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Embryonic development is a complex process of concurrent events comprising
cell proliferation, differentiation, morphogenesis, migration, and tissue
remodeling. To cope with the demands arising from these developmental
processes, cells increase their nutrient uptake, which subsequently increases
their metabolic activity. Mitochondria play a key role in the maintenance of
metabolism and production of reactive oxygen species (ROS) as a natural
byproduct. Regulation of ROS by antioxidants is critical and tightly regulated
during embryonic development, as dysregulation results in oxidative stress that
damages essential cellular components such as DNA, proteins, and lipids, which
are crucial for cellular maintenance and in extension development. However,
during development, exposure to certain exogenous factors or damage to
cellular components can result in an imbalance between ROS production
and its neutralization by antioxidants, leading to detrimental effects on the
developmental process. In this review article, we highlight the crucial role
of redox homeostasis in normal development and how disruptions in redox
balance may result in developmental defects.
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Introduction

Embryonic development is a highly coordinated process that culminates in the
formation of a fully functional organism governed by a complex interplay of genetic,
cellular, and environmental factors. During this pivotal phase, the developing embryo
undergoes a series of precise and tightly regulated remodeling events involving cell
proliferation, rearrangement, migration, and morphogenetic movements. All of these
features are accompanied by dynamic changes in gene activity, ultimately giving rise to
a diverse array of tissues and organs that constitute the adult organism. Interestingly,
each of these steps is characterized by different oxygen levels, ranging from 1% to 5%
during the formation of the placenta and up to 21% upon fetal development, where
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FIGURE 1
Prominent species of reactive oxygen.

tissue differentiation becomes the predominant process (Michiels,
2004; Hitchler and Domann, 2007; Ortega et al., 2016). These
dynamic remodeling steps, summarized as morphogenesis, are
accompanied by a variety of challenges experienced by cells
and tissues during embryonic development. One critical stage is
the generation of oxidative stress within the developing embryo
(Danielsson et al., 2023). Oxidation–reduction (redox) homeostasis,
like pH control, is central to life. Redox processes pervade almost all
fundamental life processes, from bioenergetics to metabolism and
life functions (Laforgia et al., 2018).

Oxidative stress arises from an imbalance between the
production of reactive oxygen species (ROS), that is, the production
of free radicals such as hydrogen peroxide (H2O2), superoxide
anions (O2

●−), and hydroxyl radicals (●OH) (Figure 1) as well
as the ability of the embryo’s antioxidant defense mechanisms to
neutralize these potentially harmfulmolecules (Fathollahipour et al.,
2019). In other words, oxidative stress disrupts mitochondrial redox
signaling and control. High-flux pathways, such as the electron
transport chain involved in ATP production, generate ROS as a
byproduct.These ROSmolecules feed into low-flux pathways, which
also engage antioxidants to neutralize free radicals and oxidized
macromolecules. Dysfunction in the high-flux pathways results in
higher ROS production, disrupting cellular homeostasis, whereas
dysfunction in the low-flux pathways compromises cell signaling in
metabolism, growth, and apoptosis (Jones, 2006).

In the context of embryonic development, a delicate balance
between ROS generation and regulation becomes paramount, as
oxidative stress can have profound consequences on the normal
course of development (DeFreitas et al., 2022). In mammals,
the origin of oxidative stress during embryonic development is
multifaceted, encompassing awide range of factors.This review aims
to comprehensively explore the causes underlying oxidative stress
development during embryogenesis, shedding light on intracellular

sources of ROS, cell mechanisms involved, and the potential
consequences of oxidative stress during this critical developmental
period. By deepening our knowledge regarding the intracellular
burst of oxidative stress during embryogenesis, valuable insights
into the intricate processes governing the formation of life and
the potential implications for developmental disorders and birth
defects can be gained (Danielsson et al., 2023). Additionally,
oxidative stress generated during morphogenesis may contribute
to long-term health complications that manifest later in life
(Ducsay et al., 2018; Suzuki, 2018).

The origin of oxidative stress, including both endogenous
and exogenous sources, is described in the following sections.
Intracellular molecular responses activated by oxidative stress
during embryonic development have been presented in parallel.
Additionally, this review explores the consequences of oxidative
stress on morphogenesis and how an imbalanced redox equilibrium
may have detrimental effects on normal mammalian embryonic
development. The potential impact of oxidative stress is analyzed
in terms of developmental disorders. Finally, the protective role
of antioxidant defense mechanisms is considered, and potential
avenues for future research in this vital field of study are discussed.

Sources of oxidative stress and ROS in
embryonic development

Embryogenesis requires specific signaling pathways to regulate
cell proliferation and differentiation. Oxidative stress, due to
an imbalance between the production of ROS and antioxidant
defenses, disrupts signaling pathways and plays a causative role
in birth defects. ROS generation within embryos can arise from
various endogenous and exogenous sources (Jomova et al., 2023).
Understanding these sources is essential for unraveling the complex
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mechanisms driving embryonic development and vulnerability to
oxidative stress.

One of the primary endogenous sources of ROS in embryonic
tissues is the normal metabolic activity of the developing
cells. Mitochondria, the powerhouses of cells, produce ROS as
byproducts of oxidative phosphorylation (Zorov et al., 2014).
During embryogenesis, as cells rapidly divide and differentiate,
there is an increased demand for energy production, leading to a
higher rate of mitochondrial respiration and, consequently, elevated
ROS production. In the early embryonic stages, mitochondria
exhibit distinct characteristics (small and immature), which
align with reduced oxidative phosphorylation and greater
reliance on glycolysis. However, as cells differentiate, oxidative
phosphorylation becomes a major source of ATP (Blerkom, 2004;
Facucho-Oliveira and John, 2009). Given this crucial role, any
mutations in mitochondria or dysfunction of mitochondria, as
observed in maternal metabolic disorders such as diabetes and
obesity, have been shown to be detrimental to organogenesis,
compromising mechanisms such as proliferation, differentiation,
and apoptosis, all of which affect organmaturation and development
(Lu et al., 2009; Steffann et al., 2015).

Life processes rely on enzymatic reactions. Enzymes involved
in various cellular processes, such as those responsible for DNA
replication, repair, and cellular signaling, can generate ROS as part
of their normal function (Magnani and Mattevi, 2019). More than
40 enzymes generate O2

●−/H2O2, including the NOX family of
multi-subunit NADPH oxidases, the transmembrane components
of which are responsible for electron transport across biological
membranes. Members of the NADPH oxidase family (Nox1-3) are
involved in the catalysis of superoxides by transferring electrons
from NADPH to molecular oxygen, whereas Nox4, Duox1, and
Duox2 are involved in the catalysis of H2O2 from molecular oxygen
(Geiszt et al., 2003; Joshi et al., 2013; Nisimoto et al., 2014; Lam et al.,
2015; Szanto et al., 2019). In addition to NOX, found principally
on the plasma membrane, nuclear, and endoplasmic reticulum (ER)
membranes, peroxisomes aremajor generators of ROS. Peroxisomes
contain various oxidases that produce H2O2 as a byproduct of fatty
acid β-oxidation. They also contain antioxidants like catalase and
superoxide dismutase to neutralize ROS (Antonenkov et al., 2010;
Zhang et al., 2015). Another enzyme known to produce ROS is
xanthine oxidase, which catalyzes the oxidation of hypoxanthine
to uric acid, generating superoxide and hydrogen peroxide as
byproducts (Cantu-Medellin and Kelley, 2013). These enzymatic
reactions play a physiological role and are essential for proper
development (Dutta et al., 2020). However, they can contribute to
oxidative stress if not properly controlled (Cobbaut and Lint, 2018).
During embryonic development, reactive oxygen species (ROS)
are also produced in response to growth factors and cytokines.
Growth factors, such as vascular endothelial growth factor (VEGF),
and cytokines, such as TNF-α and IL-1, have been shown to
stimulate ROS production in different contexts (Gurjar et al., 2001;
Kim et al., 2010; Maraldi et al., 2010).

A special scenario is represented by the mammalian
maternal–fetal interface. During pregnancy, the maternal–fetal
interface is a critical site for oxidative stress. As a matter of fact,
the placenta plays a crucial role in nutrient transport and gas
exchange between the maternal and fetal circulations. Changes
in oxygen levels (hypoxia or hyperoxia) during development and

fluctuations in blood flow and tissue perfusion can lead to oxidative
stress (Torres-Cuevas et al., 2017).These changes can occur naturally
as part of the embryonic developmental program butmay also result
from various pathological conditions (Danielsson et al., 2023).

In addition, exposure to maternal agents, such as infections
and inflammation, or maternal lifestyle choices, such as smoking
or alcohol consumption, can elevate ROS levels in embryonic
tissues (Jiang et al., 2012). It has been recently reported that
cigarette smoke is associated with the upregulation of inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein
expression and activity in granulosa cells of women undergoing
in vitro fertilization (Budani et al., 2022). Additionally, placental
dysfunction or inadequate blood supply may compromise oxygen
delivery to the developing embryo, leading to hypoxia–reperfusion
injury that can trigger ROS production (Leslie et al., 2015).
Moreover, infections and inflammatory responses in the maternal
system can lead to the release of cytokines and immune cells,
which generate ROS (Yu et al., 2022).These inflammatorymediators
can potentially reach the developing embryo and initiate oxidative
stress. In the case of maternal infections, such as those caused by
viruses or bacteria, the development of fragile embryo immune
defenses may be less effective in combating infection-triggered
oxidative stress (Hussain et al., 2021).

Maternal diet and nutrition play crucial roles in mammalian
embryonic development. A diet lacking essential nutrients and
antioxidants can lead to oxidative stress in both the mother and
the developing embryo (Diniz et al., 2023). Conversely, excessive
intake of certain nutrients, such as iron or vitamin A, can also
contribute to oxidative stress and depletion of the intracellular pool
of glutathione through mechanisms such as the Fenton reaction or
excessive production of ROS (Morales et al., 2022).

Exogenous sources of oxidative stress are equally significant
contributors to embryonic oxidative stress. Environmental factors,
including exposure to pollutants, radiation, and toxins, can affect
embryo development (Al-Gubory, 2014). Some pollutants and
chemicals, such as heavy metals and pesticides, can induce
oxidative stress by promoting ROS production or interfering with
antioxidant defenses (Ruder et al., 2008). Recently, micro- and
nanoplastic (MNP) accumulation has been observed in the human
placenta, raising important questions regarding the biological effects
of these contaminants on the health of pregnant women and
offspring (Zurub et al., 2024). In both rat and mouse models, oral
exposure to MNPs results in the accumulation of these particles
within the uterine tissue and in various ovarian compartments,
including growing follicles (Wei et al., 2022). A recent study
showed the accumulation of MNPs in the placenta has also been
shown to increase apoptosis and induce endoplasmic reticulum
stress, accompanied by elevated ROS levels, resulting in placental
dysfunction and growth retardation (Bai et al., 2024).

In summary, the sources of oxidative stress in embryonic tissues
are diverse and multifaceted and arise from both endogenous and
exogenous factors (Figure 2). Developing embryos must navigate
these challenges while maintaining a delicate balance between
unavoidable ROS generation and antioxidant defense mechanisms.
Understanding the origin of oxidative stress during embryonic
development is essential for understanding its impact on normal
development and its potential contribution to developmental
disorders and birth defects.
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FIGURE 2
Exogenous and endogenous sources of ROS. Sources of oxidative stress can be categorized as exogenous or endogenous. Exogenous sources include
external factors such as infections (e.g., Mycobacterium tuberculosis, Pseudomonas aeruginosa, HIV, influenza virus, and Plasmodium falciparum),
inflammation, smoking, and alcohol abuse, which contribute to the production of reactive oxygen species (ROS). Endogenous sources arise from
internal cellular processes, including mitochondrial activity, disruptions in the nuclear membrane, protein misfolding in the endoplasmic reticulum, and
lysosomal dysfunction. Both categories lead to an imbalance in ROS homeostasis, potentially resulting in oxidative damage to biomolecules and
cellular structures.

Mechanisms within cells and their
responses to oxidative stress during
embryonic development

Oxidative stress, which is characterized by an imbalance
between the production of reactive oxygen species (ROS) and the
capacity of antioxidant defense mechanisms to neutralize them,
can exert profound effects on embryonic development. During
this critical period, the developing embryo undergoes the intricate
processes of cell division, differentiation, and tissue formation
(Dennery, 2007). When oxidative stress disrupts these processes, it
can lead to growth retardation and malformations in the embryo
and fetus (Dennery, 2010).

In response to the aforementioned stressors that result in
free radicals (FR), cells activate antioxidants to limit the damage
caused by the free radicals. Antioxidants can be classified into two
categories: enzymatic and non-enzymatic. The enzymatic group
comprises superoxide dismutases, catalase, glutathione peroxidases,
glutathione reductase, peroxiredoxins, and thioredoxin. The non-
enzymatic group includes glutathione, vitamin C, vitamin E, beta-
carotene, and ubiquinone. Superoxide dismutases (SODs) catalyze
the dismutation of superoxide radicals into hydrogen peroxide

(H2O2) and molecular oxygen (O2). Intracellular H2O2 normally
oxidizes cysteine residues in proteins to initiate redox biology,
or it may be converted to H2O by cellular antioxidant proteins,
such as peroxiredoxins (PRx), glutathione peroxidase (GPx), and
catalase (CAT). Glutathione reductase (GR) catalyzes the reduction
of glutathione disulfide (GSSG) to glutathione, which is crucial
for redox homeostasis. Thioredoxin (Txn) catalyzes the reduction
of disulfide bonds in proteins and acts as an electron donor for
peroxiredoxins.

The effect of free radicals on embryonic development is complex,
as these molecules have diverse effects, such as deterioration of
cell promotion depending on the number of free radicals, starting
from the first stages of development (fertilization, cleavage state,
compaction, and blastocyst formation). Under normal conditions,
a balance of ROS is observed prior to fertilization in both sperm
and oocytes. However, it has been reported that disproportionate
production and neutralization of ROS affects sperm maturation
(Barati et al., 2020), motility, and capacitation (Takeshima et al.,
2021). During fertilization, ROS also play a crucial role in
the regulation of calcium levels and ATP synthesis in oocytes
(Lewis et al., 2014). Dysregulation of ROS has been shown to
have profound effects on development, resulting from spindle
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FIGURE 3
Effects of ROS on sperm, oocyte, and developmental competence.
Oxidative stress plays a crucial role in reproductive processes,
impacting both male and female gametes and embryonic
development. In sperm, oxidative stress impairs maturation, motility,
and capacitation, key processes essential for successful fertilization. In
oocytes, oxidative stress influences calcium regulation, ATP synthesis,
and the stability of the spindle and chromosomes, all of which are
critical for ensuring developmental competence. During embryonic
development, oxidative stress affects embryonic programming,
increases the risk of disease, and may have transgenerational effects,
potentially influencing the health of future generations.

instability and chromosomal abnormalities, which directly affect
the developmental competence of oocytes (Sasaki et al., 2019). In
parallel, ROS have been observed to increase during the very first
cell divisions post-fertilization, in the time of blastula formation,
and during hatching prior to implantation in murine and bovine
embryos (Lopes et al., 2010; Deluao et al., 2022). Recent evidence
has shown that increased ROS in early embryonic stages alters
embryonic programming and enhances the risk of diseases later
in life, with transgenerational effects (Figure 3) (Loeken, 2004;
Ornoy, 2007; Morrison, 2008).

Several pro-and antioxidant genes have been studied for
loss-of-function mutations to better understand the impact of
oxidative stress on embryonic development. In mouse models,
loss-of-function mutations of pro-oxidant genes, such as Nox1,
Nox2, Nox3, Nox4, Duox1, and Duox2, did not reveal any
embryonic phenotype. However, adult mice showed different
pathological conditions. In contrast, loss-of-function mutations
of key antioxidant genes have been shown to be detrimental to
embryonic development. For instance, thioredoxin (Txn) has been
shown to be indispensable for early embryonic development, as its
loss resulted in embryonic lethality after implantation (Matsui et al.,
1996). Another antioxidant, glutathione peroxidase 4 (GPx4), is a
highly evolutionarily conserved enzyme that acts as a phospholipid
hydroperoxidase, utilizing reduced glutathione (GSH) to convert
phospholipid hydroperoxides (PL─OOH) to phospholipid alcohols

(PL─OH), which serves to regulate lipid peroxide levels. The
depletion of GSH or inactivation of GPx4 in cells leads to
excessive reactive oxygen species (ROS)-induced lipid peroxides and
compromises redox homeostasis. Gpx4-null mice show embryonic
lethality due to intrauterine resorption around embryonic day
7.5 during gastrulation (Yant et al., 2003). Similarly, studies have
shown that the absence of two key antioxidant enzymes leads
to impaired gastrulation and embryonic death in mouse models.
These enzymes include glutathione synthetase (Gss), which is
crucial for glutathione (Gsh) production, and thioredoxin reductase
1 (Txnrd1), which maintains thioredoxin in its reduced state
(Bondareva et al., 2007; Winkler et al., 2011). Similarly, knockout
models of the glutamate–cysteine ligase catalytic subunit (Gclc),
thioredoxin reductase 2 (Txnrd2), and glutaredoxin 3 (Glrx3),
which play crucial roles as antioxidants, also showed embryonic
lethality during mid-gestation (E12.5–E13.5) (Dalton et al., 2000;
Conrad et al., 2004; Cheng et al., 2011).

Loss of the other key antioxidant enzyme, superoxide dismutase
(Sod2), was shown to be peri- or postnatally lethal in mice.
Embryos exhibited severe oxidative stress during development, with
pathologies such as dilated cardiomyopathy, neurodegeneration,
metabolic acidosis, and lipid accumulation in the liver and skeletal
muscles (Li et al., 1995; Huang et al., 2001; Ikegami et al., 2002).
Additionally, the loss of function of genes such as isocitrate
dehydrogenase 1 (Idh1), ferritin heavy chain 1 (Fth1), and glucose-6-
phosphate dehydrogenase (G6pd), which play antioxidant roles, also
resulted in embryonic lethality (Ferreira et al., 2000; Longo et al.,
2002; Sasaki et al., 2012). We curated a list of well-known pro-
and antioxidant knockout mouse models by briefly showing the
phenotype during embryonic development (Table 1).

In parallel with studies on developing embryos, stem cells and
stem cell-derived systems, such as organoids, have been studied
regarding their oxygen consumption, dependence, and the impact
thereof, revealing a tightly regulated network between oxygen
metabolism and free radical (FR) production (Mohyeldin et al.,
2010; Närvä et al., 2013). These in vitro systems allow researchers
to study the impact of oxygen concentrations and oxidative
stress under more standardized conditions than in living embryos
and even enable them to analyze the molecular components
and culture materials that alleviate cellular stress conditions to
a certain extent (Harrison et al., 2007; Khattak et al., 2007;
Gholipourmalekabadi et al., 2016; Oyefeso et al., 2021). During early
embryonic development, embryonic stem cells (ESCs) reside in a
hypoxic microenvironment, where cells use glycolysis to quickly
produce very low levels of ATP. However, during differentiation,
ATP production increases via oxidative phosphorylation (OxPhos),
which in turn generates ROS (Cho et al., 2006). Metabolic
shifts between glycolysis and OxPhos are accompanied by the
differentiation of pluripotent stem cells (PSCs). The enhancement
of glycolysis via hypoxia and the suppression of OxPhos leads to
concomitantly decreased ROS levels, promoting the maintenance
and proliferation of PSCs and thereby repressing differentiation
(Mandal et al., 2011). Endogenous ROS levels are increased by
sirtuin 1 (SIRT1)-mediated inhibition of p53 antioxidant function.
SIRT1, a longevity-promoting NAD+-dependent class III histone
deacetylase, is also involved in PSC function by regulating the
p53-dependent expression of the pluripotency marker Nanog.
SIRT1 is precisely suppressed during human PSC differentiation,
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TABLE 1 List of phenotypes observed following ablation of pro- and antioxidant genes.

Genes Reaction involved Expression Knockout mouse
models

Observed phenotype

CAT (catalase) Catalyzes the decomposition of
hydrogen peroxide (H2O2) into
water and oxygen

Ubiquitous Viable No embryonic phenotype; adult
animals showed increased
susceptibility to oxidative stress
(Ho et al., 2004)

DUOX1 Catalyzes the production of
hydrogen peroxide (H2O2) from
molecular oxygen using NADPH
as an electron donor

Ubiquitous Viable No embryonic phenotype; adults
showed altered inflammatory
response and airway epithelial
function (Donkó et al., 2010)

DUOX2 Catalyzes the production of
hydrogen peroxide from molecular
oxygen using NADPH as an
electron donor

Thyroid gland, salivary glands,
respiratory epithelial cells,
gastrointestinal tract, and pancreas

Viable No embryonic phenotype; adults
showed congenital hypothyroidism
(Johnson et al., 2007;
Grasberger et al., 2012)

FTH1 Encodes the heavy subunit of
ferritin

Ubiquitous Embryonic lethality Essential for embryonic
development, embryos die
between 3.5 and 9.5 days of
development (Ferreira et al., 2000)

G6PD Production of NADPH and ribose
5-phosphate

Ubiquitous Embryonic lethality Hemizygous embryos died
between E7.5 and E.10.5, and
severe pathological changes were
seen in the placenta (Longo et al.,
2002)

GCLC Catalyzes l-glutamate and
l-cysteine to form
γ-glutamylcysteine

Ubiquitous, higher expression in
the liver

Embryonic lethality Essential for embryonic
development, embryos die before
E13 (Dalton et al., 2000)

GCLM Modulates the catalytic activity of
the GCLC

Ubiquitous Viable No embryonic phenotype; in
adults, it is associated with
myocardial infarction and
hemolytic anemia
(McConnachie et al., 2007)

Glutaredoxin 1 Catalyzes the reduction of
protein-glutathione mixed
disulfides

Ubiquitous Viable Not essential for embryonic
development (Ho et al., 2007)

Glutaredoxin 2 Catalyzes the reduction of
protein-glutathione mixed
disulfides

Ubiquitous Viable Not essential for embryonic
development (Wu et al., 2011)

Glutaredoxin 3 Catalyzes the reduction of
protein-glutathione mixed
disulfides

Ubiquitous Embryonic lethality Essential for embryonic
development; embryos die at 12.5
days of development; impaired cell
cycle (Cheng et al., 2011)

GPX1 Reduces H2O2 and soluble
low-molecular hydroperoxides

Ubiquitous, cytoplasm and
mitochondria

Viable No embryonic phenotype
(Ho et al., 1997)

GPX2 Reduces H2O2 and soluble
low-molecular hydroperoxides

Gastrointestinal system, human
liver

Viable No aberrant phenotype before
birth; GPX1 was able to
compensate for the loss of GPX2
and the abnormal increase in
apoptosis and mitosis in the
intestine (Florian et al., 2010)

GPX3 Reduces H2O2 and soluble
low-molecular hydroperoxides

Mainly in the kidney, secreted in
plasma

Viable No embryonic or adult phenotype
(Olson et al., 2010)

(Continued on the following page)
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TABLE 1 (Continued) List of phenotypes observed following ablation of pro- and antioxidant genes.

Genes Reaction involved Expression Knockout mouse
models

Observed phenotype

GPX4 Reduces complex lipid
hydroperoxides, H2O2, and soluble
low-molecular hydroperoxides

Ubiquitous, exists as
cytosolic, mitochondrial,
and nuclear isoforms

Embryonic lethality Essential for embryonic
development, embryos die at E7.5
(Imai et al., 2003; Yant et al., 2003)

GPX5 Reduces H2O2 and organic
hydroperoxides

Epididymis Viable No reported embryonic phenotype;
upregulation of catalase and other
GPX isoforms was observed
(Noblanc et al., 2012)

GPX6 Reduces H2O2 and organic
hydroperoxides

Olfactory epithelium,
embryonic tissues

Viable Cyagen Biosciences Inc.

GPX7 Reduces H2O2 and organic
hydroperoxides

Endoplasmic reticulum Viable No embryonic phenotype; adult
mice showed impaired protein
folding and higher cancer
susceptibility (Wei et al., 2012;
Chen et al., 2015)

GPX8 Reduces H2O2 and organic
hydroperoxides

Endoplasmic reticulum N/A Highly expressed from 4-cell to
blastocyst stage; lower cancer
susceptibility (Mihalik et al., 2020)

GSS ATP-dependent condensation of
γ-glutamylcysteine and glycine to
form glutathione

Ubiquitous, higher
expression in the liver

Embryonic lethality Essential for embryonic
development; embryos die at E7.5
during gastrulation (Winkler et al.,
2011)

HMOX1 Heme catabolism and cellular stress
response

Ubiquitous Viable Homozygous breeding (Hmox−/−)
resulted in embryonic lethality
Heterozygous and homozygous
mating resulted in abnormal
Mendelian ratios with lower
survival rates in the case of
Hmox−/− pups. Growth
retardation was observed in
surviving embryos (Poss and
Tonegawa, 1997)

IDH1 Catalyzes the oxidative
decarboxylation of isocitrate to
α-ketoglutarate (α-KG) while
reducing NADP + to NADPH

Ubiquitous Embryonic or perinatal
lethality

Massive hemorrhage within the
cerebral hemispheres and
cerebellum was reported as
aberrant collagen maturation
(Sasaki et al., 2012)

IDH2 Catalyzes the oxidative
decarboxylation of isocitrate to
α-ketoglutarate (α-KG) while
reducing NADP + to NADPH

Ubiquitous Viable Sensitive to oxidative stress
(White et al., 2018)

KEAP1 Redox regulation Ubiquitous Viable Postnatal lethality was observed
(mice die after weaning)
(Wakabayashi et al., 2003)

ME1 Oxidative decarboxylation of
malate to pyruvate, NADPH
production

Ubiquitous Viable No embryonic phenotype
(Alektiar et al., 2024)

ME2 Modulation of cellular redox state Ubiquitous Viable -NA-

Metallothionein 1 &
metallothionein 2

Metal binding, ROS scavenging,
metal detoxification, and zinc
homeostasis

Ubiquitous Viable (dual knockout) Adults showed increased sensitivity
to metal toxicity and oxidative
stress (Masters et al., 1994)

(Continued on the following page)
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TABLE 1 (Continued) List of phenotypes observed following ablation of pro- and antioxidant genes.

Genes Reaction involved Expression Knockout mouse
models

Observed phenotype

Metallothionein 3 Metal binding, ROS scavenging,
and zinc homeostasis

Highly expressed in the CNS,
kidney, retina, and reproductive
organs

Viable Not essential for embryonic
development (Erickson et al.,
1997)

MSRA Catalyzes the reduction of
methionine sulfoxide to
methionine; antioxidant role

Ubiquitous Viable Adults showed short life span and
an atypical walking pattern
(Moskovitz et al., 2001)

MSRB1 Catalyzes the reduction of
methionine-R-sulfoxide to
methionine

Ubiquitous Viable Adults showed signs of oxidative
stress (Fomenko et al., 2009)

MSRB3 Catalyzes the reduction of
methionine-R-sulfoxide to
methionine

Ubiquitous Viable Congenital hearing loss was
observed due to the degeneration
of stereociliary bundles and
apoptotic death of cochlear hair
cells (Kim et al., 2016)

NOX1 Catalyzes the production of
superoxide from molecular
oxygen using NADPH as an
electron donor

Ubiquitous Viable No embryonic phenotype; adults
showed decreased blood pressure
(Matsuno et al., 2005;
Gavazzi et al., 2006)

NOX2 Catalyzes the production of
superoxide from molecular
oxygen using NADPH as an
electron donor

Ubiquitous, particularly high in
phagocytic cells (neutrophils,
macrophages, and dendritic cells),
vascular smooth muscle cells,
endothelial cells

Viable No embryonic phenotype;
impaired inflammation and
altered vascular function have
been reported in adults
(Chen et al., 2004; Ahmed et al.,
2024)

NOX3 Catalyzes the production of
superoxide from molecular
oxygen using NADPH as an
electron donor

Inner ear Viable No embryonic phenotype; adults
showed balance disorders
(Paffenholz et al., 2004)

NOX4 Catalyzes the production of
hydrogen peroxide (H2O2) from
molecular oxygen using NADPH
as an electron donor

Ubiquitous Viable No embryonic phenotype; adults
showed altered vascular function
and impaired angiogenesis
(Kleinschnitz et al., 2010;
Zhang et al., 2010)

NQO1 Catalyzes the two-electron
reduction of quinones to
hydroquinones

Ubiquitous Viable No embryonic phenotype
(Iskander et al., 2008)

NRF1 Activates genes involved in
mitochondrial respiration and
biogenesis

Ubiquitous Embryonic lethality Severe anemia and growth
retardation were observed in the
dead embryos (Chan et al., 1998)
Dual knockout of Nrf1 and Nrf2
resulted in early embryonic
lethality (Leung et al., 2003)

NRF2 Regulates the expression of
numerous antioxidant and
cytoprotective genes

Ubiquitous Viable No embryonic phenotype was
observed (Chan et al., 1996)

PRDX1 Catalyzes the reduction of
hydrogen peroxide and organic
hydroperoxides

Ubiquitous Viable No embryonic phenotype; adults
showed severe hemolytic anemia,
higher susceptibility to oxidative
stress, malignancies
(Neumann et al., 2003)

(Continued on the following page)
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TABLE 1 (Continued) List of phenotypes observed following ablation of pro- and antioxidant genes.

Genes Reaction involved Expression Knockout mouse
models

Observed phenotype

PRDX2 Catalyzes the reduction of hydrogen
peroxide and organic
hydroperoxides

Ubiquitous Viable No embryonic phenotype; adults
showed splenomegaly and severe
hemolytic anemia (Lee et al., 2003)

PRDX3 Catalyzes the reduction of hydrogen
peroxide and organic
hydroperoxides

Ubiquitous Viable No embryonic phenotype; adults
showed increased susceptibility to
oxidative stress (Li et al., 2007)

PRDX4 Catalyzes the reduction of hydrogen
peroxide and organic
hydroperoxides

Ubiquitous Viable No embryonic phenotype; adult
males showed testicular atrophy
(Iuchi et al., 2009)

 PRDX5 Catalyzes the reduction of hydrogen
peroxide and organic
hydroperoxides

Ubiquitous Viable No embryonic phenotype; adult
animals showed increased
susceptibility to oxidative stress
(Kim et al., 2018)

PRDX6 Peroxidase and phospholipase
activity

Ubiquitous Viable No embryonic phenotype; adult
animals showed increased
susceptibility to oxidative stress
(Wang et al., 2003)

SOD1 Catalyzes the dismutation of
superoxide radicals into oxygen and
hydrogen peroxide

Ubiquitous Viable No embryonic phenotype; adult
animals showed increased
susceptibility to oxidative stress,
liver cancer, and sarcopenia
(Deepa et al., 2017)

SOD2 Catalyzes the dismutation of
superoxide radicals into oxygen and
hydrogen peroxide

Ubiquitous Embryonic or early postnatal
lethality

Severe oxidative stress during
development; dilated
cardiomyopathy;
neurodegeneration; metabolic
acidosis; lipid accumulation in liver
and skeletal muscle (Li et al., 1995;
Huang et al., 2001; Ikegami et al.,
2002)

SOD3 Catalyzes the dismutation of
superoxide radicals into oxygen and
hydrogen peroxide

Ubiquitous, primarily localized in
the extracellular matrix and on cell
surfaces

Viable No embryonic phenotype; In adults,
hypertension, altered vascular
function, higher oxidative stress in
various tissues, impaired
angiogenesis, and wound healing
have been reported (Yao et al., 2010;
Xu et al., 2011)

TXN Redox homeostasis Ubiquitous Embryonic lethality Essential for embryonic
development; embryos die after
implantation (Matsui et al., 1996)

TXNRD1 Catalyzes the NADPH-dependent
reduction of thioredoxin

Ubiquitous Embryonic lethality Essential for embryonic
development; failed gastrulation
(Bondareva et al., 2007)

TXNRD2 Catalyzes the NADPH-dependent
reduction of thioredoxin

Ubiquitous Embryonic lethality Essential for embryonic
development; healthy until E8.5;
after that, embryos showed severe
anemia and growth retardation and
died around E13.5 (Conrad et al.,
2004)

TXNRD3 Catalyzes the NADPH-dependent
reduction of thioredoxin and
reduces glutathione disulfide

Highly expressed testis Viable No embryonic phenotype; male
mice showed impaired fertility
(Wang et al., 2022b)
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resulting in the reactivation of developmental genes, such as the
neuroretinal morphogenesis regulators DLL4, TBX3, and PAX6.
Similarly, superoxide dismutase 1 (Sod1) is modulated by Oct4,
Sox2, and Nanog, suggesting a core relationship between redox
homeostasis and pluripotency in PSCs (Lee et al., 2018).

In addition to PSCs, mesenchymal stem cells (MSCs) have
low levels of intracellular ROS and high levels of glutathione, a
key antioxidant. They also constitutively express high levels of
the enzymes required to manage oxidative stress. In terms of
redox regulation, numerous recent reports have described the
importance of oxidants in MSC differentiation into adipocytes,
osteocytes, chondrocytes, and myocytes through the activation of
signaling cascades involved in differentiation. In contrast, elevated
levels of ROS lead to cell cycle arrest and apoptosis in MSCs
(Atashi et al., 2015). Thus, the ability to respond to environmental
oxidative damage is a universal property of MSC, but the biological
mechanisms employed by fetal and placental MSCs in response to
oxidative stress might be compromised under pathophysiological
conditions such as preeclampsia (Kusuma et al., 2022).

ROS as secondary messengers

ROS primarily act as secondary messengers by regulating
key transcription factors, thereby influencing cellular signaling.
The rapid turnover of ROS through enzymatic reactions is a
major contributor to this process. However, during embryonic
development, ROS are produced locally, acting as primary
messengers that affect specific signaling pathways (Hansen,
2006; Schieber and Chandel, 2014). In addition, different ROS
concentrations have been observed to influence various cellular
mechanisms. Studies have shown that a reduction in ROS promotes
cell proliferation, moderate ROS levels promote the differentiation
of stem cells, and highly elevated ROS results in apoptosis
or necrosis (Milkovic et al., 2019).

During development, ROS have been shown to alter vital
pathways by regulating transcription factors such as activator
protein (Ap1), hypoxia-inducible factor (HIF1), nuclear factor κB
(NF-κB), nuclear factor (NF)-E2 related factor 1 and 2 (Nrf1, Nrf2),
and redox-sensitive factors such as redox effector factor-1 (Ref-
1) and wingless-related integration site (Wnt), which play crucial
roles in proliferation, differentiation, and apoptosis (Dennery, 2007).
In addition to enzymatic and non-enzymatic cellular responses
to oxidative stress, living tissues can combat the consequences
of oxidative stress by activating redox signaling pathways by
regulating transcription factors. Nuclear factor (NF)-E2-related
factor 2 (Nrf2) is the master regulator of antioxidant cell responses
and orchestrates the expression of antioxidant genes, enabling cells
to mount a defense against oxidative damage (Ma, 2013). Being
located at the intersection of crucial signaling pathways, Nrf2 can
influence a number of critical cellular functions, which extend
beyond the maintenance of redox balance but include cellular
metabolism, proteostasis, mitochondrial function, inflammation,
and cell differentiation during development. Therefore, Nrf2
exhibits biological dualism by being involved in many pathological
conditions, such as cancer (Gallorini et al., 2024). It has been
reported that prolonged or excessive activation of Nrf2 can disrupt

embryonic development by perturbing the balance of redox-
regulated genes (Harris andHansen, 2012). Recently, the role ofNrf2
during the blastocyst stage was described, and its mRNA expression
was found to be attenuated in porcine embryos cultured under
metabolically stressful conditions (Glanzner et al., 2024).

Nrf2 is regulated by Kelch-like ECH-associated protein 1
(KEAP1), an important sensor of oxidative stress (Motohashi
and Yamamoto, 2004). KEAP1 inhibits Nrf2 by promoting its
ubiquitination. However, upon conformational changes in KEAP1
resulting from the oxidation of cysteine residues, Nrf2 is stabilized
and moves into the nucleus, binding the antioxidant-responsive
element (ARE) in the promoter region (Figure 4) (Yamamoto et al.,
2018). Despite its crucial role, Nrf2 null mice did not show
any phenotype during embryonic development and are viable
(Chan et al., 1996). Interestingly, a dual knockout of Nrf1 and Nrf2
was embryonically lethal. Nrf1 is known to regulate proteostasis and
mitochondrial biogenesis (Leung et al., 2003).

Nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB), a master regulator of inflammation, has also been
identified as being regulated by ROS. ROS have been shown to
activate and inhibit NF-κB function depending on the context.
Cytoplasmic ROS (H2O2) have been observed to activate NF-
κB via oxidation and activation of IKK, whereas nuclear ROS
(H2O2) have been observed to inhibit the binding of NF-κB to
DNA via oxidation of cysteine residues, thereby decreasing its
transcriptional activity (Nakajima and Kitamura, 2013). Knocking
out the proteins involved in NF-κB signaling also resulted in
embryonic lethality, compromising not only redox homeostasis
but also various mechanisms (Pasparakis et al., 2006). Other vital
transcription factors that have been observed to be activated by
ROS are hypoxia-inducible factors (HIF-1α and HIF-2α), in which
oxidants help stabilize HIF factors and initiate the hypoxic response
(Pagé et al., 2008). The knockout mouse model of HIF-1α showed
embryonic lethality after E8.0 with multiple developmental defects
(Ryan et al., 1998). However, HIF-2α null mice were viable but
showed multiple organ pathologies (Scortegagna et al., 2003).
Activator protein (Ap1) is a transcription factor complex consisting
of Jun and Fos family proteins that regulate the oxidative stress
response via modulation of gene expression. Knockout models
of c-Fos, FosB, and JunD have suggested that these proteins
are indispensable for embryonic development. In contrast, c-
Jun, JunB, and Fra-1 are essential for both the embryonic and
adult stages (Jochum et al., 2001).

Oxidative stress induces DNA, protein, and
lipid damage during embryogenesis

Intrinsic ROS generation is tightly regulated to prevent
overproduction and subsequent oxidative damage. However,
imbalances can occur, mainly during critical developmental stages,
which may lead to significant damage to macromolecules such as
DNA, proteins, and lipids.

It is well known that ROS can cause DNA damage in
developing cells. The activation of DNA repair mechanisms,
such as the base excision repair (BER) and nucleotide excision
repair (NER) pathways, aims to restore genomic integrity
(Musson et al., 2022). However, persistent DNA damage can lead
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FIGURE 4
Regulation of Nrf2 under both normal conditions and in the presence of excessive reactive oxygen species (ROS). Under normal conditions, Nrf2 is
bound to its cytoplasmic inhibitor, Keap1 (Kelch-like ECH-associated protein 1). This interaction promotes the ubiquitination (Ub) of Nrf2, marking it for
proteasomal degradation through the ubiquitin–proteasome pathway, thereby maintaining low intracellular levels of Nrf2. During oxidative stress,
characterized by elevated ROS, the interaction between Nrf2 and Keap1 is disrupted. This results in the release of Nrf2, which then translocates into the
nucleus. Once in the nucleus, Nrf2 binds to antioxidant response elements (ARE) in the promoter regions of target genes, initiating the transcription of
antioxidant and cytoprotective genes that help mitigate oxidative damage.

to mutations and chromosomal abnormalities, contributing to
developmental defects (Ribeiro et al., 2023).

ROS have been reported to cause a variety of lesions in DNA
(such as base and/or sugar alterations, sugar-base cyclization, DNA-
protein cross-links, and intra- and inter-strand cross-links), which,
in turn, can result in DNA strand breaks. The consensus is that
cell cycle checkpoints, including G1/S, intra-S, and G2/M, are
involved in DNA damage response reactions. In addition, γH2AX,
a marker of DNA damage, is an early indicator of DNA double-
strand breaks and plays an important role in the DNA damage
response. It has been reported that mouse embryos fertilized
with H2O2-treated sperm show the appearance of γH2AX and a
delay in first cleavage (Wang et al., 2013). In addition, checkpoint
proteins ATM, Chk1, and Cdc25 are phosphorylated and activated
in zygotes fertilized with H2O2-treated sperm (Song et al., 2014),
which indicates that embryos fertilized with treated sperm might
be arrested at the G2/M checkpoint through the ATM → Chk1 →
Cdc25B/Cdc25C pathway.

ROS can induce structural and functional changes in
proteins and disrupt critical developmental processes. ROS
can oxidize thiol (-SH) groups in cysteine residues, resulting
in the formation of disulfide bonds between proteins, which
in turn alters their conformation and aggregation states. This
affects crucial processes, such as fertilization, cell division, and
morphogenesis, where damage to the extracellular matrix and

cytoskeletal proteins has been observed (Hernebring et al., 2006;
Wong and Wessel, 2008). In addition, several other amino acids
have been shown to be prone to side-chain modifications by free
radicals (Ahmad et al., 2016). For instance, oxidation of methionine
to its oxidized form, methionine sulfoxide, can significantly
affect S-adenosylmethionine (SAM), a universal methyl donor,
resulting in hypomethylation in hESCs (Shiraki et al., 2014;
Winkle and Ryznar, 2019). Similarly, the tyrosine residue in
superoxide dismutase, a crucial antioxidant, is prone to nitration
by peroxynitrite, rendering SOD inactive (Demicheli et al., 2018).
Iron-sulfur (Fe-S) clusters in DNA repair enzymes are also prone to
oxidation, which compromises the base-excision repair pathway
(Musson et al., 2022). Free radicals have also been shown to
result in the carbonylation of chaperone proteins such as HSP90,
which plays a crucial role in protein folding during embryonic
development. HSP90 has been shown to be associated with
OCT4 and NANOG and to prevent their ubiquitin-dependent
degradation. Therefore, it can be inferred that HSP90 dysfunction
due to carbonylation can directly affect the stability of OCT4 and
NANOG, directly influencing pluripotency and early embryonic
differentiation (Bradley et al., 2012).

Advanced oxidation protein products (AOPPs) are markers
of oxidation-mediated protein damage and are usually
carried by plasma proteins. As a key product of oxidative
reactions, AOPPs and their effects on the female reproductive
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system have received increasing attention. A high level of
AOPPs in the follicular fluid has been reported to have
adverse effects on oocytes and early embryonic development.
High AOPP concentrations in the follicular fluid are also
associated with poor IVF outcomes (Song et al., 2009). AOPPs
have also been observed to result in cellular senescence
in placental trophoblast cells, disrupting trophoblast cell
invasion and placental development and contributing to
preeclampsia (PE). Similarly, their accumulation is correlated
with infertility, congenital malformations, and pregnancy-related
complications (Li et al., 2022).

Lipid peroxidation is a chain reaction induced by free
radicals (FR) that impair cell membrane integrity. Free radicals,
such as hydroxyl radicals (●OH) or superoxide anions (O2

●−),
remove a hydrogen atom from polyunsaturated fatty acids
(PUFAs) in cell membranes, forming lipid radicals. These lipid
radicals react with molecular oxygen to form peroxyl radicals
(ROO●). Thus, the formed peroxyl radical removes hydrogen
atoms from adjacent PUFAs, generating new radicals and
lipid hydroperoxides, further damaging cellular membranes.
The reaction continues until the antioxidant interrupts and
neutralizes the ROS. Lipid radicals also react with each
other to form non-reactive products such as malondialdehyde
(MDA) or 4-hydroxynonenal (4-HNE) (Ayala et al., 2014).
Overall, lipid peroxidation compromises the membrane
integrity, impairs enzyme function, and triggers apoptosis and
necrosis. It has also been implicated in several congenital
abnormalities.

Excessive lipid peroxidation in the uterine epithelium has been
reported to cause implantation failure and pregnancy loss (Lu et al.,
2024). Post-implantation, lipid peroxidation has also been observed
to interfere with key developmental processes, resulting in several
congenital anomalies such as esophageal atresia and autosomal
dominant polycystic kidney disease.

Oxidative stress and developmental
challenges in mammalian embryogenesis

Oxidative stress, characterized by excess reactive oxygen
species (ROS) in cells, has been extensively studied for its
detrimental effects on embryonic and fetal development in
mammals (Takahashi, 2012). The most obvious effect of oxidative
stress is growth impairment. Intrauterine growth restriction (IUGR)
is a common consequence of oxidative stress that occurs during
pregnancy. Maternal exposure to high levels of ROS also resulted
in reduced fetal growth in mice (Xu et al., 2006). Researchers have
attributed this to impaired placental function and reduced nutrient
transport. This phenomenon manifests itself as impaired skeletal
development. Schoppa et al. (2022) showed that ROS could inhibit
osteoblast differentiation in mouse embryos, leading to skeletal
abnormalities.

Oxidative stress-induced growth retardation in embryos often
results from the disruption of critical cellular processes. Impaired
cell proliferation, altered cell cycle regulation, and reduced nutrient
uptake due to oxidative damage can all contribute to reduced
fetal growth (Joo et al., 2021). In contrast, intrauterine growth

restriction (IUGR) increases the risk of preterm births and long-
term health issues in offspring. Organogenesis critically depends on
a precise orchestration of events: embryonic tissues must proliferate
sufficiently to interact by direct fusion, migration, or generation
of permissive and instructive signals. Hence, growth retardation
and inhibition of proliferation inevitably result in structural
malformations. These malformations may affect various organs and
systems, including the cardiovascular, nervous, andmusculoskeletal
systems. For example, oxidative stress-induced damage to neural
crest cells can result in congenital heart defects, neural tube defects,
and craniofacial abnormalities (Carmichael et al., 2023) (Table 2).

Oxidative stress during embryogenesis can affect
neurodevelopment (Rains et al., 2021). Studies in rats have
demonstrated that oxidative stress induced by prenatal alcohol
exposure leads to impaired neuronal migration and neurogenesis
in the fetal brain (Sogut et al., 2015). The developing fetal
brain is particularly vulnerable to oxidative stress because of
its high metabolic rate and low antioxidant defense system.
Oxidative damage can disrupt essential processes, such as
neurogenesis, neuronal migration, and synaptogenesis, leading
to long-lasting changes in brain structure and function
(Chen et al., 2012; Derme et al., 2024).

In the absence of fully functional compensatory mechanisms,
mutations in key transcription factors, such as those in the
HIF transcription complex, result in stage- and gene-specific
effects on organogenesis, including placental formation and
heart morphogenesis [reviewed by Dunwoodie (2009)]. Recently,
attention has shifted to include epigenetic modifications. Oxidative
stress can induce epigeneticmodifications such asDNAmethylation
and histone modifications in developing tissues (Scarpato et al.,
2020). These modifications can alter gene expression patterns;
although primarily a coping strategy related to “developmental
plasticity” (Ducsay et al., 2018), it may result in developmental
abnormalities. Epigenetic changes induced by oxidative stress may
persist into adulthood and influence an individual’s susceptibility to
chronic diseases (Menezo et al., 2016).

Oxidative stress has also been reported to impair apoptosis
regulation. Cells experiencing severe oxidative stress may undergo
apoptosis or enter a state of cellular senescence (Redza-Dutordoir
and Averill-Bates, 2016). Although apoptosis is essential for
eliminating damaged cells, excessive apoptosis can impair proper
tissue development. In the last few decades, many researchers have
attempted to decipher the molecular mechanisms that initiate and
execute apoptosis during development. Two distinct but ultimately
converging pathways initiate apoptosis: themitochondrial, intrinsic,
or B-cell lymphoma 2 (BCL-2)-regulated pathway and the extrinsic
or death receptor pathway. Mice lacking individual apoptotic
regulators provided evidence for the requirement of specific
regulators and suggested that developmental apoptosis is essential
for mammalian development. In particular, it has become clear that
reducing apoptosis typically causes webbed digits, vaginal septa,
and lymphadenopathy, which commonly cause exencephaly, cleft
face or palate, and occasionally omphalocele (Voss and Strasser,
2020). Cellular senescence can disrupt tissue homeostasis by
altering the secretory profile of affected cells, influencing nearby
cells, and contributing to developmental abnormalities (Lorda-
Diez et al., 2015).
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TABLE 2 List of congenital anomalies associated with oxidative stress.

Congenital anomaly Affected tissues Source of oxidative stress

Biliary atresia Bile duct epithelium Alterations in mtDNA copy number, viral infections
during pregnancy, hypomethylation, and
immunological dysregulation (Impellizzeri et al., 2020)

Congenital heart defects Cardiac tissue, valves Maternal alcohol, cigarette smoking, industrial
chemical exposure, viral infections, maternal diabetes,
and compromised folic acid pathway are linked to the
condition (Laforgia et al., 2018)

Craniofacial malformations Facial mesenchyme ALX3 transcription factor disruption leads to excessive
apoptosis in neural crest cells, maternal diabetes, and
alcohol exposure (García-Sanz et al., 2017)

Diaphragmatic hernia Diaphragmatic musculature NADPH oxidase-induced ROS in pleuroperitoneal
folds impaired muscle differentiation; retinoic acid
deficiency (Tovar, 2012; Aras-López et al., 2016)

Esophageal atresia Esophageal epithelium Lipid peroxidation, malondialdehyde (MDA) levels,
and carbonic anhydrase (CA) levels are high; catalase,
SOD, and G-6-PD activities are lower
(Impellizzeri et al., 2020)

Fetal alcohol syndrome CNS, facial structures Ethanol metabolism byproducts increase ROS
overproduction, leading to mitochondrial damage and
maternal alcohol consumption (González-Flores et al.,
2024)

Neural tube defects Neural tube, CNS DNA damage, disrupted cell signaling pathways
involving Pax3 and Shh genes, impaired neural fold
closure, maternal diabetes, hyperglycemia, and folate
deficiency (Laforgia et al., 2018)

Autosomal dominant polycystic kidney disease Renal tubules, renal blood vessels Lipid peroxidation; 8-epi-PGF 2α levels are high, and
SOD activity is reduced in ADPKD patients; reduced
nitric oxide production (Lucchi et al., 1993;
Merta et al., 2003)

Retinopathy of prematurity Retinal vasculature Hyperoxia-induced ROS inhibition of angiogenesis in
premature birth babies (Ozsurekci and Aykac, 2016)

ROS modulate epigenetic mechanisms
during embryonic development

Epigenetic regulators are susceptible to free radicals. Free
radicals can directly oxidize DNA. Guanine was found to
react with the hydroxyl radical (●OH) to form 8-hydroxy-2′-
deoxyguanosine (8-OHdG), which inhibits DNA methylation at
the nearest cytosine bases, resulting in local hypomethylation.
Research has shown that the presence of 8-OHdG correlates
with reduced fertilization rates and low-quality embryos
during in vitro fertilization (Seino et al., 2002). It has also
been demonstrated as a potential biomarker for oxidative
stress-induced hyperglycemia prior to the development
of gestational diabetes mellitus (Urbaniak et al., 2020).
Similarly, 5-methylcytosine (5 mC) is directly oxidized to 5-
hydroxymethylcytosine (5-hmC), rendering it unrecognizable
by DNA methyltransferases and leading to changes in the
overall methylation pattern. This modification has also been
associated with neurodevelopmental and autism spectrum
disorders (Khoodoruth et al., 2024).

Another group of epigenetic modifiers is DNA
methyltransferases (DNMTs), a family of enzymes that transfer
methyl groups from S-adenosylmethionine (SAM) to cytosine
residues in DNA, predominantly at CpG dinucleotides. DNMT1
primarily maintains methylation by copying the methylation
patterns during DNA replication, whereas DNMT3A andDNMT3B
are involved in de novo DNA methylation. ROS can directly
oxidize DNMTs, resulting in global hypomethylation, and
can indirectly increase the expression of DNMTs, resulting in
hypermethylation (Kietzmann et al., 2017). ROS-induced DNA
hypomethylation and hypermethylation have been linked to
hereditary sensory neuropathy and congenital heart disease,
respectively (Klein et al., 2011; Serra-Juhé et al., 2015).

In addition to DNA, histone proteins are subjected to direct
oxidation by reactive oxygen species (ROS). Modifications to core
histone proteins H3 and H4, due to their accessible tails around
the nucleosome, alter chromatin organization and gene expression
patterns. Similar to many other proteins, cysteine residues in
histone proteins are liable to direct oxidation (Kietzmann et al.,
2017). Apart from cysteine residues, histone proteins can also be
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TABLE 3 ROS alter epigenetic landscape during embryonic development.

Epigenetic modification Observation during development

Oxidation of DNA

Guanine + (●OH) → 8-OhdG Biomarker of oxidative stress
Associated with lower fertility rates (Seino et al., 2002), gestational diabetes
(Urbaniak et al., 2020), preterm birth (Murata et al., 2024), and congenital heart disease
(Vanreusel et al., 2023)

5 mC + (●OH) → 5hmC Associated with autism spectrum disorder (ASD) and neurodevelopmental disorders
(Khoodoruth et al., 2024)

Modulation of methyltransferases

Direct oxidation Hypomethylation

DNMT-SH + H2O2 → DNMT-SOH

DNMT1−/−, DNMT3A−/−, and DNMT3B−/− ESCs failed to differentiate either
completely or partially while retaining stem cell characteristics (Jackson et al., 2004)

Neural tube defects (Chen et al., 2010), ICF syndrome (Jin et al., 2008), and hereditary
sensory neuropathy (Klein et al., 2011)

Indirect effect Hypermethylation

Results in hypermethylation Congenital heart disease (Serra-Juhé et al., 2015)

Oxidation/modulation of histone proteins

Direct oxidation

Histone—SH + H2O2 →histone–SOH + H2O Direct oxidation has been shown to impact gene expression, impair cellular
differentiation, disrupt epigenetic reprogramming, and is associated with an increased
risk of neural tube defects

Tyrosine nitration—H1, H2B, and H3 (DNA protection)

Carbonyl formation—H3 (chromatin relaxation)

Cysteine glutathionylation—H3 (chromatin relaxation)

Lysine Formylation—H1, H2A, H3, and H4 (blocks methylation and acetylation)

Indirect effect

H3K4me1/2/3 (↑)—gene activation Neural tube defects (Li et al., 2019), Congenital heart defects (Wang et al., 2022a)

H3K9me2/3 (↑)—gene repression

H3K27me3 (↓)—gene activation

H3K36me3 (↑)—gene activation

H3/H4 acetylation (↑)—gene activation

H3S10 phosphorylation (↑)—chromatin relaxation

oxidized at different amino acid residues. For instance, histones
H1, H2B, and H3 undergo nitration and oxidation by reacting with
peroxynitrite, resulting in alterations to chromatin structure and
genome stability (Khan et al., 2016).

ROS can also affect the histone proteins indirectly. ROS reduce
SAM levels. Since SAM is a cofactor for histone methyltransferases
(HMTs), its reduction leads to decreased histone methylation
(Mentch et al., 2015).Moreover, ROS canmodulate the expression of

histone demethylases (HDMs); for example, the expression of JmjC
KDMs is reduced by the decreased availability of cofactors, such as
Fe(II) and ascorbate, whereas ROS have been observed to increase
the expression of KDM6B via STAT6 signaling (Monfort and Wutz,
2013; He et al., 2015). Overall, it can be concluded that ROS play
a crucial role in the modulation of the expression, activity, and
localization of histone proteins that affect the epigenetic landscape
both during development and disease (Table 3).
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FIGURE 5
Effect of oxidative stress on embryonic development.

Implications of prenatal oxidative stress in
psychological disorders

The prenatal period is a crucial phase during which the
developing brain is highly vulnerable to environmental influences,
and there is ongoing discussion about a causal relationship between
oxidative stress and the development of psychological disorders,
as these influences significantly shape an individual’s psychological
and cognitive wellbeing (Salim, 2014). Recent research indicates
that oxidative stress during pregnancy can significantly increase the
risk of developing psychological disorders later in life (Figure 5)
(Pham et al., 2023). Research using high oxygen tension (hyperoxia)
in neonatal mice demonstrated that oxidative stress induces reactive
oxygen species, cell death, and disruptions in hippocampal circuits
(Abbah et al., 2022). While such studies tend to focus on learning
and memory processes, other studies have suggested that oxidative
stress may also play a crucial role in the etiology of autism spectrum
disorders (ASD) (Bjørklund et al., 2020). Oxidative stress and
genetic polymorphisms in antioxidant enzymes such as glutathione
transferases (GSTs) are significant contributors to the development
of ASD (Mandic-Maravic et al., 2019). Perinatal complications such
as prematurity, neonatal jaundice, and respiratory distress syndrome
significantly increase the risk of ASD. Moreover, the GSTM1
genotype interacts with prenatal factors, including medication use,
and influences ASD risk, particularly in patients homozygous for
GSTM1-null.These findings underscore the importance of oxidative
stress and genetic factors in ASD etiology and potential therapeutic
approaches (Mandic-Maravic et al., 2019). Additionally, high levels
of ROS and immune system dysfunction in ASD patients suggest
that oxidative stress and inflammation may contribute to the
pathogenesis and severity of ASD (Pangrazzi et al., 2020).

Attention-deficit/hyperactivity disorder (ADHD) is a
neurodevelopmental disorder in children that is linked to
abnormalities in particular circumscribed brain regions and
disturbances in the catecholaminergic pathway. Its pathophysiology,
although not fully understood, involves multiple factors, including
increased oxidative stress and neuroinflammation (Corona, 2020).
Oxidative damage during critical periods of brain development
can affect the maturation of neural circuits involved in executive
function and attention regulation. Urinary concentrations of
oxidative stress biomarkers linked to inflammation, such as PGF2α,
correlate with increased behavioral problems, indicative of ADHD
(Rommel et al., 2020). In addition, early risk factors for ADHD, such

as maternal infections, exposure to pollutants, alcohol, tobacco, and
obesity, elevate maternal inflammation levels (Costenbader and
Karlson, 2006; Rommel et al., 2020). This suggests that prenatal
oxidative stress driven by these inflammatory conditions may play
a critical role in the development of ADHD. The interplay between
oxidative stress and inflammation during prenatal development
is crucial for understanding the pathophysiology of ADHD and
highlights the need for strategies to mitigate oxidative stress during
pregnancy to reduce ADHD risk.

These conditions demonstrate a complex interplay between
oxidative stress, genetic factors, and environmental factors.
Understanding this interplay is essential for developing effective
strategies against oxidative stress during pregnancy that may reduce
the risk of various psychological disorders.

Future directions

Oxidative stress represents a significant challenge to embryonic
development that is capable of disrupting crucial cellular processes
and leading to growth retardation and malformations in the embryo
and fetus. A deeper understanding of the intricacies of cellular
responses to oxidative stress and their impact on development is
essential for advancing our knowledge of developmental biology
and improving the outcomes of pregnancies at risk of oxidative
stress-related complications. Further research is needed to uncover
specific molecular targets and pathways that can be therapeutically
manipulated to protect the developing embryo from the detrimental
effects of oxidative stress.

Understanding the cellular mechanisms and signaling pathways
activated by oxidative stress during embryonic development is
crucial for developing strategies to mitigate its adverse effects.
Researchers are exploring potential therapeutic interventions
to counteract oxidative stress during pregnancy, including the
administration of antioxidants (Mistry and Williams, 2011).
However, the timing, dosage, and safety of such interventions should
be carefully considered to avoid unintended consequences.

Conclusion

Published research has highlighted the significant impact
of oxidative stress on the growth and organogenesis of
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mammalian embryos and fetuses. Oxidative stress-induced
intrauterine growth restriction (IUGR), skeletal abnormalities,
neurodevelopmental consequences, cardiovascular defects,
gastrointestinal malformations, and limb abnormalities underscore
the vulnerability of prenatal development to ROS imbalance.
Therefore, extensive research is required to understand the impact of
ROS on both pre- and post-implantation embryonic development.
Understanding these effects is critical for developing strategies
to mitigate oxidative stress-related developmental disorders and
to improve the outcomes of pregnancies exposed to oxidative
stress-inducing factors. Further research is needed to uncover the
intricate mechanisms underlying these effects and explore potential
interventions to protect embryonic and fetal development from the
adverse consequences of oxidative stress.

Interdisciplinary collaboration is indispensable for gaining a
comprehensive understanding of the relationship between oxidative
stress and prenatal development. The intricate nature of this
relationship demands expertise from various fields, including
molecular biology, toxicology, epidemiology, clinical medicine,
and neuroscience. By combining insights from these disciplines
and employing cutting-edge techniques and technologies,
researchers can uncover the mechanisms, risk factors, and potential
interventions that contribute to the understanding of oxidative
stress during prenatal development. These collaborative efforts
hold the promise of improving maternal and fetal health outcomes
and addressing the long-term consequences of oxidative stress in
offspring.
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