be accelerated compared
to static vocal fold fibroblasts to remodel the ECM faster when
exposed to mechanical stimulation.

Moreover, the investigation of pro/anti-inflammatory effects of
mechanical stimulation is also worth discussing from Figure 5. Of
the reviewed literature, Hortobagyi et al. (2020) and Branski et al.
(2007) treated the fibroblasts with pro-inflammatory cytokines to
investigate the effect of mechanical stimulation on vocal fold
fibroblasts that mimic the state of acute inflammation.
Hortobagyi et al. (2020) reported that human vocal fold
fibroblasts treated with pro-inflammatory cytokines resulted in
downregulation of IL-11 gene expression level after mechanical
stimulation. Their results demonstrated that mechanical
stimulation may have anti-inflammatory effects and
downregulation in fibrotic responses of vocal fold fibroblasts, as
IL-11 is a critical regulator in fibrosis (Ng et al., 2020; O’Reilly, 2023).
Meanwhile, Branski et al. (2007) showed that cyclic strain of the
rabbit vocal fold fibroblasts resulted in inhibition of COX-2, iNOS,
and MMP-1 induced by IL-1β, implicating anti-inflammatory
effects. In the context of inflammation suppression, Wolchok
et al. (2009) found a significant decrease in the pro-inflammatory
MCP-1 protein expression in normal human laryngeal fibroblasts.

FIGURE 5
Gene and protein expression of fibroblasts that have been mechanically stimulated by vocal fold mimetic bioreactors.

Frontiers in Cell and Developmental Biology frontiersin.org10

Cha and Thibeault 10.3389/fcell.2025.1501341

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2025.1501341


These three results demonstrate that anti-inflammatory effects are
elicited through various pathways, the specifics of which may also
depend on the parameters of the mechanical stimuli.

Higher gene expression of fibromodulin and decorin were also
shown when induced with mechanical stimulation at various time
points (Titze et al., 2004; Kutty and Webb, 2010). Although there
were only two studies that investigated the levels of fibromodulin
and decorin, this may implicate that stimuli-dependent ECM
collagen turnover may take place without the formation of scar
tissues, as scarred vocal folds are known to show decreased
expression of fibromodulin and decorin (Thibeault et al., 2003).
Fibromodulin is known to modulate the TGF-β1 activation pathway
by reducing scar formation and decreasing expression of the
ACTA2 gene (Zheng et al., 2017), a known biomarker for
myofibroblast differentiation. Meanwhile, decorin is also known
to inhibit TGF-β1 production, a cytokine responsible for scar
formation (Zhang et al., 2007). The effect of reduction in fibrous
molecules on vocal fold vibration will be discussed further below.

Comparing the results of the above studies at face value prove to
be a challenge as experimental designs varied heavily among studies.
Notable differences include frequency, amplitude, duration of
stimulations, and rest intervals. Most studies did not apply
continuous stimulation to cells; instead, they included periods of
rest, during which cells remained static within the bioreactors.
Furthermore, some studies used the same bioreactor with varying
vibratory parameters or pre-stimulatory cytokine treatment, leading
to differences in gene expression even in same time points.
Accordingly, it is worth noting some inconsistencies and
conflicting results in gene expression for same time points, as seen
in Figure 5. For example, researchers found significant decrease and
no changes in MMP1 gene expression after 1 h, 2 h, and 1 day of
stimulation. Conflicting results inMMP1 gene and protein expression
are also reported at the 6 h time point and 3 days after stimulation.
Collagen, elastin, HAS2, TIMP1, COX2, TGF-β1, ACTA2, decorin,
and fibronectin gene expression levels vary when analyzed at same
time points, showing significant increase, decrease, and/or no changes.
Discrepancies in the results may be attributed to dose-dependent
cellular responses, as well as the various sources of fibroblasts
extracted from other animals or other parts of the body.
Moreover, the mechanical properties of the used substrates may
have also affected cell behavior, as substrate stiffness is known to
change collagen synthesis and pro-inflammatory behavior in
fibroblasts (Tiskratok et al., 2023; Verma et al., 2023; Felisbino
et al., 2024; He et al., 2024). Most importantly, stimulation
frequency, type, and duration were different across all studies, and
even within some of the reviewed literature, fibroblasts have shown
different behaviors depending on the frequency, intensity, or duration
of the mechanical stimuli. Considering the parameter-dependent
heterogeneous cell behaviors that were also shown for
macrophages in other mechanotherapy studies mentioned above
(Davis et al., 2009; Sukubo et al., 2015; Zhang et al., 2017; Zhang
et al., 2019; Feltham et al., 2021; Gouda et al., 2023; Iacoponi et al.,
2023; Xu et al., 2023), it is postulated that fibroblasts andmacrophages
in the vocal fold lamina propria will also likely exhibit distinct
behaviors in response to varying forms of mechanical stress.

Furthermore, the biological outcomes from above bioreactor
studies may not translate to the systemic level, as it was also
demonstrated that fibroblast cells alone may not represent the

complexity of their behavior in vivo. Specifically, the vocal fold
epithelial cells will also be stimulated by mechanical stress, which
may affect the behaviors of vocal fold fibroblasts. It was shown that in
other parts of the human body, mechanical stress such as hydrostatic
pressure, compressive force, and shear stress affect epithelial cells to
express TGF-β1, TGF-β2, MMP-9, and TIMP-1 that mediate
fibroblast behavior that may ultimately affect fibrotic depositions
and matrix remodeling in the ECM (Swartz et al., 2001;
Tschumperlin et al., 2003; Caracena et al., 2022). As MS channels
TRPV3/4 and PIEZO1/2 have been identified in the vocal fold
epithelia (Foote et al., 2022a), it is not unreasonable to assume that
mechanical stimuli will also affect vocal fold epithelial cells that may
cause changes in the downstream pathways for vocal fold fibroblasts.

Changes in vocal fold biology and their
impact on vocal fold vibration

Overexpression of fibrotic depositions is a well-documented
phenomenon that can be attributed to the activation of the TGF-
β1 that ultimately leads to fibrosis (Meng et al., 2016; Hu et al., 2018).
Upon exposure to TGF-β1, fibroblasts differentiate into
myofibroblasts, characterized by secretion of α-SMA, which is
considered a reliable marker for myofibroblast differentiation
(Darby et al., 1990; Serini and Gabbiani, 1999). It has been
shown that vocal fold fibroblasts treated with TGF-β1 share a
similar phenotype with myofibroblasts that have been isolated
from scarred vocal folds (Branco et al., 2016), and
correspondingly α-SMA has also been found in vocal fold scar
tissues as well (Jetté et al., 2013). Myofibroblasts undergo higher
collagen production than regular fibroblasts (Lijnen and Petrov,
2002), and excessive collagen deposition has been found in scarred
vocal folds (Hirano et al., 2009), which changes the viscoelastic
properties of the vocal folds to become more stiff and viscous
(Rousseau et al., 2004). Physically, an increase in dynamic
viscosity results in higher energy loss (typically dissipated as heat
energy) in the viscoelastic vocal fold tissue, which would require
more expenditure of energy to sustain vocal fold oscillation
(Finkelhor et al., 1988; Chan and Titze, 1999; Gray et al., 1999),
ultimately increasing the PTP. Moreover, increase in the stiffness of
the vocal folds also changes vocal fold oscillation properties (Alipour
et al., 2000; Berry, 2001), and subsequently raises the PTP as well
(Chan and Titze, 2006). As TGF-β1 levels are indicative of potential
pro-fibrotic changes in the vocal folds, which changes its rheological
properties, this may be the reason why investigation of TGF-β1 and
α-SMA encoding gene ACTA2 levels has been of interest in past
literature. Hortobagyi et al. (2020) reported that human vocal fold
fibroblasts treated with inflammatory cytokines prior to mechanical
stimulation did not significantly alter TGF-β1 gene expression levels
but downregulated protein levels of α-SMA of more than 50% after
mechanical stimulation, while showing no changes in both TGF-β1
and ACTA2 gene expression levels for untreated human vocal fold
fibroblasts after mechanical stimulation. Similar results were seen by
Kirsch et al. (2024), where they found no significant differences in
both TGF-β1 and ACTA2 gene expression levels in untreated
human vocal fold fibroblasts after vibratory stimulation for
3 days. Gaston et al. (2012) also found no significant changes in
TGF-β1 gene expression levels in normal human vocal fold fibroblasts
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after 1 day of vibratory stimulation. On the other hand, Biehl et al.
(2023) found a downregulation in ACTA2 gene expression 1 and 2 h
after stimulation. Interestingly, Webb et al. (2006) and Kirsch et al.
(2019) reported a significant increase in TGF-β1 gene expression after
6 h and 2 days of vibratory stimulation, respectively. Furthermore,
Wolchok et al. (2009) reported an increase in TGF-β1 protein
expression 24 h after vibration was applied.

Given that TGF-β1 is a stimulant to fibroblasts for signaling
collagen production (Lijnen and Petrov, 2002; Petrov et al., 2002),
it seems reasonable that TGF-β1 may be upregulated along with
collagen synthesis. However, physiologically relevant measures of
whether this upregulation of TGF-β1 reported in above studies will
invoke fibrosis at a tissue level remain unknown. Rheological
investigations must be considered to investigate whether biological
changes such as fibrosis affect the systemic physiology of vocal fold
vibration. To date, only one study by Kutty and Webb (2010) has
investigated the rheological properties of the cell-seeded substrate after
mechanical stimulation. Although they did not examine changes in
elastic properties (Young’s or elastic shear modulus), their study found
that dynamic viscosity decreased after mechanical stimulation,
particularly when a higher number of cells were initially seeded
into the substrate (4 × 106 cells compared to 2 × 106 cells and
acellular condition). This study’s results indicated that vocal fold
fibroblasts behavior significantly affected the substrate property,
leading to a macrostructural property reduced dynamic viscosity.
To summarize, results from prior studies suggest that mechanical
stimulation results in reduced inflammatory effects from initial pro-
inflammatory and pro-fibrotic cytokine treatments. Additionally,
mechanical stimulation causes changes in the fibroblast behaviors
that decrease the macrostructural dynamic viscosity of the substrate
on which fibroblasts are seeded, which can be physiologically
advantageous in the case of vocal fold vibration.

Furthermore, hyaluronic acid (HA) expression changes may also
impact vocal fold function. HA, encoded by HAS genes, is a
glycosaminoglycan with a unique ability to attract and bind to water
molecules up to 1000-fold its molecular weight. Therefore, HA has been
associated with improved hydration, demonstrating higher levels of
water content from chronometer measurement in the dermis after HA
injections (Seok et al., 2016; Choi et al., 2020). Due to this nature of
attracting water molecules, HA is known to absorb mechanical forces
and change the viscoelastic property of the vocal folds. The role of fluid
and hydration in vocal fold tissues regarding impact stress and
implications in pathologies have been extensively investigated. With
the knowledge that the lamina propria is structurally similar to other
porous, permeable tissues in the body, Zhang et al. (2008) introduced a
biphasic model consisting of solid and liquid components of the vocal
folds to investigate the dynamics of solid-fluid interactions during vocal
fold vibration. In that study, they found that interstitial fluid provides
stress support comparable to the solid components of the vocal folds
during stress relaxation, implying the importance of hydrated vocal
folds. Experimental evidence has demonstrated that systemic
dehydration of the vocal folds alters their viscoelastic properties,
leading to higher viscosity and stiffness (Chan and Tayama, 2002;
Yang et al., 2017). Chan and Tayama (2002) studied canine larynges
and induced systemic dehydration through osmosis by immersing vocal
fold tissue samples in 25% sucrose solution for 30 min, and observed
increases in both elastic shearmodulus and dynamic viscosity. Similarly,
Yang et al. (2017) used canine larynges, but instead dehydrated vocal

fold tissues using a vacuum dryer. By normalizing dehydration levels to
the maximum point at which the net weight of vocal fold samples no
longer changed, they found that vocal folds became stiffer as
dehydration increased to 40%, 60% and 80%, respectively. From
these studies, it appears that changes in viscoelastic properties from
dehydration alone may have minimal impact on vocal fold physiology,
as such dehydration levels are highly unlikely to occur in living human
tissues. Wu and Zhang (2024) used a computation model to
demonstrate that within a physiologically relevant range,
dehydration-induced stiffness showed almost no impact on vocal
fold physiology such as changes in closed quotient, fundamental
frequency, and sound pressure level. Instead, it has been
hypothesized systemic dehydration may significantly impact muscle
physiology such as changes in endurance and increase in fatigue which
could lead to compensatory behaviors that affect voice production (Wu
and Zhang, 2017). While dehydration itself may not substantially affect
vocal fold physiology, fluid presence and dynamics within vocal folds
may be critical biomechanical factors that contributes to vocal fold
pathology (Erath et al., 2017). Studies using poroelastic models revealed
that fluid migrates to the mid-superior portion of the vocal fold during
sustained phonation, which results in localized edema at the mid
portion of the vocal folds (Tao et al., 2010; Scholp et al., 2020). It
was hypothesized that fluid accumulation in this area increases the pore
pressure sufficiently to trigger an inflammatory response (Kvit et al.,
2015). However, it is also thought that this fluid migration could
potentially absorb the impact force and protect solid components of
the vocal folds from damage over a single oscillation cycle. Scholp et al.
(2020) and Tao et al. (2013) demonstrated that during a single-cycle
oscillation, fluid is accelerated rapidly toward the midline of the vocal
folds just before the collision and quickly dissipates away from the
midline just after the collision. Therefore, a portion of the impact force
energy has to be distributed to accelerate the fluids, thereby decreasing
the impact force. As HA is crucial in attracting water molecules, it is
presumed that the presence of HA will contribute to the fluid dynamics
of vocal fold vibration. It was shown that removing HA in the vocal
folds through enzymatic degradation increased dynamic viscosity (Gray
et al., 1999; Chan et al., 2001), while HA-derived biomaterials injected
into wounded rabbit vocal folds resulted in a decrease in viscous
modulus (Duflo et al., 2006; Thibeault et al., 2011). Results from
these studies emphasize the importance of fluid dynamics in vocal
fold contact stress, with HA potentially acting as a key mediator.
Although the results from vocal fold mimetic bioreactors show
conflicting results for HAS gene expression, consistent results of no
expression changes inHYAL genes responsible for HA degradation and
evidence of upregulated HAS genes may suggest biological advantages
of mechanical stimulation of vocal fold tissues. In the reviewed
literature, there are some indications that subjecting vocal fold
fibroblasts change gene expression levels of HAS2. Like many other
investigated genes or proteins, some studies failed to find any
differences, which further supports that expression of HAS gene
may be determined by not only the presence or absence of
mechanical stimuli but also how they are induced.

Conclusion

Vocal folds are highly mobilized organs in the human body,
utilized daily and subjected to numerous mechanical stimuli.
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Mechanical stimuli are transmitted through MS channels that
are expressed on the surface of cells, which bring about changes
in gene expressions, leading to a variety of heterogeneous cellular
responses. It is shown that various mechanical stimuli to vocal
fold fibroblasts resulted in heterogeneous cellular behaviors, as
shown in a vast body of literature for cells in other parts of the
human body. With growing evidence supporting the beneficial
effects of vocal fold mobilization, linking the physiology of voice
production with cellular biological responses has become a
critical focus for voice researchers. Therapeutic approaches
beyond traditional voice therapy—those that induce vibration
at known frequencies and amplitudes—may offer valuable
insights into benefits of mechanotransduction of vocal folds.
Given that cellular responses vary widely from nuanced
parameter changes during mechanical stimulation, a thorough
investigation into the mechanotransduction of vocal fold
fibroblasts could be critical for understanding wound healing
and the maintenance of vocal fold homeostasis.
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