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The role and intrinsic connection
of cellular senescence and cell
death in inflammatory bowel
disease

Lichao Yang and Lianwen Yuan*

Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha,
China

Cellular senescence in the intestine can induce cell death, which extends
beyond the mere clearance of senescent cells. This phenomenon is prevalent
in inflammatory and immune-related diseases, particularly in inflammatory
bowel disease (IBD). IBD is characterized by recurrent and chronic intestinal
inflammation, with the occurrence and development of the disease being
influenced by multiple factors, including genetics, environment, lifestyle,
intestinal immunity, and gut microbiota. Chronic intestinal inflammation drives
aging of the IBD immune system, reducing its efficiency and impairing the
clearance of senescent cells. The disruption of cell death regulation and the
interplay between cell death and cellular senescence contribute to disease
progression in IBD, with inflammaging and immunosenescence playing the
key role in this process. However, the mechanisms underlying the interplay
between cell death and cellular senescence in the context of IBD remain unclear.
Therefore, this paper comprehensively reviews the impact of cellular death and
cellular senescence on intestinal aging in IBD, emphasizing the exploration of
their potential interrelationships.
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1 Introduction

Inflammatory bowel disease (IBD) is a recurrent and incurable inflammatory disorder of
the gastrointestinal tract, primarily comprising Crohn’s disease (CD) and Ulcerative colitis
(UC) (Plevris and Lees, 2022). The clinical course of IBD is unpredictable, characterized
by recurrent abdominal pain, rectal bleeding, malnutrition, and a risk of malignancy.
It is influenced by multiple factors, including genetic predisposition, dietary habits,
environmental triggers, psychological factors, immune dysregulation, and gut microbiota
imbalance (Bisgaard et al., 2022; Liu et al., 2022).

In recent years, as the standard of living has improved, the incidence of IBD has been
rising globally, especially in developing countries, posing a significant threat to global
health and healthcare systems (Aniwan et al., 2022; Agrawal et al., 2022). IBD exhibits
clinical features similar to intestinal aging, such as intestinal dysfunction, malabsorption,
and impaired barrier function. The persistent accumulation of senescent cells and limited
clearance together drive the worsening of the inflammatory microenvironment in IBD
(Sangfuang et al., 2025). Cell death serves as a key mechanism for clearing senescent
cells in the body, with multiple pathways interwoven to maintain the dynamic balance of
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intestinal cell self-renewal (Ogrodnik et al., 2024). In IBD, cellular
senescence and cell death collectively drive the pathological
processes of the disease (Chavan et al., 2017). To date, the
interactions between cellular senescence and cell death in IBD are
not fully elucidated. In this review, we discuss the latest research
developments on cellular senescence and cell death, with a particular
emphasis on their roles and connections in IBD.

2 Cellular senescence in IBD

2.1 Immunosenescence in IBD

Immunosenescence refers to the gradual decline in immune
system function with aging or prolonged inflammatory stimulation,
involving extensive changes in both adaptive and innate immunity
(Liu Z. et al., 2023). Recent studies have shown that this process
is not only observed in the elderly population but is also
commonly present in IBD patients, manifesting as “accelerated
immunosenescence.” Chronic inflammatory environments induce
premature immune cell senescence, impairing immune regulatory
functions and exacerbating disease progression (Meng et al.,
2023). In IBD, immunosenescence primarily manifests as a
decline in T cell function, chronic low-grade inflammation,
compromised mucosal immune barriers, and dysbiosis, all of
which may affect disease progression and treatment outcomes
(Yan et al., 2025; Kosinsky et al., 2024).

Studies have found that in IBD patients, the expression of
KLRG1 andCD57 onCD4+ and CD8+ T cells increases, while CD28
expression decreases, indicating T cell exhaustion, with reduced
proliferation ability and immune regulatory function (Li H. et al.,
2025; Strunk, 2024; Bottois et al., 2020). Additionally, regulatory
T cells in CD4+ T cells show impaired function, with reduced IL-
10 production, weakening immune tolerance and inflammation
suppression, leading to excessive activation of the immune system
(Meng et al., 2023; Xie et al., 2022). In IBD patients, T cell telomere
shortening and upregulation of senescence-related genes (CDKN1A
and CDKN2A) also indicate that immune cells are entering a
senescent state, further aggravating chronic inflammation (Hong
andKatz, 2021). Immunosenescence affects the antigen presentation
capacity of mucosal dendritic cells, leading to decreased immune
tolerance to the microbiota in IBD patients, as evidenced by
reduced probiotics and increased pathogenic bacteria, further
accelerating immunosenescence (Meng et al., 2023; Wahida et al.,
2021). In our previous research, single-cell RNA sequencing data
from IBD patients showed an increase in the proportion of
senescent CD8+T cells (KLRG1+CD28−) and a decrease in memory
T cells (CD27+ CD28+), suggesting T cell exhaustion in IBD
patients (Yao et al., 2024). Meanwhile, macrophages exhibited an
inflammatory phenotype (M1 type), with high expression of IL-
6 and TNF-α, indicating that chronic inflammation promotes the
occurrence of immunosenescence in IBD (Yao et al., 2024).

Immunosenescence is also associated with reduced response
to anti-TNF-α biologics (such as infliximab) in IBD patients, with
mechanisms involving B cell dysfunction, T cell exhaustion, and
the effects of the chronic inflammatory environment (Faye et al.,
2024). In elderly IBD patients, the proportion of senescent B cells
(CD21−CD11c+) increases, while memory B cells (CD27+IgD−)

decrease, potentially leading to abnormal anti-infliximab antibody
production and affecting drug efficacy (Meng et al., 2023;
Childs et al., 2023). Additionally, T cell senescence (particularly
the dysfunction of follicular helper T cells) may weaken the
regulatory effect on B cells, further contributing to drug resistance
(Di Micco et al., 2021; Varricchi et al., 2020).Meanwhile, the chronic
inflammatory environment (with high expression of IL-6 and TNF-
α) may accelerate the metabolism and clearance of infliximab,
reducing its therapeutic effect (Ben-Horin et al., 2014). Therefore,
immunosenescence not only impacts the disease progression of IBD
but may also impair the long-term efficacy of biologics, highlighting
the need for more precise personalized treatment strategies in
the future.

2.2 Inflammation-induced senescence in
IBD

IBD is characterized by chronic, recurrent intestinal
inflammation, with its inflammatory microenvironment filled with
pro-inflammatory cytokines (IL-6, TNF-α, IL-1β) and accompanied
by extensive immune cell infiltration (Onyiah and Colgan, 2016).
These inflammatory factors not only cause damage to intestinal
epithelial cells but also promote cellular senescence through the
activation of inflammatory pathways such as p38-MAPK, JAK-
STAT, and NF-κB (Sienkiewicz et al., 2023). Studies have shown
that in the IBD intestine, IL-6 can upregulate the expression of
CDKN1A and CDKN2A through the JAK-STAT axis, leading
to cell cycle arrest and inducing senescence (Yao et al., 2014).
Additionally, TNF-α can directly trigger DNA damage response
(DDR), accelerate telomere shortening, and further promote cellular
senescence (Maekawa et al., 2018; Zhang et al., 2016).

The senescence-associated secretory phenotype (SASP) is
an important link between cellular senescence and chronic
inflammation. In IBD, senescent cells release large amounts of
pro-inflammatory factors through SASP, including IL-6, IL-8,
CCL2 (monocyte chemoattractant protein), and MMPs, forming
a vicious cycle of inflammation-senescence (Almasabi et al.,
2021). The inflammatory effect induced by SASP is mainly
reflected in the fact that inflammatory factors, including IL-6
and IL-8, promote further immune cell infiltration, amplify the
inflammatory response, and accelerate IBD-associated senescence
(Bassotti et al., 2023). MMPs (matrix metalloproteinases) degrade
the extracellular matrix (ECM), weakening the intestinal barrier,
increasing intestinal permeability, and making IBD more prone
to relapse (Lee and Kim, 2022). SASP promotes macrophages to
maintain the M1 pro-inflammatory phenotype while suppressing
the anti-inflammatory function of M2 macrophages, preventing the
resolution of inflammation (Wang et al., 2024).

Intestinal stem cells (ISCs) play a key role in maintaining
intestinal epithelial homeostasis. However, in the IBD inflammatory
environment, ISCs are continuously stimulated by pro-
inflammatory factors, which may lead to their senescence
(Wang X. et al., 2020). Research has shown that Lgr5+ stem
cells in IBD patients exhibit limited proliferation in the chronic
inflammatory environment and show a senescent phenotype (Birch
and Gil, 2020; Gorgoulis et al., 2019). Moreover, inflammation-
induced mitochondrial dysfunction and abnormalities in
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the Wnt signaling pathway further affect the regenerative
capacity of stem cells (Yun et al., 2023; Watanabe et al., 2022;
Risques et al., 2008). SASP-released IL-6 and IL-1β can activate
the JAK-STAT signaling pathway, upregulating the expression of
CDKN1A and CDKN2A, and accelerating stem cell senescence
(Wang X. et al., 2020; Yun et al., 2023).

Furthermore, IBD recurrence is closely related to the
accumulation of senescent cells. When IBD transitions from
remission to active phase, senescent cells can release pro-
inflammatory factors through SASP, further enhancing the
inflammatory microenvironment, making intestinal inflammation
more likely to relapse (Birch and Gil, 2020; Gorgoulis et al., 2019).

3 Cell death in IBD

Thehuman intestinal tract serves the vital functions of digesting
food, absorbing nutrients and water, while also maintaining the
balance of the gut microbiota. This places a considerable demand
on intestinal epithelial cells, with approximately 1010 intestinal
epithelial cells shedding and undergoing passive cell death every
day (Blander, 2016). The passive shedding of intestinal epithelial
cells primarily occurs at the tips of villi, with apoptosis being
the primary mechanism of shedding (Iwanaga and Takahashi-
Iwanaga, 2022). Recently, researchers have found that shed IECs
can survive for several hours in mice, stimulating the expression
of antimicrobial genes at the tips of villi and contributing to the
regulation of gut microbiota composition (Bahar Halpern et al.,
2023).This suggests that cell apoptosis can occur after IEC shedding.
Moreover, compared to the small intestine, shed cells survive
longer in the colon (Bahar Halpern et al., 2023),indicating potential
differences in clearancemechanisms between the small intestine and
colon, possibly beyond apoptotic clearance alone.The shedding and
renewal of IECs are not only related to the proliferation of stem cells
in the crypts but also to the clearance rate of senescent epithelial
monolayer cells (Blander, 2016). In IBD, continuous shedding of
IECs is observed, along with ongoing shedding of various immune
cells, particularly more pronounced during active disease phases.
While apoptosis is the normal physiological mechanism for cellular
renewal in the intestine, other forms of cell death also play important
roles in the development of IBD. In IBD, chronic inflammation
and recurrent episodes lead to excessive cell death within the
intestinal tract. This excessive cell death can activate the intestinal
immune system, exacerbating inflammation in the IBD intestine
(Günther et al., 2013; Dagenais et al., 2014). Multiple cell death
mechanisms interact in the intestinal tract of IBD, cooperatively
promoting disease progression.

In addition to apoptosis, several other regulated cell death
pathways mentioned earlier are involved in the development of IBD.
Different modes of cell death can affect the repair and regeneration
of intestinal mucosal tissue, ultimately impacting intestinal fibrosis
and even increasing the long-term risk of intestinal malignancies
(Patankar and Becker, 2020). Excessive apoptosis has been shown
to worsen intestinal inflammation in mice and IBD patients
(Zhang J. et al., 2022), while anti-apoptotic strategies can help
maintain colonic epithelial cell homeostasis and reinforce epithelial
barrier function (Zhang et al., 2022b). Cell pyroptosis in the IBD
intestine originates from the activation of inflammasomes (such as

NLRP3) (Chen et al., 2019), which are integral to innate immune
responses and play crucial roles in maintaining gut microbiota
and gut-brain homeostasis (Man, 2018). Cell pyroptosis mediates
various damage signals, leading to persistent chronic inflammation
in IBD, primarily executed by proteins like GSDMB, GADMD, and
GSDME (Zhang S. et al., 2022). Furthermore, GSDMB, an executor
of pyroptosis, is also a critical factor inmaintaining epithelial barrier
function and inflammation resolution in IBD (Rana et al., 2022).

As detection methods continue to evolve, it has been discovered
that cell death induced by trace metal elements also contributes
to the development of intestinal inflammation in IBD. Ferroptosis,
mediated mainly by endoplasmic reticulum stress and the NF-κB
pathway, can be observed in intestinal epithelial cells of IBD patients
and DSS mice (Ocansey et al., 2023). There is an accumulation of
ROS, increased ferrous iron levels, and excessive lipid peroxidation
in the intestinal epithelium in IBD, collectively driving chronic
abnormal inflammation (Ocansey et al., 2023; Chen et al., 2020).
Inhibitors of ferroptosis have been shown to effectively control
chronic inflammation in the intestine, a fact widely validated in
IBD patients and animal models (Arab et al., 2021; Xu et al.,
2021; Huang et al., 2022; Zhu et al., 2022). Similarly, cuproptosis
has also been observed in the intestine of IBD patients and
DSS mice (Chen et al., 2022; Liu L. et al., 2023). Cuproptosis in
the IBD intestine primarily affects the composition of immune
cell infiltration and indirectly influences intestinal inflammation
by controlling mitochondrial metabolism (Liu L. et al., 2023;
Yang et al., 2023). While SLC7A11-driven disulfidptosis has not
been extensively studied in IBD, the upregulation of the key
gene SLC7A11 in the intestinal mucosa of IBD is clear (Al-
Mustanjid et al., 2020). Interestingly, SLC7A11 is an inhibitor
of ferroptosis (Koppula et al., 2021), and ferroptosis promotes
the occurrence and development of IBD intestinal inflammation
(Wang et al., 2023). Therefore, it remains to be explored whether
the high expression of SLC7A11 in the intestinal mucosa of IBD
acts as a driver of disulfidptosis or a protector against ferroptosis.
This warrants further in-depth research. To this end, our research
team analyzed multiple UC datasets to identify differentially
expressed genes associated with disulfidptosis and utilized lasso
regression to determine key target genes. Immune infiltration
analysis and the construction of clinical diagnostic models showed
that five disulfidptosis-related immune-associated genes (PDLIM1,
SLC7A11, MYH10, NUBPL, OXSM) are highly correlated with
immune cells and inflammatory pathways in UC (Yang et al., 2024).

Lysoptosis-induced lysosomal membrane dysfunction
(lysosome-dependent cell death) mediates cell death and further
promotes the release of pro-inflammatory mediators, increasing
the risk of colitis (Lassen et al., 2016; Wang et al., 2018). In IBD,
ICD is a stress-driven form of RCD that can induce adaptive
immune responses through antigen presentation and the release
of danger signals (Kroemer et al., 2022). In the early stages
of the disease, ICD-induced immune responses may play a
regulatory role in tissue repair, helping to clear damaged cells
and promote intestinal epithelial regeneration (Clucas and Meier,
2023). However, as the natural course of IBD progresses, the
immune activation potential of ICD may have adverse effects
in the context of chronic inflammation, such as exacerbating
tissue damage or promoting carcinogenesis (Hayashi et al., 2021;
Ruan et al., 2020).
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FIGURE 1
The interaction between cellular senescence and cell death in Inflammatory Bowel Disease and presents the key pathways and mechanisms involved.
Cellular senescence promotes cell death through the SASP, which releases pro-apoptotic factors (such as TNF-α, IL-6, and IL-1β), triggering the
Fas/FasL axis and Caspase cascade, leading to apoptosis. Additionally, SASP induces oxidative stress (ROS accumulation), activating the p53/p21 axis,
accelerating DNA damage, and promoting cell death. It also activates the NLRP3 inflammasome via IL-1β and ATP, triggering pyroptosis, causing cell
rupture and the release of DAMPs. On the other hand, cell death exacerbates cellular senescence by releasing DAMPs (such as HMGB1 and ATP), which
continuously activate NF-κB, promoting chronic inflammation and inducing more cells into a senescent state. The inflammatory microenvironment
activates the JAK/STAT axis, while excessive ROS accumulation leads to mitochondrial damage, accelerating DNA breaks, and further promoting the
accumulation of senescent cells.

Necroptosis in IBD mainly occurs in intestinal epithelial cells,
and inhibiting RIPK3 can alleviate chronic intestinal inflammation
induced by Necroptosis to some extent (Günther et al., 2011;
Welz et al., 2011). Necroptosis can also occur in intestinal stem
cells in IBD, and the deletion of the key gene SETDB1 can
induce Necroptosis, affecting colonic epithelial differentiation,
disrupting mucosal barrier, and promoting intestinal inflammation
(Wang R. et al., 2020; Južnić et al., 2021). Unlike regulated cell death,
necrosis is not commonly observed in IBD and is less involved in the
regulation of chronic enteritis. It generally occurs in acute mucosal
injury or extreme external stimuli (Zhou et al., 2022).

4 Correlation between cellular
senescence and cell death in IBD

4.1 Cellular senescence to cell death

In the intestinal tissues of IBD patients, intestinal epithelial
cells, fibroblasts, immune cells, and others often exhibit clear signs
of senescence (Wei et al., 2023; Giunta et al., 2022). Senescent
cells typically face three possible fates: clearance by immune
cells; maintenance in a quiescent state; or entry into regulated
programmed cell death (such as pyroptosis, necrosis, autophagy, or
apoptosis) (Fantini et al., 2024). However, under IBD conditions,

due to impaired immune clearance, a large number of senescent
cells fail to be removed in time, persist for extended periods, and
exacerbate the negative effects of SASP. Persistent inflammatory
stimuli can induce the activation of various regulated cell death
(RCD) pathways, leading to further damage to the intestinal barrier
(Tower, 2015). Specifically, senescent cells release a large number
of pro-inflammatory factors through SASP and activate the NF-
κB and p38 MAPK pathways, enhancing inflammatory signaling,
making adjacent cells more susceptible to damage and even entering
Necroptosis (Zhang et al., 2022d; Bertheloot et al., 2021). The
accumulation of senescent cells may amplify the TNF-α-dependent
RIPK3 overexpression, thereby exacerbating intestinal epithelial
programmed necrosis (Necroptosis), and the release of damage-
associated molecular patterns (DAMPs) from necrotic cells will
further activate NF-κB signaling, intensifying the inflammatory
response and the vicious cycle of cellular senescence (Hou et al.,
2024; Royce et al., 2019). Additionally, senescence leads to increased
intracellular oxidative stress, such as the activation of the NOX
(NADPH oxidase) family, resulting in the accumulation of reactive
oxygen species (ROS) that further promote NLRP3-Caspase-1 axis-
mediated pyroptosis (Zarrin et al., 2021; Yuan and Ofengeim,
2024; Hsu et al., 2021). Cytokines secreted by SASP also inhibit
AMPK activity, reducing ULK1-dependent autophagy initiation,
thereby impairing the autophagic clearance function of intestinal
cells (Hsu et al., 2021; Cheng et al., 2024).
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TABLE 1 The impact of various cell death mechanisms on cellular senescence and their potential mechanisms in IBD.

Cell death
pathway

Classification The impact on
cellular

senescence

Potential mechanism References

Regulated cell death

Apoptosis Inhibit Apoptosis is a programmed cell death
process that typically maintains tissue
stability by eliminating cells that are
severely damaged and irreparable. By
removing these potentially harmful
cells, apoptosis helps prevent the
accumulation of senescent cells,

thereby inhibiting the progression of
senescence

Kurosaka et al. (2003), Elmore (2007),
Majno and Joris (1995), Häcker (2000)

Pyroptosis Promote Pyroptosis promotes cell senescence by
triggering inflammation, which can
lead to the accumulation of senescent
cells and accelerate the aging process

Miao et al. (2023), You et al. (2023),
Zychlinsky et al. (1992)

Ferroptosis Promote Ferroptosis is an iron-dependent mode
of cell death, typically accompanied by

oxidative stress. Oxidative stress
damages cells and may promote the

onset of senescence

Dixon et al. (2012), Tang et al. (2021)

Cuproptosis Promote Cuproptosis is a form of cell death
triggered by the binding of copper ions
to mitochondrial proteins, potentially
leading to mitochondrial dysfunction

and oxidative damage, thereby
promoting senescence

Tsvetkov et al. (2022), Tang et al. (2022)

Disulfidptosis Promote Disulfidptosis is caused by the rupture
of disulfide bonds, typically

accompanied by oxidative stress and
protein dysfunction, which may

promote the aging process

Zheng et al. (2023), Liu et al. (2023c)

Necroptosis Promote Necroptosis is a cell death mode
dependent on RIPK3 and MLKL

proteins and is often associated with
inflammatory responses. A persistent

inflammatory environment may
exacerbate cellular senescence, as

inflammation promotes the release of
senescence-associated cytokines

Seo et al. (2021), Degterev et al. (2005)

Immunogenic Cell
Death

Promote/Inhibit Immunogenic cell death typically
activates the immune system to

recognize and clear damaged cells. In
some cases, immune activation may

lead to the clearance of more senescent
cells, thus inhibiting senescence;

however, excessive immune responses
may promote chronic inflammation,

exacerbating senescence

Galluzzi et al. (2018), Galluzzi et al.
(2020)

Unregulated cell death Necrosis Promote Necrosis is usually caused by severe cell
damage, accompanied by the release of
a large amount of cellular contents,
which triggers a strong inflammatory

response, promoting senescence

Holler et al. (2000),
Vanlangenakker et al. (2012)

The accumulation of senescent cells in the intestine leads to
aging-related changes, while persistent intestinal aging can reduce
the expression of apoptosis-related genes in mesenchymal stem cells

in IBD, affecting mucosal repair and regeneration (Alt et al., 2012).
Consistent with reduced apoptosis in the state of intestinal aging,
biomarkers of apoptosis in normal human serum decrease with
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age (Kavathia et al., 2009). Apoptosis is associated with the healing
of mucosal ulcers in the intestinal tract (Wang et al., 2025). The
downregulation of apoptosis gene expression in intestinal epithelial
cells due to a decreased clearance rate of senescent cells may be a key
factor contributing to the prolonged non-healing of intestinal ulcers
in IBD (Li W. et al., 2025). In the animal models (such as the DSS-
induced rat colitis model), the expression of SASP-relatedmolecules
(such as IL-1β, MMPs) is significantly elevated, accompanied by a
reduction in mitochondrial membrane potential and an increased
apoptosis rate in intestinal epithelial cells, further demonstrating the
role of SASP in inducing cell death (Moiseeva et al., 2023).Themain
crosstalk mechanisms between cell death and cellular senescence in
IBD are summarized in Figure 1.

In summary, senescent cells in the IBD intestine usually
accumulate due to persistent inflammatory stimuli, oxidative
stress, telomere shortening, and DNA damage, exhibiting
resistance to apoptosis. It is important to note that senescent cells
that inhibit apoptosis may promote malignant transformation,
increasing the risk of IBD patients developing colorectal cancer
(Schmitt et al., 2022; Lv et al., 2024).

4.2 Cell death to cellular senescence

In the progression of IBD, cell death is not merely an
endpoint but may serve as a trigger for cellular senescence.
Various regulated cell death modes, such as pyroptosis, apoptosis,
necroptosis, and autophagy, promote the entry of intestinal
epithelial cells into a senescent state through different mechanisms
(Tower, 2015).

In the early stages of IBD, intestinal epithelial cells undergo
excessive apoptosis in response to external stimuli, which may
deplete the intestinal stem cell pool and force the stem cells into
a senescent state (Kavathia et al., 2009). In the later stages of
IBD, prolonged chronic inflammation may suppress apoptosis in
intestinal epithelial cells, leading to a decreased clearance rate of
senescent cells (Alt et al., 2012). Some cells that fail to undergo
apoptosis may become arrested in the G1 phase, displaying typical
features of senescence. In IBD, the highly activated pyroptosis
in intestinal epithelial cells induces the release of IL-1β, IL-18,
and DAMPs, which continuously activate the NF-κB pathway,
creating a chronic inflammatory environment that promotes the
senescence of neighboring cells (Chen et al., 2019). Senescent
cells after pyroptosis also continue to secrete SASP, leading to
mitochondrial dysfunction and exacerbating IBD-related cellular
senescence. Furthermore, mutations in ATG16L1 andNOD2 in IBD
reduce autophagic activity, making it difficult for senescent cells in
the intestine to be cleared. Necroptotic cells also induce immune
cell activation of the NF-κB pathway, promoting the accumulation
of senescent cells (Wang R. et al., 2020). Cell death induced by
metal elements is closely related to mitochondria (Tsvetkov et al.,
2022; Jiang et al., 2021), as mitochondrial dysfunction mediates
insufficient cellular energy supply, closely linking it to cellular
senescence (Fantini et al., 2024). In conclusion, understanding
the impact of different cell death modes on cellular senescence
not only helps to uncover the pathological mechanisms of IBD
but may also provide new intervention strategies for future IBD
treatments.The impact of various cell death mechanisms on cellular

senescence and their potential mechanisms in IBD are summarized
in Table 1.

5 Conclusion and prospects

In IBD, chronic intestinal inflammation creates a pathological
microenvironment that accelerates immune system aging and
impairs its ability to clear senescent cells efficiently. The
accumulation of senescent cells further disrupts tissue regeneration,
leading to a complex interplay between cell death and cellular
renewal. SASP and senescent cells modulate cell death pathways,
but when the balance is lost due to chronic inflammation, cell death
dysregulation can hinder senescent cell clearance, exacerbating
disease progression.

Given the increasing focus on anti-aging therapies, targeting
intestinal aging in IBD may provide a novel therapeutic strategy.
However, research on drugs specifically targeting intestinal aging
in IBD remains limited. Further basic and clinical studies are
needed to explore whether preventing early intestinal aging in
young IBD patients can mitigate symptoms and promote long-
term remission. Although cell death regulation has been widely
studied in IBD and some therapeutic interventions show promise,
the complexity of IBD pathogenesis suggests that focusing solely on
cell death mechanisms may not fully explain disease progression
or treatment efficacy. Understanding the intrinsic link between
cell death and cellular senescence is crucial for identifying new
therapeutic targets, offering potential clinical and societal benefits in
managing IBD.
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