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2Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China

Background: Neuroblastoma (NB), one of the most common malignant
extracranial solid tumors in children, is highly invasive and lethal with limited
treatment efficacy. This study aimed to establish a prognostic model of
advanced-stage NB.

Methods:Differentially expressed genes were screened and validated using two
training datasets and one validation dataset from the Therapeutically Applicable
Research to Generate Effective Treatments and Gene Expression Omnibus
databases. Protein–protein interaction networks were developed using the
MCode plug-in, and the top three key clusters were used to produce candidate
genes. We performed gene set enrichment analysis (GSEA), gene ontology
analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis,
immune cell infiltration, and drug sensitivity analysis to further understand the
functions of these candidate genes. Kaplan–Meier (K–M) and receiver operating
characteristic (ROC) curves were used to check their prognosis value. Real-
time quantitative polymerase chain reaction (qPCR), Western blot (WB), and
immunohistochemistry (IHC) were employed to verify the mRNA and protein
levels in clinical samples.

Results: A total of 699 differentially expressed genes were identified,
including 294 upregulated and 405 downregulated genes. CNR1, PRKACB,
CDKN3, and PCLAF were found to significantly affect the overall survival
and event-free survival of neuroblastoma patients and were positively
correlated with the INSS advanced stages. The functional analysis of
these four genes revealed their cancer-promoting effects and correlations
with immune-inflammatory, cell cycle, and p53 signaling pathways. After
stratifying patients using the established model containing the above four
genes, significantly different patterns were observed in terms of infiltrating
immune cell proportion, drug sensitivity, and the expression of immune
checkpoints. Finally, both the mRNA and protein expression verification
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assays demonstrated that the CDKN3 and PCLAF were upregulated, while the
PRKACB was downregulated in advanced-stage neuroblastoma tissue samples.

Conclusion: The model containing CNR1, PRKACB, CDKN3, and PCLAF can
serve as a newprognostic biomarker for predicting the prognosis of patients with
neuroblastoma. Findings on immune cell infiltration and immune checkpoints
provide novel insights for the immunotherapy of neuroblastoma.
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Background

Neuroblastoma (NB) is an embryonal tumor with extensive
molecular heterogeneity in its biological and clinical presentation
(Matthay et al., 2016). Although some NBs resolve spontaneously
without treatment, approximately 50% of patients are classified
as high risk on diagnosis, and only 50% survive for 5 years
(Shohet et al., 2021). Accounting for 7%–10% of all childhood
cancers, NB contributes 15% of cancer-related deaths (Irwin and
Park, 2015). The pathogenesis of NB is reportedly associated
with a number of genetic aberrations in genes regulating the cell
cycle, cell proliferation, and programmed cell death (Salemi et al.,
2022). Despite the emergence of many new treatment modalities
for NB, such as radioimmunotherapy and molecular targeting
therapies (Feng et al., 2023; Zafar et al., 2021), the estimated 5-
year survival rates for patients with high-risk NB are approximately
50% (Shohet et al., 2021). According to the Children’s Oncology
Group guidelines, NB can be divided into four International
Neuroblastoma Staging System (INSS) stages (Brodeur et al., 1993).
INSS is a postsurgical staging system that uses tumor location
in relation to the midline structures, lymph node status, and the
extent of previous surgical resection to define the tumor status.
Bone marrow assessment and radiographic studies are used to
detect metastases. Stage 4 or 4S determination depends on other
clinical details (Naranjo et al., 2018).

Owing to the key role of INSS staging in assessing disease
severity and prognosis, researchers continue to explore prognostic
biomarkers associated with the INSS stage. MYCN gene
amplification is more observed in neuroblastomas with higher
INSS stages (Stages 3 and 4) (Hansen et al., 2017). Significantly
higher TERT expression has been detected in NB samples with
INSS Stage 4 than in samples with earlier stages (Akter and Kamijo,
2021). Differences in the 1p/11q (Raitio et al., 2021) and serum
inflammatory factors (Zheng et al., 2020) were also identified by the

Abbreviations: ALI, advanced lung cancer inflammation index; AUC,
area under the curve; CDKN3, cyclin-dependent kinase inhibitor 3;
COG, Children’s Oncology Group; CNR1, cannabinoid receptor-1; DEG,
differentially expressed gene; GEO, Gene Expression Omnibus; INSS,
International Neuroblastoma Staging System; KAP, kinase-associated
phosphatase; LASSO, least absolute shrinkage and selection operator; NB,
neuroblastoma; PCLAF, proliferating cell nuclear antigen-clamp associated
factor; PCNA, proliferating cell nuclear antigen; PPI, protein–protein
interaction; PRKACB, protein kinase cAMP-dependent catalytic subunit β;
ROC, receiver operating characteristic; TARGET, Therapeutically Applicable
Research to Generate Effective Treatments; LASSO, least absolute shrinkage
and selection operator.

stratification based on INSS staging. However, these studies either
did not use transcriptomics and bioinformatics to screen genes
at a hierarchical level, as in Secomandi et al., who compared only
one gene, the lysosomal protease cathepsin D (Secomandi et al.,
2022), or did not use clinically derived specimens for expression
validation (Fan et al., 2020). Therefore, identifying specific markers
for diagnosis and treatment is of vital importance for improving the
prognosis of children with advanced INSS stage of NB.

Over the last few years, high-throughput sequencing and gene
microarray technologies have been applied in many medical fields
to facilitate the classification of tumors based on histological
and clinical data, cancer-related genes, and biological pathways
(Satam et al., 2023). Moreover, emerging bioinformatics based
on gene expression has recently become an effective method for
systematically screening tumor-related genes and exploring the
related molecular mechanisms (Hernandez-Lemus et al., 2019).
The early detection and prognosis of many diseases depend on
biomarkers that can mark changes in the structure or function
of systems, organs, tissues, cells, and subcells (Shawraba et al.,
2021). Biomarkers can be used to classify NB into different
groups, facilitating NB treatment and prognosis (Trigg et al., 2019).
Several studies have discussed the prognostic role of biomarkers
(Galardi et al., 2018; Glembocki and Somers, 2024; Liu et al.,
2022); however, the clinical use of these biomarkers requires
clinical evaluation. In this study, we screened patients with NB
using the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) and Gene Expression Omnibus (GEO)
databases for potential biomarkers of survival prognosis. A novel
approach for the prognostic diagnosis of NB was proposed. We
identify markers of advanced-stage NB, explore their role in
prognosis, and highlight the value of their implementation in
a clinical setting. To effectively manage advanced-stage NB, the
detection and analysis of prognostic biomarkers can play a vital
role in refined risk assessment and the development of targeted
therapeutic regimens.

Materials and methods

Data source

Training set 1 related to NB patients captured from
the Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) database (https://ocg.cancer.
gov/programs/target), called TARGET-NB. This set included
clinical information and survival information for 152 patients with
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advanced stages of NB and was utilized for the prognostic model.
From the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/), GSE73517 (GPL16876) was downloaded
as training set 2 and utilized for differential expression analysis.
The training set consisted of 105 samples; 20 tissues from patients
with stages 1–2 of NB were selected as control samples (10 and 9
patients in stages 1 and 2, respectively), and 65 tissues from patients
with advanced stages of NB (10 and 55 patients in stage 3 and 4,
respectively). Stage 4S was not involved in this study. The validation
set GSE62564 (GPL5175) contains 498 samples accompanied by
survival information for validation of the prognostic model.

Differential expression analysis

For choosing differentially expressed genes (DEGs) in stages
1–2 and 3–4 of NB patients, differential expression was undertaken
based on the stages in training set 2 using R package limma version
3.54.0 (Ritchie et al., 2015). Screening was performedwith threshold
|log2fold-change (FC)| > 1, adj. p < 0.05. Using the R package
ClusterProfiler version 4.2.2 (Wu T. et al., 2021), the acquired DEGs
were analyzed for gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) with p adj < 0.05 to probe their
possible roles. Furthermore, DEGs were submitted into the STRING
database, with interaction = 0.7, and a protein–protein-interaction
(PPI) network was developed. Subsequently, key clusters in PPI were
analyzed by plug-inMCode inCytoscape, and the top 3 clusterswere
selected by K-core = 2, degree cutoff = 2, max depth = 100, and
node score cutoff = 0.2. The genes in these three clusters acted as
candidate genes.

Prognostic risk model

With the use of the coxph function in survival package version
3.3–5, univariate Cox regression was performed to select for genes
linked to prognosis (HR ≠ 1, p < 0.05). A proportional hazards (PH)
assumption was then tested on these genes, and a p-value greater
than 0.05 indicated the genes did not influence each other. The
least absolute shrinkage and selection operator (LASSO) regression
analysis was fitted to the genes obtained from univariate Cox using
the R package glmnet version 4.1-4 (Friedman et al., 2010). After
10-fold cross validation, the genes whose final regression coefficients
were penalized to 0 were used as prognostic genes. A risk model was
built with the expression and coefficients of the genes obtained from
LASSO. The formula for this risk score was as follows:

risk score =
n

∑
i=1
(coefi ∗ xi).

The coef and x represented coefficients and relative expression
levels of prognostic genes, respectively. A risk formula was adopted
to calculate risk scores for patients with NB, and patients were
sorted into high-/low-risk cohorts based on median risk scores
to demonstrate score distribution and survival status in training
set 1. Survival difference for patients from both risk cohorts was
then analyzed using Kaplan–Meier (K–M) curves (p < 0.05). The
performance of the risk model in predicting NB patient survival
was also assessed with the help of receiver operating characteristic

(ROC) curves.The riskmodel was then validated with the validation
set using the same methodology.

Independent prognostic analysis and
nomogram construction

To assess the clinical applicability of the risk model, univariate
and multivariate Cox regression analyses and Proportional Hazards
tests were employed on risk scores and clinical characteristics based
on training set 1 to screen the independent prognostic factors.
With the rms package version 6.5-0, a nomogram was constructed
depending on independent prognostic factors to predict survival
for patients with NB. Calibration, ROC, and decision curve analysis
(DCA) curves were plotted to evaluate the nomogram.

Analysis of correlation between risk scores
and clinical characteristics

For the purpose of exploring the relationship between risk
scores and clinicopathological characteristics of NB patients, the
distribution of risk score grades across different characteristics was
demonstrated in training set 1. The differences among risk scores
in different subgroups of clinical and molecular characteristics were
confirmed.

Functional enrichment analysis

With a view to understanding the biological pathways
for risk cohorts, inter-cohort difference was analyzed via
DESeq2 package version 1.38.3 (Love et al., 2014) in all the
samples of training set 1, and log2FC was calculated and
ranked from the largest to the smallest and then subjected to
gene set enrichment analysis (GSEA). The reference gene set
was KEGG (c2.cp.kegg.v2023.1.Hs.symbols.gmt). In addition,
gene set variation analysis (GSVA) scores were calculated for
training set 1 in the KEGG pathway using the GSVA package
(v 1.42.0) (Hanzelmann et al., 2013), and the T-test was used
to compare GSVA scores for prognostic genes in the early- and
advanced-stage NB groups (p < 0.05).

Immune microenvironment and drug
sensitivity analysis

To assess immune cell infiltration associated with risk
cohorts, patients with p-values <0.05 and incomplete cell
content of 0 in samples of training set 1 were screened for
the study using CIBERSORT analysis. The proportions of
22 immune cells in each NB patient were further counted.
Immune cell differences were compared between risk cohorts.
In addition, eight immune checkpoints were analyzed in the
inner cohort of training set 1 (Wu J. et al., 2021). To evaluate
drug sensitivity, the half-maximal inhibitory concentration
(IC50) of each drug in each tumor sample in training set 1 was
counted via oncoPredict. Differences in the IC50 of drugs were

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1502380
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Qi et al. 10.3389/fcell.2025.1502380

compared inter-cohorts, and the top 20 drugs were selected for
presentation.

Clinical sample collection

This study was approved by the Ethics Committee of Hebei
Children’s Hospital (No. 2020-14), and written informed consent
was obtained from each patient or guardian. Clinical data of children
with neuroblastoma admitted toChildren’sHospital ofHebei (CHH)
from March to December 2023 and their fresh neuroblastoma
tissues obtained during tumor resection were collected and frozen
for spare use; all of the above clinical tissue samples were
obtained from the first time the children were admitted to the
hospital, and they had not received any relevant treatment prior
to surgery.

Quantitative real-time PCR for mRNA
expression of differentially expressed genes

In order to verify the expression of DEGs, quantitative
real-time PCR was taken to measure the mRNA levels of
the four DEGs. Total RNA was extracted from the tissue
samples using TRIzol (Invitrogen). The RNA (1 µg) of each
sample was used for reverse transcription with PrimeScript
RT reagent (Takara). Then, PCR was performed using Power

SYBR® Green PCR Master Mix (TaKaRa), according to the
manufacturer’s instructions. The primer sequences for quantitative
PCR were CNR1: Forward 5′-TGTGCAGATGAAGGCTCAGG-
3′; Reverse 5′-GAGCATTGGTACTGCCTGGT-3′. PRKACB:
Forward 5′-AGGCTGGGATAACTAGCTTGA-3′; Reverse 5′-
AAGCCCCTAGAAGCAAAGCA-3′. CDKN3: Forward 5′-
GGACTCCTGACATAGCCAGC-3′; Reverse 5′-TGATGGTCTGT
ATTGCCCCG-3′.PCLAF:Forward 5′-ACATGGTGCGGACTAAA
GCA-3′; Reverse 5′-AGGACATGCTCTITCCTCGAT-3′. GAPDH:
Forward 5′-CGAAGGTGGAGTCAACGGATTT-3′; Reverse 5′-
ATGGGTGGAATCATATTGGAAC-3′. Relative expression was
normalized, and the 2−ΔΔCt method was carried out to calculate the
relative mRNA level, with GAPDH as an internal control.

Immunohistochemistry and Western blot
validation of the protein expression of
differentially expressed genes

To verify the protein expression of differentially expressed
genes, immunohistochemistry (IHC) and Western blot (WB)
techniques were employed to detect the protein levels of
four DEGs.

Immunohistochemistry: Paraffin-embedded tissue specimens
were deparaffinized, dewaxed, and rehydrated in gradient ethanol.
Sections were incubated with polyclonal rabbit anti-human
antibodies diluted at 1:100 overnight at 4°C. CNR1, bs-1683R, Bioss;
PRKACB, AF7746, Affinity Biosciences; CDKN3, DF6791, Affinity
Biosciences; PCLAF, E-AB-52100, E-lab-science Biotechnology.The
stained sections were scored by two independent pathologists who

were blinded to the clinical outcomes. The total IHC scores for
protein expression were semi-quantitatively calculated based on the
positive cells and staining intensity. Scoring criteria: A: number of
positive cells: 0%–1% = 0, 1%–10% = 1, 10%–50% = 2, 50%–80%
= 3, 80%–100% = 4. B: staining intensity: 0 (Negative), 1 (Weakly
positive), 2 (Positive), 3 (Strongly positive). Total scores = A × B.

Western blot: Tissues were solubilized in cell lysis buffer. After
the total protein was extracted, the concentration was measured
using the BCA assay (Thermo) method. Equivalent amounts of
protein were separated by 12% SDS–PAGE and transferred into
polyvinylidene fluoride (PVDF, Millipore) membranes. After being
blocked by 5% bovine serum albumin (BSA) for 2 h at room
temperature, the membranes were incubated with one of the
following primary rabbit antibodies at 4°C overnight:CNR1, diluted
at 1:1000, bs-1683R, Bioss; PRKACB, 1:1000, AF7746, Affinity
Biosciences; CDKN3, 1:1000, DF6791, Affinity Biosciences; PCLAF,
1:1000, 81533, Cell Signaling Technology. GAPDH, diluted at
1:3000, 10494-1-AP, Proteintech Biotechnology. The membranes
were washed three times with TBST, and the membrane was
incubated with secondary anti-rabbit IgG (ZSGB-BIO) for 1.5 h.
Finally, the bands were visualized using an ECL chemiluminescence
kit, and the band intensity was quantified using ImageJ software.

Statistical analysis

The statistical analysis was conducted using R version 4.2.2. If
not specified, a Wilcoxon rank-sum test was applied for difference
analysis inter-cohort with p < 0.05 as statistically significant.

Results

Candidate genes

Of the 699 deferentially expressed genes (DEGs; Stage 1–2 versus
Stage 3–4), 294 and 405 genes were upregulated and downregulated
in the stages 1–2 and 3–4 groups, respectively (Figure 1A). The
DEGs were ranked according to their adjusted p-values, and the
top 10 up- and downregulated genes were selected for the density
heatmap (Figure 1B). These DEGs were enriched in 389 gene
ontology (GO) terms, including the regulation of “mitotic nuclear
division,” “nuclear division,” and “mitotic nuclear division,” and 23
KEGG pathways, including the “cell cycle,” “axon guidance,” and
“circadian entrainment” pathways (Figure 1C). The protein–protein
interaction (PPI) network contained 268 nodes and 1,686 edges
(Figure 1D). Furthermore, cluster1 (score = 36.550) contained 41
genes and 731 edges, cluster2 (score = 4.677) contained 10 genes
and 21 edges, and cluster3 (score = 4.000) contained four genes
and six edges (See Supplementary Figure S1). Thus, 55 genes were
considered as candidate genes.

Risk model to predict the survival of
patients with NB

Using univariate Cox regression, 24 of the 55 candidate
genes were screened for associations with prognosis, and all
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FIGURE 1
Differentially expressed genes (DEGs) between INSS early and advanced stages. (A) A volcano plot of the logFC and statistical significance of all DEGs.
Red plots represent upregulated genes, and blue plots represent downregulated genes. Gray plots are genes that did not meet the criteria for DEGs. (B)
The top 10 upregulated and downregulated genes are shown in this density heatmap. The expression levels of the genes are indicated by the colors in
each cell (red for high and blue for low). (C) Top 10 significant KEGG signal pathways. (D) The PPI networks.

these genes passed the PH test (p-value >0.05, Figure 2A). The
LASSO model with a lambda value minimum of 0.06 had
the lowest model error rate and yielded four prognostic genes:
CNR1, PRKACB, CDKN3, and PCLAF (Figure 2B). These four
prognostic genes and their coefficients used to calculate the
risk scores are listed in Supplementary Table S1. The patients
in training set 1 were subgrouped as a high-risk cohort (n
= 75) and a low-risk cohort (n = 75) using −0.426 as the

cutoff value (Figures 2c, D). According to Kaplan–Meier (K–M)
curves, the low-risk patients had considerably higher concurrent
survival rates than high-risk patients (Figure 2E). The ROC curve
demonstrates that the overall area under the curve (AUC) was
above 0.600 (AUC values for 1 year, 3 years, and 5 years = 0.638,
0.674, and 0.729, respectively), suggesting that the risk scores
could better predict the survival status of NB patients relatively
accurately (Figure 2F).
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FIGURE 2
Risk model for predicting the survival status of NB. (A) Significance and hazard ratio values of stage-related DEGs in univariate Cox regression. All of the
55 candidate genes passed the PH test. (B) The LASSO model has the lowest error rate and yielded four prognostic genes, including CDKN3, PCLAF,
PRKACB, and CNR1. (C, D) The distribution of risk scores, the association between risk scores and OS, and the mRNA expression of the four genes. (E)
K–M curves showed dramatically higher concurrent survival rates of patients in the low-risk cohort than those in the high-risk group. (F) The ROC
curve of the predictive performance of the four genes.

For the validation set, the patients were divided into high-risk
(n = 249) and low-risk (n = 249) cohorts using the median of
the risk scores, −1.556 (Figures 3A, B). The K–M curves showed a
significant difference in survival in these two cohorts (p < 0.05),
and the results were consistent with the survival pattern and
performance of the training set survival pattern (Figure 3C). In the
ROC curve, the overall AUC values were also above 0.7 (Figure 3D),
suggesting that the constructed risk model is applicable to different
NB datasets.

Predictive ability of the nomogram model

The predictive abilities of the risk score, age, gender, NB stages,
ploidy, and MYC-N status were analyzed. The Cox regression
analysis showed that risk score and ploidy were two good
independent prognostic factors (Figures 4A, B). These two factors
were, therefore, included in the construction of the nomogram. The
nomogram model was developed using logistic regression based
on independent prognostic factors. It allowed the prediction of the
probability of patient survival after 1 year, 3 years, and 5 years based
on the total number of points (Figure 4C). The predictions for the
different periods were all close to the diagonal line in the calibration
curves (Figure 4D). In the ROC curves, the AUCs were greater than

0.7 for all three periods (Figure 4E). Decision curve analysis showed
that the predictive power of the nomogram was greater than that of
the individual factors (Figure 4F). These results all reflect the good
predictive ability of the nomogram model.

Risk scores differed between the tumor
stage, MYCN status, and age subgroups

A heat map was used to illustrate the distribution of clinical
characteristics between the high- and low-risk cohorts (Figure 5A).
The risk scores significantly differed between the different tumor
stages, MYCN status, and age subgroups; however, no significant
difference was observed between genders (Figures 5B–E).

Major differential gene expression profiles

GSEA demonstrated enrichment in a total of 68 pathways
closely related to the cell cycle, immune-inflammatory processes,
and the p53 signaling pathways (Figure 6). Panel A represents the
Top10 pathways that are significantly activated in the high-risk
group; panel B represents the Top10 pathways that are significantly
inhibited. Interestingly, the most significantly enriched pathways
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FIGURE 3
Risk model applied to the validation dataset. (A, B) For the validation set, patients are divided into high-risk and low-risk cohorts. (C) The K–M curves
show meaningful differences in survival between these two cohorts (p < 0.05), which is consistent with the performance of the training set survival
pattern. (D) The ROC curve verifies the predictive performance of these four genes.

in the gene set variation analysis (GSVA) were consistent with the
GSEA results (Figure 6C); they weremainly pathways closely related
to the cell cycle and cell proliferation.

Immune cells, immune checkpoint, and
drug sensitivity profiles

The heat map shows that the proportions of M0 macrophages,
plasma cells, follicular helper T cells, and Tregs were markedly
higher in the high-risk cohort than in the low-risk one
(Figures 7A, B). In addition, the expression level of LAG3 was
significantly higher in the high-risk group, while CD274 (PD-L1)
and PDCD1LG2 were significantly downregulated (Figure 7C). By
comparing the half-maximal inhibitory concentration (IC50) values

of drugs between the risk cohorts, the top 20 drugs are identified
and illustrated in Supplementary Figure S2.

Verification of mRNA expression of DEGs in
NB tissue samples

A total of 10 NB tumor samples were analyzed for the mRNA
expression of four DEGs, with equal numbers of advanced-stage
NB tissue samples (n = 5) and early-stage ones (n = 5). The mRNA
expression levels of CDKN3 and PCLAF were upregulated, and that
of PRKACB was downregulated at the advanced stage, which was
consistent with the bioinformatics analysis (p < 0.05, Figure 8).
No significant change was observed in the CNR1 mRNA
level (p > 0.05).
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FIGURE 4
Construction and validation of the nomogram. (A, B). Cox analysis shows that the risk score and ploidy are independent prognostic factors. (C) The
nomogram model predicts the probability of patient survival at 1 year, 3 years, and 5 years. (D) The predictions for each year are all around the diagonal
in the calibration curves. (E) The ROC curve showed that the AUC values for 1 year, 3 years, and 5 years were all greater than 0.7. (F) The DCA curve
showed that the predictive effect of the nomogram was greater than that of other individual factors.

Verification of protein expression in NB
tissue samples

To clinically validate the four genes identified in our prognostic
model, we conducted protein-level verifications, including
immunohistochemistry (IHC) and WB. The clinical samples used
for protein verification were the same as those used in the qPCR
assay. The representative IHC images are illustrated in Figure 9A.
The IHC (Figure 9A) and WB (Figure 9B) both show that the
expressions of CDKN3 and PCLAF in the advanced stages were
significantly higher than in the early stages, while PRKACB was
the opposite (p < 0.05). No significant change was observed in the
protein level of CNR1 (p > 0.05).

Discussion

NB has an insidious onset without specific symptoms
(Kembhavi et al., 2015), making early-stage diagnosis challenging.
Approximately 50% of children with NB show metastases at initial
diagnosis (Tolbert and Matthay, 2018), which contributes to a
poor prognosis, especially in patients at an advanced INSS stage
(Pizzo et al., 2015). The INSS has been an effective predictive tool
for the prognosis ofNB over the past decade inChina (Brodeur et al.,

1993). Patients with advanced INSS stages are resistant to current
high-intensity therapy and typically have a poor prognosis compared
to children in the early stages (Sokol and Desai, 2019; Maris et al.,
2007). Researchers have speculated that this may be due to tumors
that are more difficult to treat or that have spread to areas that
are inaccessible for surgery; however, clinical evidence is lacking.
By reviewing the clinical data of 72 patients with NB, Qi et al.
found that advanced lung cancer inflammation index and INSS
stage were independent prognostic factors for patients with NB
(Qi et al., 2022). Keane et al. evaluated the expression of DLG and
LIN7 gene families in different INSS stages and found that the
disrupted DLG isoform was abundant in the advanced stage of
NB. This could control cell polarity and signaling, thereby affecting
cancer cell viability (Keane et al., 2021). Further mechanistic studies
investigating poor prognosis in children with advanced-stage NB
are needed in the future.

In this study, we analyzed NB RNA-seq data from the
TARGET andGEOdatabases to investigate the relationship between
DEGs and NB prognosis. During screening, four genes (CDKN3,
PCLAF, PRKACB, and CNR1) were identified as being significantly
associated with advanced NB, and a risk model based on these four
genes showed prognostic value for patient survival. These genes
exert biological functions in the cell cycle, immunoinflammatory
processes, and the p53 signaling pathway, and expression assays
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FIGURE 5
Risk scores differed between tumor stage, MYCN status, and age groups. (A) The heat map shows the distribution of clinical characteristics between
the high-risk and low-risk cohorts. The risk scores differed significantly between the MYCN amplified status (B), tumor stages (C), and age subgroups
(D), but this significance was not observed between genders (E).

validated that the mRNA and protein levels of CDKN3, PCLAF,
PRKACB, and CNR1 in NB tissues correlate with NB staging.

As a member of the dual-specific protein phosphatase family
and kinase-associated phosphatases, the cyclin-dependent kinase
inhibitor 3 (CDKN3) gene product inhibits the G (1)/S transition
by dephosphorylating cyclin-dependent kinases (Ding et al., 2020).
In our report, we observed that the level of CDKN3 was elevated
in the advanced-stage NB. Several recent studies have reported that
CDKN3 plays a regulatory role in the survival and proliferation
of cancer cells. Yang et al. found that CDKN3 is a marker of
poor prognosis in NB (Yang et al., 2017). Vernaza et al. found
that knocking down CDKN3 reduced the expression of the cell

proliferation markers Ki67 and proliferating cell nuclear antigen
(PCNA), a binding partner of PCLAF, and decreased the colony
formation of NB cells (Vernaza et al., 2024). The in vitro functional
assays have been conducted in liver hepatocellular carcinoma
(LIHC). Q-PCR and Western blotting were used to detect the
expression of CDKN3 in LIHC and its adjacent tissues as well
as human liver cancer cell lines. It was found that, compared
with the adjacent samples, the mRNA expression of the CDKN3
gene was significantly upregulated in 63.9% (23/36) of liver cancer
tissues. After silencing the expression of CDKN3, the growth
and colony formation ability of cancer cells were significantly
inhibited (Li et al., 2023). Moreover, silencing the expression of
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FIGURE 6
GSEA and GSVA profiles. (A) GSEA shows that the Top10 activated pathways in the high-risk group are closely related to the cell cycle,
immune-inflammatory processes, and P53 signaling. (B) The Top10 pathways that are significantly inhibited. (C) The enriched pathways in GSVA are
consistent with the GSEA results.

CDKN3 could induce G0/G1 phase arrest in liver cancer cells,
indicating that CDKN3 promotes the proliferation of liver cancer
cells by affecting the cell cycle distribution (Lin et al., 2013).
Knockdown of CDKN3 led to the downregulation of p53 and
p21 protein levels, while the AKT serine/threonine kinase 1 was
upregulated (Dai et al., 2016). Therefore, the elevated expression
of CDKN3 may reduce the survival of tumor cells and change
the sensitivity to therapeutic agents through the AKT/P53/P21
signaling pathway (Dai et al., 2016). These observations facilitate
translating genomic and transcriptomic features into molecular
mechanisms of high-risk NB.

Proliferating cell nuclear antigen-clamp associated factor
(PCLAF) is involved in DNA repair through its binding partner,
proliferating cell nuclear antigen (PCNA) (Liu et al., 2021). PCLAF
has been reported to play various essential roles in cell proliferation,
apoptosis, and cell cycle regulation (Liu et al., 2021). Among the
differentially expressed downregulated genes in NB, Liu et al. found
that the cell cycle-related pathway genes were most significantly
altered in association with the decreased level of PCLAF (Liu et al.,
2022a). The patients with elevated levels of PCLAF mRNA had
the worst OS and EFS, which was consistent with our results.
Importantly, PCLAF knockdown could limit the proliferation of NB
cells in vitro and in vivo (Liu et al., 2022a). In eight types of tumors,
including cholangiocarcinoma, cervical cancer, and glioblastoma
multiforme, the expression levels of PCLAF are significantly higher
than those in normal tissues (Liu et al., 2022b).Meanwhile, theDNA
methylation level of PCLAF is decreased, indicating an association
between hypomethylation and high expression (Liu et al., 2022b).
The survival analysis conducted using the GEPIA2 tool showed that
the high expression of the PCLAF gene is correlated with the overall
survival and disease-free survival of patients, suggesting that it can
serve as a potential prognostic biomarker. At the same time, this pan-
cancer study also found that the expression of PCLAF is positively
correlated with activated CD4+ T cells and T helper 2 (Th2) cells.

This implies that PCLAF may play a specific role in the process
of tumor immune cell infiltration and affect the functions and
distribution of immune cells in the microenvironment (Liu et al.,
2022b). These results, together with ours, reveal the mechanism
through which PCLAF facilitates cell cycle progression, suggesting
this gene may be a therapeutic target in NB.

Protein kinase cAMP-dependent catalytic subunit beta
(PRKACB) is a member of the serine/threonine protein kinase
family and a key effector of cAMP/PKA-induced signal transduction
(Soberg et al., 2017). It is involved in numerous cellular
processes, including cell proliferation, apoptosis, gene transcription,
metabolism, and differentiation (Ahmed et al., 2022; Huang et al.,
2024). Shao et al. found significantly lower PRKACB expression
in an N-myc proto-oncogene (MYCN)-amplified group than in
an MYCN-non-amplified group (Shao et al., 2021). In the present
study, PRKACB downregulation was observed in children with
poor OS rates. Whole genome-scale integrated analyses of exon
arrays demonstrated that PRKACB is a novel cancer-related variant
transcript in gastric cancers (Furuta et al., 2012). The expression
of PRKACB was downregulated in both colorectal cancer and non-
small cell lung cancer (NSCLC) (Yao et al., 2020; Chen et al., 2013).
In a study aiming to evaluate the expression pattern of PRKACB
in NSCLC, Chen et al. found that PRKACB is downregulated in
NSCLC tissues, and the upregulation of this gene decreased the
number of proliferative, colony-forming cells and invasive cells,
indicating that an upregulated PRKACB level may be an effective
way to prevent the progression of NSCLC (Chen et al., 2013). In a
large-scale study in 2023 involving a nutrient database and cellular
and animal assays, trans-vaccenic acid (TVA)was found to lead to an
increasedPRKACB expression in immunodeficient nudemice, T cell
receptor-α knockout mice, and mice with a CD8+ T cell depletion.
When the gene was upregulated, the cAMP-PKA-CREB axis was
activated, which not only enhanced the function of CD8+ T cells but
also reversed T cell exhaustion (Fan et al., 2023). This multi-faceted
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FIGURE 7
Immune cell infiltration in NB. (A, B) Compared to the low-risk cohort, the heat map showed that the proportions of M0 macrophages, plasma cells,
follicular helper T cells, and Tregs were significantly higher in the high-risk cohort. (C) Expression levels of LAG3, CD274 (PD-L1), and PDCD1LG2 show
significant differences between cohorts.

approach provides a new potential direction; that is, the anti-tumor
effect could be enhanced by regulating the intake of related nutrients
based on their gene regulation mechanisms.

Cannabinoid receptor-1 (CNR1) is a classical receptor of the
endocannabinoid system that primarily exists in the central and
peripheral nervous systems (Tao et al., 2020). Depending on its
binding to its corresponding ligands, CNR1 activates intracellular
signaling pathways related to survival and is a potential biomarker
of poor prognosis in cancer (Zou and Kumar 2018). In recent
years, cannabinoids (CB) have received increasing attention due

to their effects on cancer growth. CB2 agonists (JWH-015; JWH-
133) have been proved to reduce the size of breast cancer tumors
(Blanton et al., 2022). In triple-negative breast cancer (TNBC),
CNR1 regulates fatty acid metabolism by modulating the PI3K-
AKT/MAPK signaling pathways, thereby affecting the sensitivity of
cells toward ferroptosis (Li et al., 2022). Moreover, the combined
use of CNR1 antagonists and ferroptosis inducers has demonstrated
good anti-tumor effects in TNBC (Li et al., 2022). In studies on
the association between liver metabolism and tumors, the activation
of CNR1 can specifically induce the expression of the CREBH
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FIGURE 8
Verification of mRNA expression of DEGs. The mRNA expressions of CDKN3 and PCLAF were significantly upregulated and that of PRKACB was
downregulated at the advanced stage. No significant change was observed in the CNR1 mRNA level.

gene through the phosphorylation of the JNK signaling pathway
and the binding of c-Jun to the AP-1 in the promoter of the
CREBH and then regulating hepatic gluconeogenesis (Chanda et al.,
2011). In neuroblastoma, this signaling pathway may also be
involved in regulating the proliferation, metabolism, and other
processes of tumor cells. Mu et al. compared 89 DEGs between
MYCN amplification and non-amplification groups and suggested
that CNR1 plays a prognostic role in NB, although they did not
perform any verification experiments (Schmitt et al., 1986). Decock
et al. applied two independent genome-wide methylation screening
methods to eight NB cell lines and found that CNR1 methylation
was associated with classical risk factors, including stage andMYCN
status, but not with OS, EFS, or both (Decock et al., 2012). Although
the bioinformatic analysis revealed an association between the NB
stage and CNR1, remarkably different CNR1 expression levels were
not observed in the clinical samples in our study.Thismay have been
owing to tumor heterogeneity or the small sample size.Thus, further
analyses are required to clarify the role of CNR1 as an independent
prognostic biomarker.

MYCN gene amplification (defined as a copy number greater
than 10-fold) is an internationally recognized molecular event
in high-risk NB, and this alteration is present in approximately
20%–30% of cases (Qiu and Matthay, 2022). Clinical data
indicate that the 5-year survival rate of patients with MYCN

gene amplification is significantly lower than that of patients
without it (Schwalbe et al., 2017). We used the predictive model
constructed from the four DEGs to divide patients into high-risk
and low-risk groups. We found that the positive amplification rate
of the MYCN gene in the high-risk group was significantly higher
than that in the low-risk one. This confirmed that this risk model
was significantly correlated with the MYCN molecular type.

The chromosomal ploidy of NB is classified into near-diploid
(Diploid) and near-triploid (Triploid). Near-diploid tumors are
often accompanied by deletions or gains of chromosomal segments
and are associated with MYCN amplification and a high risk of
recurrence (Irwin et al., 2021). Near-triploid tumors are more
common in infants, mostly low-risk babies, and may resolve
spontaneously. Studies have shown that near-diploid tumors have
higher genomic instability and are prone to accumulating MYCN
amplification, leading to treatment resistance and recurrence
(Benard et al., 2008). In this study, through performing Cox,
ROC, and DCA analysis, we found that ploidy has independent
prognostic value and can provide a more reliable basis for
clinical decision-making in NB. Currently, the International
Neuroblastoma Risk Group (INRG) system has integrated factors
such as MYCN amplification, patient age, tumor stage, and ploidy
to guide NB treatment. Intervention strategies targeting the MYCN
gene include the following three aspects: (i) directly interfering
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FIGURE 9
Verification of protein expression of DEGs. Immunohistochemistry (IHC) and Western blot (WB) analysis of CDKN3, PCLAF, PRKACB, and CNR1
expression in low-risk versus high-risk NB tumor tissue samples. (A) Representative IHC images of these four genes in tumor tissues. Scale bar: 100 μm,
(B) Western immunoblots. GAPDH was used to normalize. The expressions of CDKN3 and PCLAF were significantly upregulated and that of PRKACB
was downregulated at the advanced stage of NB, compared with the early stage, with statistical significance indicated (∗p < 0.05, ∗∗p < 0.01).

with MYCN transcription, for instance, using peroxisome
proliferator-activated receptor γ (PPAR-γ) antagonists to induce
cell differentiation by inhibiting MYCN expression (Nakao-
Ise et al., 2023); (ii) metabolic intervention: aldehyde dehydrogenase
18 family member A1 (ALDH18A1) inhibitors can block the
MYCN-metabolic feedback loop and have shown significant
efficacy in animal models (Guo et al., 2020); (iii) epigenetic
regulation: histone deacetylase inhibitors or DNAmethyltransferase
inhibitors can reverse the epigenetic silencing driven by MYCN
(Eppet et al., 2023). Due to the synergistic effect between ploidy and
MYCN amplification (Park et al., 2012), multi-omics integration
analysis, as well as studies combining MYCN inhibitors with
immune checkpoint inhibitors (ICIs), have shown therapeutic
potential in long-term follow-up (van Tilburg et al., 2020). In the
future, multi-dimensional molecular stratification and targeted
intervention will be applied to improve the survival outcomes of
high-risk patients.

Immunotherapy has been proved to be an effective treatment
for solid tumors in adults (Anderson et al., 2022). However,
evaluations of tumor mutational burden have shown that
neuroblastoma ranks first among human cancers with the fewest
mutations, and it also has the lowest infiltration of immune cells

(Anderson et al., 2022). Therefore, due to the “cold” state of NB
in terms of immunity and mutation, its immunotherapy seems
to have reached a bottleneck (Grobner et al., 2018). Fortunately,
the inherent immune evasion mechanism of neuroblastoma is
similar to that of adult tumors (Wienke et al., 2021). Anderson
et al. mentioned that the immunotherapy of NB should not
only focus on increasing tumor antigenicity; addressing the
problem of the tumor immunosuppressive microenvironment is
also crucial (Anderson et al., 2022).

In the present work, after evaluating the infiltration of immune
cells in high- and low-risk patients using the established model,
we observed that the infiltration of immune cells in these two
groups was different: the numbers of macrophage M0, plasma
cells, follicular helper T cells, and Tregs in the high-risk cohort
were significantly higher than in the low-risk group. Research by
Zhang et al. showed that the infiltration degree of M0 macrophages
in hepatocellular carcinoma tissues was remarkably higher than
that in normal liver tissues (Zhang et al., 2022), which was
consistent with our results. Together with our findings, these results
indicate that macrophage infiltration is related to poor prognosis,
and immunotherapy may be effective because macrophages can
enhance phagocytosis of tumors in high-risk NB. M2 macrophages,
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which are polarized from M0 macrophages, can release cytokines
and chemokines such as transforming growth factor-β (TGF-
β), vascular endothelial growth factor (VEGF), and indoleamine-
2,3-dioxygenase (IDO). These inhibitory factors substances could
suppress the anti-tumor immune response (Iolascon et al., 2000).
Meanwhile, these substances will recruit plasma cells and Tregs into
the tumor microenvironment, where they directly kill effector T
cells or inhibit their functions and facilitate tumor cells escaping
immune surveillance (Anderson et al., 2022). Kang et al. reported
that the proportion of follicular helper T cells was higher in the
high-risk cohorts than in the low-risk NB group (Kang et al.,
2021). Mei et al. used single-cell RNA-seq to conduct a comparative
analysis of patients with and without metastasis and observed
macrophage enrichment, T-cell exhaustion, and increased numbers
of Tregs (Mei et al., 2024). Methods need to be found to inhibit the
functions or reduce the number of regulatory T cells to break the
immunosuppressive state. However, relevant research is still under
exploration (Anderson et al., 2022; Zhu et al., 2023).

Cancer immunotherapy has achieved remarkable success due
to the application of immune checkpoint inhibitors (ICI) in the
treatment of adult tumors and pediatric hematological malignancies
(Davis et al., 2017). However, in contrast, most children with solid
tumors, including high-risk neuroblastoma, have hardly benefited
from ICI (Anderson et al., 2022). Using the model we established,
the patients were divided into high- and low-risk groups. We
found that the upregulated lymphocyte activation gene 3 (LAG3)
was significantly upregulated in the high-risk cohort. It has been
observed that the LAG3 gene exerts an inhibitory function on
antigen-activated T cells (Camisaschi et al., 2010). In addition to
LAG3, two other important checkpoint molecules expressed by
tumor cells, namely, the PD-L1 ligand (CD274) and its paralog
PDCD1LG2, were significantly decreased in the high-risk groups.
By suppressing the expression of PD-L1, tumor cells weaken the
signals transmitted to immune cells, thus facilitating tumor escape
(Mezzadra et al., 2017). Tang et al. studied the mechanism of PD-
1 blockade therapy and found that macrophages are important
effector cells in anti-high-risk NB immunity (Tang et al., 2022). PD-
1 blockade can lead to the exhaustion of macrophages, a decrease in
their phagocytic potency, a reduction in tumor growth, and an
increase in survival in mouse models of NB in a macrophage-
dependent manner (Gordon et al., 2017). Recent studies have
focused on optimizing existing GD2 antibodies, developing
novel bispecific antibodies or chimeric antigen receptor T cell
(CAR-T) therapies, and exploring the combined application of
ICI (NCT05437315, NCT02914405, etc.). Although the efficacy
of a single ICI is limited, combined regimens (such as anti-
GD2 + anti-PD-1) and novel immunomodulatory strategies
are showing potential in clinical application (Kennedy et al.,
2023). Immunotherapy combined with chemotherapy has been
added to the standard treatment regimen recommended for
relapsed or refractory neuroblastoma (Anderson et al., 2022).
It will be necessary to verify the safety and long-term efficacy
of these therapies through clinical trials. The findings related
to immune cell infiltration and checkpoints in this study are
expected to serve as targets for drug development, aiming to
restore the functions of immune cells that have been damaged
during chemotherapy.

Limitations

This study had several limitations. First, the main sources
of clinical information, the online databases, are limited and
incomplete; some biological factors, such as individual therapeutic
regimens, cannot be obtained. Second, limited by the current
research conditions, the verification of the biological functions
was only performed in vivo. It is recommended that in further
studies, the cancer-promoting mechanisms of these genes should be
preferentially verified in vitro.

Conclusion

Our study proposes an INSS stage-related risk model that
combines genetic and clinical characteristics to predict the prognosis
of patients with NB. Four prognostic genes (CNR1, PRKACB,
CDKN3, and PCLAF) were identified, and a prognostic model based
on these genes was developed that provides novel insights into the
prognostic evaluation of neuroblastoma. In clinical applications, the
diversity of biomarkers and their implication on clinical features
can facilitate the formation of targeted therapeutic strategies and the
development of individualized immunotherapy regimens.
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