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The physiological characteristics
of inward rectifying potassium
channel Kir4.2 and its research
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Kir4.2 is a member of the inward rectifying potassium channel family, encoded
by the KCNJ15 gene. The Kir4.2 protein is expressed in various organs including
the kidneys, liver, pancreas, bladder, stomach, and lungs. Kir4.2 not only forms
functional homomeric channels, but also heteromeric channels with Kir5.1. An
increasing number of studies indicate that the function of the Kir4.2 channel
should not be underestimated. Kir4.2 participates in cell electrotaxis chemotaxis
by sensing extracellular electric fields and functions as a K + sensor in the
proximal tubules of the kidney, playing a crucial role in maintaining acid-
base and potassium balance. This article provides a comprehensive review
of the main physiological characteristics of the Kir4.2 channel, the various
pathological processes it is involved in, and the human diseases resulting from
Kir4.2 dysfunction.
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1 Introduction

The ion channels of biological membranes mediate the passive transport of various
inorganic ions across the membrane, and the permeability of biological membranes to ions
is closely related to various life processes. Ionic channels are composed of special proteins
produced by cells, which aggregate and embed on the cell membrane, and regulate the
entry and exit of corresponding substances through the opening and closing of channels.
According to the activation mechanism, ion channels can be divided into: 1) voltage-gated
channels, whose opening is controlled by membrane potential, such as Na+, Ca2+, Cl−,
and some K+ channels; 2) Chemical gated channels, which are activated by the interaction
between chemicals and membrane receptors, such as Ach receptor channels, amino acid
receptor channels, Ca2+ activated K+channels, etc.,; 3) Mechanical gated channels, which
are activated and deactivated by local mechanical stimuli on the membrane, such as sensory
nerve endings, auditory hair cells, endothelial cells on blood vessel walls, and skeletal
muscle cells. K+ channels are a type of protein complex that exists on biological membranes
and has a certain selective permeability to K+. By controlling the dynamic balance of K+

inside and outside the cell, they regulate the cell membrane potential and participate in
a series of physiological or pathological processes. According to channel characteristics,
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FIGURE 1
Kir4.2 channel schematic diagram. Kir4.2 is composed of four subunits
(left in the figure), with each subunit comprising a highly conserved
pore (P) region that harbors a conserved H5 segment, as well as two
transmembrane domains, M1 and M2, situated on either side of the
pore region (right in the figure).

K+ channels can be divided into: 1) voltage-gated K+ channels; 2)
inward rectifying K+ channel; 3) two-pore-domain K+ channel; 4)
Ca2+-activated K+ channels; And 5) delay K+ channel.

The first inward rectifying potassium (Kir) channel gene
was reported by Kubo et al. (1993). The characteristic of the
Kir channel is that the conductivity increases during membrane
potential hyperpolarization and decreases during depolarization.
And this phenomenon is due to the fact that Mg2+ and other
high valence ions inside the cell move towards the inner opening
of the channel and block it when the membrane potential is
depolarized, making it easier for K+ to flow inward through the Kir
channel than out. This characteristic makes it play an important
role in maintaining cell resting membrane potential, regulating
cell excitability, and maintaining potassium homeostasis (Jan and
Jan, 1997; Doupnik et al., 1995; Hibino et al., 2010). The general
structure of a Kir channel consists of four subunits, each consisting
of a highly conserved pore (P) region and two transmembrane
domains (M1 and M2) located on either side (Figure 1). The P
region contains a conserved H5 fragment, while the H5 and M2
segments bind to the carboxyl end hydrophilic domain, which
is crucial for potassium permeation (Abraham et al., 1999). The
currently known Kir family mainly consists of seven subfamilies
(Kir1. x-Kir7. x), which can be divided into four groups based
on their functions: 1) classical Kir channel: Kir2. x; 2) G-protein
coupled Kir channel: Kir3. x; 3) ATP sensitive Kir channel: Kir6. x;
4) Kir channels affected by intracellular pH: Kir1. x, Kir4. x, Kir5. x,
and Kir7. x (Hibino et al., 2010).

Gosset et al. (1997) first revealed the existence of the gene
KCNJ15 encoding the Kir4.2 (also known as IRKK and Kir1.3)
channel in the Down syndrome chromosome one region (DCR1)
on chromosome 21. Previous studies have demonstrated that Kir4.2
protein is expressed and performs corresponding functions in
human kidneys, lungs, and pancreas (Shuck et al., 1997). Kir4.2 plays
an important role in human physiological processes (Figure 2), such
as the interaction betweenKir4.2 channels and polyamines inducing
extracellular electric fields to induce directional migration of cells
(Nakajima and Zhao, 2016), and Kir4.2 is necessary for histamine
stimulated gastric acid secretion (He et al., 2011). With further

researchs, it has been found that Kir4.2 can mediate low potassium
induced kidney injury and polymyxin induced nephrotoxicity
(Terker et al., 2022; Lu et al., 2022). In addition, KCNJ15 gene
mutation is related to type 2 diabetes, Alzheimer’s disease, epilepsy
and other diseases (Okamoto et al., 2010; Zhou et al., 2018;
Wang et al., 2022). In cancer research, KCNJ15 gene participates in
the cancer process as a differential gene in a variety of cancers, such
as kidney cancer, esophageal squamous cell carcinoma, breast cancer
and glioma (Liu et al., 2019; Nakamura et al., 2020; Qiao et al., 2023;
Veeravalli et al., 2012). What is even more impressive is that Kir4.2
protein is expressed in retinal pigment epithelial cells and plays a
role in maintaining the survival and proliferation ability of retinal
pigment epithelial cells (Beer et al., 2022).

With the exploration of the role of Kir4.2 channel in human
diseases, we are more certain that it still has many important
functions worth further exploration. In summary, this article
will review the research progress of Kir4.2 channel from three
aspects: the main physiological characteristics of Kir4.2 channel,
the pathological processes it participates in, and its connection
with human diseases. The aim is to provide new ideas for further
exploring the biological functions of Kir4.2 channel and its potential
value in human diseases.

2 Main physiological characteristics of
Kir4.2

2.1 Potassium dependent activation of
Kir4.2

As is well known, Kir channels are involved in regulating cellular
excitability and K+ transport processes. In the Kir subfamily, the
activation of Kir1.1 (Dahlmann et al., 2004; Doi et al., 1996),
Kir4.1 (Edvinsson et al., 2011a), and Kir4.2 (Pearson et al., 1999)
depends on the extracellular K+ concentration (K+0).K

+
0 participates

in the regulation of Kir4.2 channels by affecting the number of cell
surface channels or altering the properties of channels present on
the plasma membrane surface (Hoshi et al., 1991). Edvinsson et al.
(2011b) found that Kir4.2 is sensitive to changes in K+0 , and this
characteristic is completely eliminated when Kir4.2 is co expressed
with Kir5.1. Unlike Kir1.1, the introduction of mutation (K66M)
significantly reduced the pHi sensitivity of Kir4.2 channel, while
the sensitivity to K+0 remained unchanged, indicating that there is
no coupling between pHi sensitivity and K+0 sensitivity of Kir4.2.
That is to say, the sensitivity of Kir4.2 to K+0 is independent of
pHi. Based on the kinetic model, Kir4.2 exists in at least three
states on the plasma membrane: the inactive state, the intermediate
unstable state, and the active state. The intermediate unstable
state is also referred to as the K+0-sensitive state. The transition
of Kir4.2 channels from the inactive state to the active state
initially occurs at a relatively slow rate and happens independently
of K+0 in a random manner. Once entering the intermediate
unstable state, K+0 interacts with the channel, facilitating its rapid
transition to the active state (Edvinsson et al., 2011b). Given the
localization of Kir4.2 in the kidney, this potassium-dependent
activation suggests that Kir4.2 can act as a potassium sensor to
maintain K+ balance.
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FIGURE 2
The main physiological characteristics and related pathological processes of Kir4.2.

2.2 The extracellular electric field
induction function of Kir4.2

The directed migration of cells is of great significance in
various physiological and pathological processes such as embryonic
development, angiogenesis, wound repair, inflammatory response,
and tumor metastasis (Cortese et al., 2014; Espina et al., 2022).
The directional migration of cells guided by extracellular electric
fields is called electrotaxis. Currently, there are multiple types of
cells have directional migration by induction of extracellular electric
field, such as corneal epithelial cells, keratinocytes, endothelial cells,
lymphocytes, stem cells, and some tumor cells (McCaig et al., 2005).
For example, during wound healing, trans-epithelial potentials
(TEPs) are disrupted, with the wound edge becoming an anode and
the wound center becoming a cathode. The resulting endogenous
electric field guides the migration of epidermal cells to promote
wound healing (Liu et al., 2024; Zhao, 2009; Yang et al., 2022).
Extracellular electric fields not only regulate cell migration, but
also play an essential role in cell proliferation, localization, and
polarization processes (Cortese et al., 2014; Zhao et al., 1996;
Clancy et al., 2021). Ion channels play a crucial role in the generation
and induction of biological currents. Studies have shown that
knocking downKCNJ15 significantly reduces the electrotaxis of cells
in the extracellular electric field, and the migration speed is the
same as that of non target siRNA control cells or cells without an
extracellular electric field, indicating that knocking down KCNJ15
has a specific effect on the orientation induction of cells in the
extracellular electric field (Nakajima et al., 2015).

Polyamines are a class of organic compounds containing
two or more amino groups. The primary raw materials for
their synthesis are ornithine and arginine. The most prevalent
polyamines with significant physiological functions are putrescine
(PUT), spermidine (SPD), and spermine (SPM). They play a
crucial role in regulating nucleic acid and protein structures,
protein synthesis, interactions between proteins and nucleic acids,
oxidative balance, and cell proliferation (Zahedi et al., 2022; Weiger
and Hermann, 2014). The inward rectification characteristics of
Kir channels are mediated by intracellular polyamines. Positively
charged intracellular polyamines bind to negatively charged amino

acid residues located in the pore region of Kir channels, preventing
the outward flow of K+ (Hibino et al., 2010; Ficker et al., 1994).
Polyamine depletion alters the inward rectification characteristics
of Kir channels, causing K+ to flow reversely outward (Shyng et al.,
1996). Using the polyamine analog N1, N11-diethylnorspermine
(DENSPM) to deplete intracellular polyamines, DENSPM treatment
completely eliminated electrotaxis, and cells exhibited random
migration. Culturing cells with PUT (an important precursor for
SPM/SPD synthesis) significantly increased intracellular polyamine
concentration, enhancing cell electrotaxis. However, knocking out
KCNJ15 completely eliminated the PUT-induced enhancement of
electrotaxis (Nakajima et al., 2015), suggesting that Kir4.2 senses
extracellular electric fields through interaction with polyamines.
By further constructing a polyamine-binding deficient KCNJ15
mutant, it was observed that this mutant significantly reduced the
cell orientation in an extracellular electric field, yet it did not
affect cell motility (Nakajima and Zhao, 2016; Nakajima et al.,
2015). This further demonstrates that the interaction between
Kir4.2 protein and intracellular polyamines is essential for cell
sensing of extracellular electric fields. In conclusion, Kir4.2 achieves
directional sensing of extracellular electric fields through interaction
with polyamines. This mechanism may facilitate the exploration of
more potential values of Kir4.2 channels in human disease research.

2.3 Intracellular pH (pHi) sensitivity of
Kir4.2

In 1997, Shuck et al. (1997) screened and identified two Kir-
related cDNAs, Kir1.3 and Kir1.2, from a human kidney cDNA
library. The amino acid sequences of the two share 62% homology,
but compared to Kir1.2, Kir1.3 does not express a functional
channel in Xenopus laevis oocytes. Conversely, Pearson et al.
(1999) demonstrated that Kir4.2 exhibits strong inward rectification
characteristics in Xenopus laevis oocytes, and intracellular
acidification can reversibly reduce the current of Kir4.2 channels.
Research has shown that Kir4.2 has significantly higher inherent pHi
sensitivity than Kir4.1, which is due to its presence of a C-terminal
pHi-sensitive mechanism (Pearson et al., 2006; Pessia et al., 2001).
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Kir5.1, encoded by KCNJ16, is expressed in many organs
and tissues (Liu et al., 2000). Previous studies have shown
that Kir5.1 does not form a functional channel, but can form
functional heteromeric channels with Kir4.2 and Kir4.1 channels
(Kir4.2/Kir5.1 and Kir4.1/Kir5.1). The presence of the pHi-sensitive
mechanism at the C-terminus of Kir4.2 does not significantly
increase the sensitivity of Kir4.2/Kir5.1 to pHi (Pearson et al.,
1999; Pessia et al., 2001; Tanemoto et al., 2000; Xu et al.,
2000; Yang et al., 2000). By expressing Kir4.2 and Kir4.2/Kir5.1
fusion proteins in HEK293 cells, it was found that Kir5.1 can
sensitize Kir4.2 to intracellular Mg2+, polyamines, and intracellular
PIP2 levels (Lam et al., 2006). The pHi sensitivity of the Kir4.2
channel and its localization in renal tubular epithelial cells suggest
that it may be involved in the regulation of acid-base and electrolyte
balance in the kidney.

3 Pathological processes associated
with Kir4.2

3.1 The role of Kir4.2 in the process of
kidney injury

Kir4.2 mediates low potassium-induced renal injury. The
proximal tubule (PT) is the primary site for ammonia production,
gluconeogenesis, and reabsorption of primary urine in the kidney,
and it is also themain target of renal injury. Inmouse kidneys, Kir4.2
and Kir5.1 are located on the basolateral membrane in the form
of heterotetramers (Schlingmann et al., 2021), and hyperchloremia
acidosis, reduced threshold for bicarbonate reabsorption, and
decreased urinary NH4+ can be observed in KCNJ15−/− mice
(Bignon et al., 2020). Studies have shown that low potassium diet
or low blood potassium caused by increased aldosterone can induce
specific renal injury, which is dependent on the proximal tubule
Kir4.2 channel (Terker et al., 2022). It is well known that renal
ammonia metabolism is crucial for maintaining acid-base balance,
and the proximal tubule is the main site for ammonia production
(Weiner and Verlander, 2013). Under low potassium conditions,
the Kir4.2 channel mediates the efflux of potassium from the
basolateral side of the proximal tubule, causing intracellular acidosis,
further activating the phosphate-dependent glutaminase-catalyzed
ammonia production pathway, and ultimately leading to renal injury
(Terker et al., 2022). Furthermore, under low potassium conditions,
the Kir4.2 channel promotes the activation of the mTOR/AKT
signaling pathway in proximal tubular cells, thereby regulating
the kidney’s response to low potassium signals and maintaining
K+ balance (Zhang Y. et al., 2024). Therefore, the Kir4.2 channel
in the kidney serves as a potassium sensor in the proximal tubules
to maintain K+ balance and mediates low potassium-induced renal
injury, suggesting that Kir4.2 holds potential value in the clinical
treatment of low potassium-induced renal injury.

Kir4.2 mediates polymyxin-induced nephrotoxicity.
Polymyxins, a group of polypeptide antibiotics produced by
polymyxa bacteria, exhibit inhibitory effects on most Gram-
negative bacteria, and polymyxin-induced nephrotoxicity is a
significant factor leading to poor treatment outcomes. Previous
studies have shown that polymyxins accumulate significantly in
renal tubular epithelial cells (Azad et al., 2015b), subsequently

inducing nephrotoxicity through pathways such as apoptosis,
mitochondrial damage, endoplasmic reticulum stress, oxidative
stress, and inhibition of the cell cycle (Azad et al., 2019; Azad et al.,
2015a). Additionally, polymyxins bind to Kir4.2, disrupting K+

homeostasis and inducing cell membrane depolarization by
increasing the open state of Kir4.2 channels, ultimately leading
to nephrotoxicity. Knocking out KCNJ15 or KCNJ16 in human
renal tubular HK-2 cells individually can attenuate polymyxin-
inducedmembrane depolarization, reduce polymyxin accumulation
in cells, and significantly enhance resistance to polymyxin-
induced toxicity (Lu et al., 2022). Thus, it is evident that polymyxins
induce nephrotoxicity by directly binding to the Kir4.2/Kir5.1
heterotetramer. Therefore, in the clinical application of polymyxins,
Kir4.2 and Kir5.1 inhibitors may serve as a strategy to reduce
nephrotoxicity.

3.2 Kir4.2 mediates histamine-stimulated
gastric acid secretion

The secretion of gastric acid by parietal cells is mediated by
proton pumps (H+-K+-ATPase) and H+-HCO3

− exchangers. Under
the stimulation of histamine and other factors, the proton pump
consumes ATP to decompose water molecules and transports H+

into the lumen at a ratio of 1:1 in exchange for K+. The continuous
supply of K+ in the lumen relies on K+ channels. Meanwhile,
a large amount of residual OH− in the cell, under the action
of carbonic anhydrase, converts to HCO3- together with CO2.
Subsequently, under the action of H+-HCO3

- exchangers, it flows
into the capillaries on the gastric wall side of the parietal cells,
absorbs Cl− from the capillaries into the cell, and discharges it
into the gastric lumen through Cl− channels. Finally, it combines
with hydrogen ions discharged into the gastric lumen to form
hydrochloric acid (Engevik et al., 2020). Obviously, the secretion
of gastric acid requires a continuous supply of K+. Previous
studies have shown that KCNQ1 (Song et al., 2009; Nguyen et al.,
2013; Lambrecht et al., 2005), KCNJ1 (Vucic et al., 2015), KCNJ2
(Malinowska et al., 2004), KCNJ10 (Song et al., 2011), and KCNJ15
(He et al., 2011; Ficker et al., 1994) are all related to gastric
acid secretion.

The results of the qRT-PCR experiment showed that the Kir4.2
channel is the most specific K+ channel in gastric mucosa. Western
blot analysis further confirmed the abundant presence of Kir4.2
protein in gastric mucosa. Immunofluorescence staining indicated
that Kir4.2 protein is expressed in both gastric parietal cells and
chief cells. In resting parietal cells, Kir4.2 is mainly located in the
cytoplasm. In resting parietal cells, Kir4.2 is primarily located in the
cytoplasm. However, upon histamine stimulation, Kir4.2 undergoes
translocation and co-localizes with H+-K+-ATPase on the apical
membrane of parietal cells (He et al., 2011). This observation is
further corroborated by live-cell imaging systems. After infection
with adenovirus carrying the KCNJ15 shRNA plasmid, the protein
level of Kir4.2 decreases in primary rabbit gastric parietal cells,
and these cells exhibit no response to histamine-induced acid
secretion (Yuan et al., 2015). These findings suggest that the absence
of KCNJ15 can lead to gastric acid secretion dysfunction.

Frontiers in Cell and Developmental Biology 04 frontiersin.org

https://doi.org/10.3389/fcell.2025.1519080
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhang et al. 10.3389/fcell.2025.1519080

4 Research progress of Kir4.2 in
human diseases

4.1 Kir4.2 and type 2 diabetes

Type 2 diabetes (T2DM) is recognized as one of themajor health
issues in developed countries, and it is also becoming increasingly
prevalent in developing countries. Numerous studies have revealed
significant differences in the average BMI of T2DM patients among
different populations (Zimmet et al., 2001; Davis et al., 2001;
Sone et al., 2002). KCNJ15 is relatively highly expressed in the
pancreas, especially more prominently in the Langerhans islets,
and there is a significant correlation between the KCNJ15-related
single nucleotide polymorphism (SNP) rs3746876-T and T2DM
(Okamoto et al., 2010; Fukuda et al., 2013). Okamoto et al. (2010)
found that the KCNJ15-related SNP rs3746876 was significantly
associated with lean T2DM patients (BMI <24 kg/m2) in Asia,
and the level of KCNJ15 mRNA in peripheral blood of patients
with rs3746876-T was higher than that of patients with rs3746876-
C. In vitro functional analysis showed that under high glucose
concentration (25 mmol/L) conditions, overexpression of KCNJ15
reduced insulin secretion, but no significant changes were observed
under normal blood glucose conditions. Interestingly, Fukuda et al.
(2013) conducted a replication study on the correlation between
the KCNJ15-related SNP rs3746876 and T2DM, and found that
rs3746876-T was significantly associated with T2DM, but the
direction of effect was opposite to that of previous studies, and
this correlation was only significant in obese T2DM patients
(BMI >24 kg/m2). Subsequently, Okamoto et al. (2012) further
investigated the effect of KCNJ15 on insulin secretion, and found
that the level of KCNJ15 mRNA in Langerhans islets of T2DM
patients was significantly higher than that of non-diabetic controls,
and high glucose concentration (25 mmol/L) could induce the
expression of KCNJ15, while knockdown of KCNJ15 under the same
conditions could increase insulin secretion in vitro and in vivo.

The Ca2+-sensing receptor (CaSR), a member of the G protein-
coupled receptor (GPCR) superfamily, is closely related to systemic
Ca2+ homeostasis. CaSR is expressed in neurons, oligodendrocytes,
breast ductal epithelial cells, fibroblasts, and Langerhans islet cells,
and it plays a role in insulin secretion in pancreatic islet β-cells
(Rasschaert and Malaisse, 1999; Malaisse et al., 1999). Studies
have shown that activation of CaSR triggers a significant but
transient insulin secretion response in human pancreatic islet
cells and insulin-secreting cells MIN6, and can enhance glucose-
induced insulin secretion. Furthermore, the activation of CaSR
is associated with the activation of p42/44 mitogen-activated
protein kinase (MAPK) (Gray et al., 2006). In mouse kidney
tissues, CaSR selectively interacts with Kir4.1 and Kir4.2, leading
to channel inactivation and subsequently inhibiting electrolyte
transport in nephrons (Huang et al., 2007). This interaction suggests
that KCNJ15 may be involved in insulin regulation through
its interaction with CaSR. Further research has confirmed that
CaSR and KCNJ15 are co-expressed in rat insulinoma (INS1)
cells. Gene double knockdown results indicate that inactivation
of CaSR reduces insulin secretion. Moreover, in the absence of
CaSR, inactivation of KCNJ15 does not increase insulin secretion,
suggesting that CaSR is a necessary condition for KCNJ15 to affect
insulin secretion (Okamoto et al., 2012). Additionally, based on

our understanding of the function of the Kir family, KCNJ15
may negatively regulate insulin secretion by maintaining the
resting membrane potential of pancreatic β-cells and inhibiting
depolarization. In summary, KCNJ15 is a risk gene associated with
T2DM. The emergence of contradictory conclusions may be due
to differences inliving environments, racial, and/or regional factors,
indicating that more research is needed to clarify the contribution of
KCNJ15 to T2DM susceptibility.

4.2 Kir4.2 and neurological diseases

Alzheimer’s disease (AD) is a complex neurodegenerative
disorder. With the aging of the population, its prevalence is rapidly
increasing, making it one of the leading causes of death among the
elderly (Scheltens et al., 2021). The pathogenesis of AD is complex,
with genetics playing a pivotal role. A whole-genome sequencing
study revealed common genetic risk factors for AD, including
APOE, GCH1, and KCNJ15. Genotype-phenotype analysis revealed
that the variation at the KCNJ15-related SNP rs928771 locus affects
the age of onset of Alzheimer’s Disease (AD), with a small number
of allele carriers experiencing earlier onset (Zhou et al., 2018).
Through research on the relationship between the levels of immune-
related plasma biomarkers and the genotype of rs928771, it was
found that AD subjects exhibited a genotype-dependent reduction
in various immune-related plasmabiomarkers.This suggests that the
KCNJ15 variant may affect the progression of AD by regulating the
immune system (Zhou et al., 2018).

Epilepsy is one of the most common neurological diseases,
caused by abnormal neuronal discharge in the brain, and
characterized by its recurrence and complexity (Shorvon, 1990).
K+ channels are involved in regulating neuronal excitability and
play a crucial role in the membrane repolarization process of
neurons. Therefore, K+ channels may play a role in the occurrence
of epilepsy (Nikitin and Vinogradova, 2021). Mutations in the
Kir family are relatively rare in epilepsy patients. Kir4.1 is mainly
expressed in astrocytes, and its functional defects are associated
with EAST (epilepsy, ataxia, sensorineural hearing loss, and renal
tubular disorders) syndrome (Scholl et al., 2009). Mice lacking
the GIRK2 gene (encoding Kir3.2 channel) exhibit spontaneous
seizures and are more prone to pharmacological seizures induced
by γ-aminobutyric acid antagonists (Signorini et al., 1997). A
comprehensive bioinformatics analysis revealed that KCNJ15 is
significantly downregulated in the brain tissue of the medial
temporal lobe in patients with drug-resistant epilepsy. Protein-
protein interaction (PPI) analysis indicated that the protein encoded
by KCNJ15 directly interacts with the two epilepsy drug targets
encoded by GABBR1 and GABBR2, further supporting the role of
KCNJ15 in epilepsy. Expression quantitative trait locus (eQTL)
analysis showed that the epilepsy-related SNP rs2833098 may
become a risk marker for epilepsy by regulating the expression
level of KCNJ15 in human temporal lobe brain tissue (Wang et al.,
2022). It is evident that the Kir family is involved in the occurrence
of epilepsy. As a potential biological target for epilepsy, KCNJ15
requires further experimental verification and more evaluations in
different populations.
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4.3 Kir4.2 and cancer

Cancer poses a significant public health issue globally, with
its incidence and mortality rates steadily rising, thus emerging as
the primary cause of human mortality (Siegel et al., 2022). At
present, the main treatment methods of cancer include surgery,
chemotherapy, radiotherapy and biological therapy. Given that ion
channels are extensively involved in various cellular physiological
and pathological processes, it is unavoidable for genes encoding
these channels to be present during the oncogene transformation
process (Prevarskaya et al., 2018). K+ channels are extensively
distributed across various human tissues, playing a role in cell
adhesion and migration, apoptosis and proliferation, cell cycle
regulation, cell volume control, angiogenesis, and other processes
pertinent to tumor biology. Consequently, the expression and
dysfunction of K+ channels are closely linked to tumor progression
(Pardo and Stühmer, 2014; Li et al., 2022). Evidently, K+ channels
hold promise as markers for tumor diagnosis and prognosis,
potentially offering novel insights for targeted tumor therapy.

The Kir family represents a class of non-voltage-gated K+

channels, playing a crucial role inmaintaining cell restingmembrane
potential, regulating cell excitability, and modulating cell volume.
KCNJ15 exhibits differential expression across various cancers.
Currently, research on KCNJ15 and cancer primarily concentrates
on renal cancer, esophageal squamous cell carcinoma, breast
cancer, among others. Studies reveal that KCNJ15 is significantly
downregulated in renal cell carcinoma (RCC), and this reduced
expression serves as an independent poor prognostic factor for
clear cell RCC (ccRCC). In vitro experiments demonstrate that
overexpression of KCNJ15 inhibits RCC cell proliferation and
induces cell cycle arrest by upregulating the expression of p21
protein. Simultaneously, overexpression of KCNJ15 leads to the
downregulation of N-cadherin, vimentin, and MMP-7 protein
expression, indicating that KCNJ15 can hinder RCC cell migration
and invasion by suppressing the transition of epithelial cells to
mesenchymal cells and downregulating MMP-7 (Liu et al., 2019).
Nakamura et al. (2020) discovered that the expression level of
KCNJ15 in esophageal squamous cell carcinoma (ESCC) cell lines
exhibits significant variation, and high expression of KCNJ15
serves as an independent poor prognostic factor for ESCC. The
results of PCR array analysis indicated that COL3A1, JAG1, and
F11R mRNA exhibit a positive correlation with KCNJ15. Previous
studies have shown that COL3A1, Jag1 and F11R are involved
in tumor progression through the PI3K/AKT signaling pathway
(Zhang M. et al., 2024; Tan et al., 2012; Tian et al., 2015; Nava et al.,
2011), which also mediates the epithelial-mesenchymal transition
(EMT) process (Xu et al., 2015). Evidently, KCNJ15 may play a role
in cancer progression by regulating the cell cycle and inhibiting the
EMT process, indicating that KCNJ15 could potentially serve as a
target for cancer therapy.

Cell migration is the fundamental process of tumor metastasis.
The primary function of the integrin family is to anchor cells
to the extracellular matrix (ECM), thus playing a crucial role in
cell migration. α9β1 integrin accelerates cell migration by binding
its cytoplasmic domain to spermidine/spermine acetyltransferase
(SSAT), which enhances α9-mediated migration through the
catabolic metabolism of spermidine and/or spermine (deHart et al.,
2008; Chen et al., 2004). Given that spermine and spermidine can

function as physiological blockers of Kir channels, it is hypothesized
that the Kir family may be involved in the process by which α9β1
integrin promotes cellmetastasis (Ficker et al., 1994). Veeravalli et al.
(2012) discovered that shRNA-mediated double knockdown of
MMP-9 and uPAR/cathepsin B leads to the downregulation of both
mRNA and protein levels of SSAT. Furthermore, knockdown of
SSAT in glioma xenograft cell lines (4,910 and 5,310) significantly
decreased their migration ability. Subsequent research revealed
that treating 4,910 and 5,310 cells, which overexpressed MMP-9
and uPAR/cathepsin B, with barium or Kir4.2 siRNA significantly
inhibited their migration ability. This suggests that knockdown of
Kir4.2 can suppress glioma cell migration mediated by MMP-9 and
uPAR/cathepsin B. Additionally, in glioma xenograft cell lines (4,910
and 5,310), colocalization of α9 and Kir4.2 was observed. However,
double knockdown of MMP-9 and uPAR/cathepsin B significantly
reduced the colocalization of α9 and Kir4.2 (Veeravalli et al., 2012).
These findings underscore the necessity of Kir4.2 for α9β1 integrin-
mediated glioma metastasis, hinting at the potential significance of
KCNJ15 in tumor metastasis.

Chemotherapy stands as a crucialmethod for treatingmalignant
tumors; however, chemoresistance poses a significant challenge in
cancer therapy (Delou et al., 2019). Lysosomes, organelles within
cells featuring a single-layer membrane sac structure, contain
various hydrolytic enzymes such as phosphatase, lipase, protease,
nuclease, glycosidase, and sulfatase, capable of nonspecifically
degrading intracellular macromolecules (Zhang et al., 2021).
Lysosomes play a pivotal role in regulating tumor cell proliferation,
invasion, and the tumor microenvironment. Dysfunction in
lysosomes can lead to drug redistribution, ultimately resulting in
drug resistance and a poor prognosis for tumor patients. Located
on the surface of lysosomes, V-ATPase functions as a proton pump,
maintaining the stability of lysosomal pH. Studies have revealed
that the specific expression of KCNJ15 decreases in triple negative
breast cancer, particularly in paclitaxel-resistant cells of this type.
Furthermore, patients with lowKCNJ15 expression exhibit a shorter
Overall Fraction Survivor (OFS) compared to those with high
KCNJ15 expression. KCNJ15 can bind to the V-ATPase subunit
ATP6V0A1, facilitating the separation of V0 andV1 subunits within
V-ATPase. This interaction inhibits the proton pump effect of V-
ATPase, resulting in lysosomal dysfunction, which subsequently
mediates chemoresistance. Conversely, small molecule drugs
(CMA/BAF) can reverse drug resistance by disrupting the binding
between KCNJ15 and V-ATPase (Qiao et al., 2023). Evidently,
KCNJ15 promotes the development of chemotherapy resistance
in breast cancer by influencing lysosomal function. It may serve as
a predictor for pre-chemotherapy resistance in breast cancer and
emerge as a potential target for treating drug-resistant breast cancer.

4.4 Kir4.2 and other diseases

The retinal pigment epithelium (RPE) is a fundamental
component of the retina, connecting Bruch’s membrane and the
choroid on the lateral side, and the outer segment of photoreceptor
cells on themedial side. It plays an indispensable role inmaintaining
visual function (Strauss, 2005). Consequently, impairments in the
structure and function of the RPE will lead to various retinal
diseases, including retinitis pigmentosa (RP), age-related macular
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TABLE 1 The function/role of Kir4.2 in human diseases.

Disease Function/Role

Epilepsy The epilepsy-related SNP rs2833098 may regulate the expression level of KCNJ15 in human temporal lobe brain tissue and
serve as an epilepsy risk biomarker (Wang et al., 2022)

Clear cell renal cell carcinoma (ccRCC) KCNJ15 inhibits the proliferation of RCC cells by upregulating the expression of P21 protein, induces cell cycle arrest, and
may inhibit the migration and invasion of RCC cells by suppressing epithelial-mesenchymal transition (Liu et al., 2019)

Esophageal squamous cell carcinoma (ESCC) High expression of KCNJ15 is an independent poor prognostic factor for ESCC, potentially contributing to cancer
progression by influencing epithelial-mesenchymal transition (Nakamura et al., 2020)

Triple negative breast cancer (TNBC) KCNJ15 promotes the occurrence of breast cancer chemotherapy resistance by affecting lysosomal function (Qiao et al.,
2023)

Glioma Knockdown of Kir4.2 suppresses MMP-9 and uPAR/cathepsin B-mediated glioma cell migration (Veeravalli et al., 2012)

Type 2 diabetes mellitus There is a significant correlation between the KCNJ15-related SNP rs3746876-T and type 2 diabetes mellitus (T2DM)
(Okamoto et al., 2010; Fukuda et al., 2013; Okamoto et al., 2012)

Alzheimer’s disease The variation at the SNP rs928771 locus associated with KCNJ15 affects the age of onset of AD, with a small number of
allele carriers experiencing earlier onset (Zhou et al., 2018)

degeneration (AMD), and Stargardt disease (STGD). K+ channels
located in the apical membrane of RPE cells mediate the spatial
buffering of K+ concentration beneath the retina, maintain the
resting membrane potential, and support the functions of the
Na+-K+ pump and Na+-K+-2Cl− pump cotransporters (Hughes
and Takahira, 1996). RPE cells express a variety of Kir channel
subtypes. Reverse transcription polymerase chain reaction (RT-
PCR) analysis reveals that, besides Kir7.1, seven other Kir channel
subunits (Kir1.1, Kir2.1, Kir2.2, Kir3.1, Kir3.4, Kir4.2, and Kir6.1)
are also expressed in RPE cells (Yang et al., 2008). Studies indicate
that both hypoxia and extracellular hypertonia can stimulate the
expression and secretion of vascular endothelial growth factor
(VEGF). Exogenous VEGF can lead to a reduction in Kir4.2 gene
expression in RPE cells, and this effect can be inhibited by the
selective blocker of VEGF receptor-2 (SU1498). It is evident that
VEGF can decrease the expression of Kir4.2 gene under conditions
of hypoxia and extracellular hypertonia, and siRNA-mediated
knockdown of Kir4.2 can lead to a reduction in RPE cell viability
and proliferation (Beer et al., 2022). Based on the aforementioned
studies, the Kir4.2 channel plays a crucial role in maintaining
the survival and proliferation abilities of RPE cells, indicating
that KCNJ15 holds significant importance in the development of
retinal diseases.

Ankylosing spondylitis (AS) and ulcerative colitis (UC) share
similarities in terms of incidence and pathogenesis. Comprehensive
bioinformatics analysis showed that the KCNJ15 gene is a common
diagnostic marker for both AS and UC, with the oxidative
phosphorylation pathway being a commonly enriched pathway for
both diseases. Both AS and UC are immune-mediated chronic
inflammatory diseases. The CIBERSORT results have highlighted
a significant correlation between KCNJ15 and immune infiltrating
cells, indicating the potential value of KCNJ15 in the diagnosis
and treatment of AS and UC (Zhou et al., 2023). Another
comprehensive bioinformatics analysis revealed that KCNJ15,
along with TSPYL5, PARVG, RTN1, CTSW, HMOX1, DCAF12L1,
VNN2, and ANXA1, were identified as potential prognostic

predictive genes for endometrial cancer (UCEC) and polycystic
ovary syndrome (PCOS). Additionally, KCNJ15, TSPYL5, RTN1,
HMOX1, DCAF12L1, VNN2, and ANXA1 were found to be
associated with survival time, tumor mutation burden (TMB), and
immune infiltration in UCEC (Wu et al., 2023). These findings
imply that KCNJ15 plays a role in the development of various
human diseases. Further research is warranted to validate its
significance, aiming to identify new targets for disease diagnosis
and treatment.

5 Conclusion

This article primarily introduces the key physiological
characteristics of the Kir4.2 channel, the pathophysiological
processes associated with it, and its correlationwith human diseases.
The activation of the Kir4.2 channel relies on K+0 . In the kidney, the
Kir4.2 channel functions as a potassium sensor, contributing to
the maintenance of electrolyte homeostasis and acid-base balance.
Additionally, it mediates renal damage caused by low potassium
levels and polymyxin-induced nephrotoxicity. The Kir4.2 channel
exhibits pHi sensitivity. However, unlike Kir1.1, the pHi sensitivity
of the Kir4.2 channel is not coupled with K+0 sensitivity. The Kir4.2
protein can interact with intracellular polyamines, enabling it to
sense extracellular electric fields and subsequently induce the
directional migration of cells. Knockdown of KCNJ15 decreased
histamine-stimulated acid secretion in rabbit primary gastric
parietal cells; however, the precise mechanism remains to be further
investigated. As a susceptibility gene for T2DM, KCNJ15 has yielded
contradictory conclusions in existing studies, necessitating further
research to ascertain its clinical significance in T2DM. Additionally,
KCNJ15 gene mutations are implicated in the progression of
neurological diseases, such as Alzheimer’s disease and epilepsy.
Cancer research has revealed that KCNJ15, as a differentially
expressed gene, correlates with the clinical prognosis of renal
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cancer, esophageal squamous cell carcinoma, breast cancer,
and glioma (Table 1). KCNJ15 may contribute to cancer occurrence,
migration, and drug resistance by engaging in the EMT process,
regulating the cell cycle, and disrupting lysosomal function.
Furthermore, Kir4.2 protein is expressed in RPE cells, and
knockdown of Kir4.2 diminishes the viability and proliferative
capacity of RPE cells, indicating the potential value of Kir4.2 in
retinal diseases.

The physiological functions and characteristics of the Kir4.2
channel are gradually being uncovered, while its significance in
human diseases awaits further confirmation through research.
Currently, the absence of specific inhibitors for the Kir4.2 channel
restricts our ability to delve deeper into its physiological functions.
Consequently, future studies will focus on developing inhibitors for
the Kir4.2 channel, enhancing our comprehensive understanding of
it. Additionally, research into the mechanism of Kir4.2 in human
diseases has identified it as a potential target for targeted therapy.
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