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The relationship mammalian p38
with human health and its
homolog Hog1 in response to
environmental stresses in
Saccharomyces cerevisiae

Gang Du*† , Kaifang Zheng† , Cunying Sun, Mingyue Sun,
Jie Pan, Dan Meng, Wenqiang Guan* and Hui Zhao*

Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin
University of Commerce, Tianjin, China

Themammalian p38 MAPK pathway plays a vital role in transducing extracellular
environmental stresses into numerous intracellular biological processes. The
p38 MAPK have been linked to a variety of cellular processes including
inflammation, cell cycle, apoptosis, development and tumorigenesis in specific
cell types. The p38 MAPK pathway has been implicated in the development of
many human diseases and become a target for treatment of cancer. Although
MAPK p38 pathway has been extensively studied, many questions still await
clarification. More comprehensive understanding of the MAPK p38 pathway
will provide new possibilities for the treatment of human diseases. Hog1 in
S. cerevisiae is the conserved homolog of p38 in mammalian cells and the
HOG MAPK signaling pathway in S. cerevisiae has been extensively studied. The
deep understanding of HOG MAPK signaling pathway will help provide clues
for clarifying the p38 signaling pathway, thereby furthering our understanding
of the relationship between p38 and disease. In this review, we elaborate
the functions of p38 and the relationship between p38 and human disease.
while also analyzing how Hog1 regulates cellular processes in response to
environmental stresses. 1, p38 in response to various stresses in mammalian
cells.2, The functions of mammalian p38 in human health.3, Hog1 as conserved
homolog of p38 in response to environmental stresses in Saccharomyces
cerevisiae. 1, p38 in response to various stresses in mammalian cells. 2, The
functions of mammalian p38 in human health. 3, Hog1 as conserved homolog
of p38 in response to environmental stresses in S. cerevisiae.
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Introduction

Cells have evolved sophisticated sensory mechanisms and information transduction
systems to respond to environmental challenges and ensure survival (Nadal and Posas,
2015). Eukaryotic cells, ranging from yeast to mammals, the multiple mitogen-activated
protein kinase (MAPK) cascades play a crucial role in regulating various cellular processes
(de Nadal et al., 2002; Westfall et al., 2004).
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FIGURE 1
Schematic illustration of the bidirectional roles of p38 signaling in human diseases. Dual regulatory roles of p38 MAPK activation and inhibition in
disease pathogenesis. Left panel (Activation): phosphorylated p38 (Red area) drives pathological processes, including: apoptosis dysregulation,
acceleration or retardation of the cell cycle, Inflammatory disorders (Psoriasis, inflammatory bowel disease (IBD), rheumatoid arthritis (RA),
steatohepatitis, asthma, acute respiratory distress syndrome (ARDS), and chronic obstructive pulmonary disease (COPD).
Neuroinflammatory/neurodegenerative diseases: Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), Huntington’s disease (HD),
amyotrophic lateral sclerosis (ALS), atherosclerosis (AS), hypertensive heart disease (HHD), and myocardial infarction (MI)), tumor progression, and
cancer cell proliferation. Right panel (Inhibition): pharmacological suppression of p38 (blue area) attenuates disease progression through: enhanced
cellular survival, slowed tumor growth. Arrows indicate directional signaling flow.

In mammals, p38 MAPK is one of the most significant
signaling pathways in the MAPK cascade (Obata et al., 2000;
Chen et al., 2001; Kyriakis and Avruch, 2001; Pearson et al.,
2001; Johnson and Lapadat, 2002; Goldsmith et al., 2004). p38
MAPK is involved in multiple essential functions including
apoptosis, cytokine production, transcriptional regulation, and
cytoskeletal reorganization (Figure 1). This pathway also regulates
the activity and expression of key inflammatory mediators,
including cytokines and proteases, which are critical for cancer
progression (Sheikh-Hamad and Gustin, 2004; Obata et al.,
2000) as well as diseases related to inflammatory responses
(Wang et al., 2024), including colitis, arthritis, atherosclerosis, lung
diseases, human immunodeficiency virus infection, Alzheimer’s
disease (AD) (Hugon and Paquet, 2021), and cell carcinoma
(Martínez-Limón et al., 2020), tumors (Bulavin and Fornace,
2004) among other diseases (Figure 1). Givern its critical role
in these processes, p38 MAPK has been extensively studied as
a therapeutic target, with p38 inhibitors explored for clinical
treaments (Han et al., 2020; Asih et al., 2020).

Interestingly, the p38 MAPK pathway has a homologous
counterpart in Saccharomyces cerevisiae, where the high osmolarity
glycerol (HOG) pathway performs a similar function (Galcheva-
Gargova et al., 1994; Cooper, 1994; Han et al., 1994; de Nadal et al.,
2011). The HOG pathway, a yeast-specific MAPK signaling cascade,
is crucial for the cell’s response to environmental stressors such
as osmotic stress (de Nadal et al., 2011). The key protein in this
pathway, Hog1, is a conserved homologue of p38 (Han et al., 1994).
The similarities between the mammalian p38 MAPK pathway and
the yeast HOGpathway provide valuable insights into the conserved

nature of MAPK signaling across species, and understanding these
pathways in yeast may offer new directions for studying p38 MAPK
in human diseases.This discussion will first explore the p38 pathway
and its relationship to human diseases, while also examining how
the HOG MAPK pathway responds to various external stimuli,
providing new insights and directions for studies on p38. How MAP
kinase p38 affects human health.

p38 and cellular processes

p38 was originally identified as a protein with a molecular
weight of 38 kDa, characterized by the rapid phosphorylation
of its tyrosine residues in response to various environmental
stimuli (Han et al., 1994). These stimuli include heat shock,
changes in osmotic pressure, oxidative stress, genotoxic agents and
DNA-damaging agents such as cisplatin, adriamycin, ultraviolet
light, and γ-radiation (Kyriakis and Avruch, 2012). Additionally,
p38 is activated by inflammatory cytokines, pathogen-associated
molecular patterns (PAMPs), danger-associated molecular patterns
(DAMPs) (Martínez-Limón et al., 2020) and lipopolysaccharide
(LPS) stimulation (Han et al., 1994). p38 MAPK represents a
group of highly conserved protein kinases, and phosphorylated
p38 MAPK can activate a diverse range of substrates, including
transcription factors, protein kinases, and various cytoplasmic and
nuclear proteins (Obata et al., 2000; Coulthard et al., 2009).

In mammalian cells, four homologous p38 MAPK proteins are
encoded by different genes: p38α. (MAPK14), p38β (MAPK11),
p38γ (MAPK12), and p38δ (MAPK13) (Cuenda and Rousseau,
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2007) (Figure 2). These proteins are broadly expressed, yet their
expression patterns differ across tissues. p38α is universally
expressed in all cell types, while p38β is predominantly found in
the brain, thymus, and spleen. p38γ is abundant in skeletal muscle,
and p38δ levels are higher in the pancreas, intestines, adrenal
glands, kidney and heart (Mertens et al., 1996; Goedert et al., 1997;
Jiang et al., 1997; Beardmore et al., 2005; Cuenda and Rousseau,
2007; Cuenda and Sanz-Ezquerro, 2017). The external environment
activates MAP3K, including TAK1 (Moriguchi et al., 1996), ASK1
(Ichijo et al., 1997), DLK (Hirai et al., 1997), MLK3 and ZAK1
(Doza et al., 1995; Brancho et al., 2003). This activation leads
to the stimulation activation of upstream MAP2K, specifically
MKK3 and MKK6, which in turn activates the downstream p38
kinase, resulting in their phosphorylation (Figure 2). All four p38
kinases possess conserved Thr-Gly-Tyr (TGY) biphosphorylated
motifs (Han et al., 2020). Notably, among of these four types
of p38 MAPK, p38β is exclusively phosphorylated by MKK6,
while only p38α is specifically activated by MKK4 (Enslen et al.,
1998; Alonso et al., 2000; Cuadrado and Nebreda, 2010)
(Figure 2).

Activated p38 rapidly accumulates and translocates to the
nucleus, where it phosphorylates various transcriptional regulators
that coordinate specific gene expression programs (Ono and Han,
2000; Cuenda and Rousseau, 2007). Additionally, it may interact
with other signaling pathways, binding to non-p38-regulated
transcription factors to trigger diverse responses, including
inflammation, cell cycle arrest, apoptosis, senescence, cytokine
production and RNA splicing regulation (Coulthard et al., 2009;
Sanz-Ezquerro and Cuenda, 2021) (Figure 1). Notably, strong and
sustained p38 activation is linked to apoptosis, senescence and
terminal cell differentiation (Puri et al., 2000; Haq et al., 2002). In
contrast, low-level p38 activation supports cell survival (Puri et al.,
2000; Haq et al., 2002; Macé et al., 2005).

Cell cycle influenced by p38 MAPK

When cells are exposed to stress, defects in cell growth occur
as cell cycle checkpoint systems and protective responses are
activated. Energy is redirected from other cell functions to support
the stress response. In mammalian cells, the p38 MAPK pathway
plays a pivotal role in regulating cell cycle progression under
various stress conditions, such as osmotic stress, reactive oxygen
species, DNA damage and aging. These stresses lead to defects
in cell cycle delay, impairing cell viability. (Duch et al., 2012;
Barnum and O'Connell, 2014; Martínez- Limón et al., 2020). p38
MAPK is particularly important for regulating cell proliferation
during the G1/S and G2/M phases of the cell cycle. (Barnum and
O'Connell, 2014; Martínez- Limón et al., 2020). For instance, p38
MAPK enhances cell survival by downregulating the expression of
the retinoblastoma (RB) tumor suppressor gene, which is a key
regulator of G1 phase restriction point in metastasis (Ambrosino
and Nebreda, 2001; Gubern et al., 2016).

In the G1/S transition, p38 interacts with several key regulatory
proteins, such as Cyclin D1, Cdc25A, and p53, to modulate cell
cycle progression. (Bulavin and Fornace, 2004). Cyclin D1, encoded
by the human CCND1 gene, is essential for the G1/S transition
(Tchakarska and Sola, 2020). Inhibition of p38 MAPK during this

FIGURE 2
p38 signal pathway in mammalian cells. Mammalian p38 kinases
consist of four proline - directed serine/threonine kinases, namely,
p38α, p38β, p38γ, and p38δ, which are encoded by four genes. The
classical activation of p38 follows a three - tiered mechanism. The
stimuli for p38 activation are cellular stressors, such as oxidative stress,
inflammatory stimuli/cytokines, ultraviolet radiation, and cell
membrane osmotic pressure. Upstream stimuli activate MAP kinases
(MAPKKK), such as kinases like ASK1, TAK1, MLK, etc. These kinases, in
turn, phosphorylate and activate MAPKK, such as MKK3, MKK4, or
MKK6. MKK, in turn, phosphorylates and activates p38 kinases on
threonine and tyrosine residues in the activation loop. In the case of
p38α, it is activated by MKK4 (dashed arrow). The dual phosphorylation
of p38 can be detected by phosphorylation - specific antibodies and
serves as a marker of p38 activation. Dual - phosphorylated p38 is fully
active and targets downstream phosphorylation substrates, altering
their structure, activity, function, localization, or interaction with other
biomolecules, thus regulating cellular responses. The phosphorylated
state is represented by “P”. Solid arrows and dashed arrows indicate
the directionality of the signal.

transition lead to a downregulation of cyclin D1 levels, slowing
the conversion from G1 to S phase, thereby impeding cancer cell
cycle progression and reducing cancer incidence (Lavoie et al.,
1996). Additionally, p38 MAPK regulates the stability of Cdc25A,
its activation can inhibit Cdc25A activity, further slowing cell cycle
proliferation (Galaktionov et al., 1995; Mailand et al., 2000; Bartek
and Lukas, 2001; Zhao et al., 2002; Goloudina et al., 2003). Notably,
Cdc25A is often overexpressed in primary human breast cancer,
where it could serve as a potential therapeutic target (Cangi et al.,
2000). Meanwhile, p53 functions as a tumor suppressor at the
G1/S checkpoint by upregulating proteins such as p21Cip1/WAF1,
GADD45, and 14-3-3σ, which prevents progression to S phase
and induce G1 phase stagnation (Takekawa et al., 2000; Ho and
Benchimol, 2003; Stramucci et al., 2018).

Furthermore, the G2/M checkpoints are crucial for halting
mitotic progression in response to chromatin damaged or
incomplete replication (Bulavin and Fornace, 2004). Studies indicate
that p38α is involved in G2/M checkpoints, promoting cell cycle
arrest and facilitating DNA repair (Wagner and Nebreda, 2009).
Experiments with transgenic mice expressing an active mkk6Δ
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mutant in immature thymus cells have demonstrated sustained
activation of the p38 MAPK pathway inhibits both cell cycle
progression and differentiation (Diehl et al., 2000; Ambrosino
and Nebreda, 2001). Despite these findings, the precise molecular
mechanisms through which p38 MAPK integrates with other
key cell cycle checkpoints, including the DNA damage response
and tumor suppressor signaling pathways, remain incompletely
understood. Further research is needed to elucidate these
interactions and their implications for cell cycle regulation under
stress conditions.

Apoptosis influenced by p38 MAPK

Apoptosis is a genetically controlled, multistep process of cell
death that eliminates damaged cells while preventing inflammatory
response (Obata et al., 2000). In many biological systems, the
activation of p38 MAPK activity is associated with apoptosis,
whereas its inhibition can reduce apoptosis events (Ziegler-
Heitbrock et al., 1992; Cardone et al., 1997; Obata et al., 2000).
The role of p38 MAPK in apoptosis may depend on the mode and
duration of its activation (Obata et al., 2000). For instance, brief
activation of p38MAPK promotes erythroid differentiation of SKT6
cells, while prolonged activation leads to apoptosis (Nagata and
Todokoro, 1999; Macé et al., 2005). Similarly, early activation of
p38 MAPK can prevent apoptosis in neutrophils treated with tumor
necrosis factor (TNF)-α, whereas later activation appears to facilitate
apoptosis in these cells (Roulston et al., 1998).

Some studies suggest that p38 MAPK influences apoptosis both
upstream anddownstreamof cysteine protease (Cardone et al., 1997;
Ziegler-Heitbrock et al., 1992), which are central to the apoptosis
pathway and exist as inactive zymogens (Fernandes-Alnemri et al.,
1996; Cahill et al., 1996). Moreover, activation of MEKK can
stimulate the p38 signaling pathway, promoting apoptosis in T
cells and fibroblasts (Huang et al., 1997). Interestingly, heat stress
has been shown to inhibit LPS-induced apoptosis by blocking the
calpain/p38 MPAK pathway (Liu et al., 2016). Overall, the p38
MAPK pathway plays a crucial role in regulating cell fate, yet the
precise mechanism underlying this process remains to be fully
elucidated.

p38 in diseases

Inflammatory response regulated by p38
MAPK

The p38 MAPK pathway is recognized for its complex role
in the inflammatory response, where it is involved not only in
promoting inflammation but also in mediating anti-inflammatory
processes. Activation of p38 MAPK can stimulate the expression of
transcription factors such as AP-1 (Garcia et al., 1998; Yang et al.,
2014) through pro-inflammatory mediators, including interleukin-
1 (IL-1), IL-6, TNF. This stimulation further enhances the
production of pro-inflammatory cytokines, thereby intensifying the
inflammatory response (Guzman-Martinez et al., 2019; Chan et al.,
2020; Liao et al., 2021). Concurrently, p38 MAPK also plays
a role in regulating anti-inflammatory mediators such as IL-10

and transforming growth factor-β (TGF-β), which may inhibit
inflammation under certain conditions (Guzman-Martinez et al.,
2019; Chan et al., 2020; Liao et al., 2021). Due to this dual
functionality, p38 MAPK is considered a key regulator of the
inflammatory response (Garcia et al., 1998; Yang et al., 2014). The
NLRP3 inflammasome is a multiple protein complex that detects
pathogens and danger signals, promoting thematuration and release
of inflammatory factors such as IL-1β (Ising et al., 2019). Abnormal
activation of the NLRP3 inflammasome has been linked to various
inflammatory diseases, including AD (Ising et al., 2019). The p38
MAPK signaling pathway exhibits a dual role in the activation
and expression of the NLRP3 inflammasome (Wang et al., 2024).
Specifically, phosphorylation of p38 MAPK enhances the function
of the NLRP3 inflammasome, leading to a heightened inflammatory
response (Wang et al., 2024). Conversely, the inhibition or absence
of p38 MAPK may result in excessive activation of the NLRP3
inflammasome during its activation phase, which can exert an
anti-inflammatory effect through the regulation of mitochondrial
Ca2+ uptake (Chanjitwiriya et al., 2020).

Additionally, the p38 MAPK signaling pathway plays a crucial
role in the functional activation, proliferation and migration
of macrophages, as well as in regulating their phagocytic
capabilities, which are essential for inflammatory responses
(Senokuchi et al., 2005; Hou et al., 2022; Wang et al., 2024).
Increased phosphorylation levels of p38 MAPK enhance both
the phagocytic ability of macrophages and their production IL-
10. Specifically, p38α is vital in mediating inflammatory responses,
notably in conditions such as psoriasis, while p38β has also been
implicated in various inflammatory diseases, (Johansen et al., 2005),
including inflammatory bowel disease (IBD), rheumatoid arthritis
(RA), steatohepatitis (Zhang and Reynolds, 2019; Otsuka et al.,
2010; Liang et al., 2013), asthma, acute respiratory distress
syndrome (ARDS) and chronic obstructive pulmonary disease
(COPD). Furthermore, studies have highlighted the complex
pro-inflammatory and anti-inflammatory roles of p38γ and
p38δ in cytokine production during innate immune responses
(Escós et al., 2016), particularly in collagen-induced arthritis
(CIA) (Han et al., 2020). These isoforms regulate the expression
of cytokines, chemokines, and inducible nitric oxide synthases,
which are crucial for the innate inflammatory response against
infections by controlling the expression of multiple protein-coding
genes involved in the activation, recruitment of immune cells, and
the elimination of pathogens in bone marrow derived macrophages
(Risco et al., 2012; Alsina-Beauchamp et al., 2018).

Inhibiting p38 MAPK can help prevent inflammation and the
death of muscle fiber, thus providing a potential treatment for
various forms of muscular dystrophy forms of muscular dystrophy
(Brennan et al., 2021). Microglia, the innate immune effector cells of
the central nervous system, undergo phenotypic changes and release
inflammatory mediators, which are pivotal in neuroinflammation
associated with conditions such as stroke (Park et al., 2015). The
p38 MAPK pathway is integral to the functioning of microglia
and other cell types (Park et al., 2015; Kheiri et al., 2018; Yan and
Zhao et al., 2020; Yang et al., 2020; Fan et al., 2021; Gaikwad et al.,
2021; Li et al., 2020; Lo et al., 2022).Neuroinflammation significantly
contributes to neurodegenerative diseases, including AD (Peel et al.,
2004), Parkinson’s disease (PD) (Thomas et al., 2008), and multiple
sclerosis (MS), with chronic oxidative stress further exacerbating
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neurodegenerative changes (Solleiro-Villavicencio et al., 2018).
Aditionally, p38 MAPK signaling is implicated in the pathogenesis
of other neurodegenerative diseases, such as Huntington’s disease
(HD) and amyotrophic lateral sclerosis (ALS) (Perregaux et al., 1995;
Johnson and Bailey, 2003; Hollenbach et al., 2004; Culbert et al.,
2006; Van Eldik et al., 2007; Thomas et al., 2008; Feng et al., 2019),
as well as various cardiovascular diseases, including atherosclerosis
(AS), obesity-related cardiac hypertrophy (ORCH) (Wang et al.,
2016), myocardial infarction (MI) and cerebrovascular disease
(Bassi et al., 2008; Muslin, 2008). Moreover, p38 MAPK is
particularly important in the context of chronic pain diseases
(Coulthard et al., 2009).

The role of MAP kinase p38 in regulation of
immune response

The importance of the p38 signaling pathway in regulating the
immune response has garnered significant attention in the context
of carcinogenesis (Martínez-Limón et al., 2020). Immune cells can
profoundly influence tumor progression through the secretion of
cytokines and chemokines (Martínez-Limón et al., 2020).

The effects of p38 on tumor are complex and multifaceted.
First, the activation of p38 can promote tumorigenesis. For

instance, p38α regulates the induction of the pro-inflammatory
mediator Cyclooxygenase-2 (COX-2), which may contribute to
cancer progression in various cancers, including non-melanoma
skin cancer, breast cancer, and glioma (Bachelor and Bowden, 2004;
Timoshenko et al., 2006; Xu and Shu, 2007). Additionally, p38α
can inhibit inflammation-related intestinal epithelial damage and
tumorigenesis, while also promoting the proliferation and survival
of colon cancer cells (Bachstetter et al., 2011). Furthermore, p38γ
expression is crucial for proliferation of colon cancer (Chen et al.,
2000) and liver tumors (Tang et al., 2005). Inhibition of p38
has been shown to decrease the expression of TGF-β-dependent
MMP- 9, thereby reducing bone metastasis of breast cancer in
mouse models (Suarez-Cuervo et al., 2004), and preventing bone
metastasis of prostate cancer cells (Arechederra et al., 2015).
Chronic inflammatory diseases, particularly those affecting the
gastrointestinal tract, are associated with an increased risk of cancer
development (Grivennikov and Karin, 2011). The p38 pathway
regulates the production of key cytokines such as TNF, IL-6,
IL-1, COX-2, IL-17 and other cytokines, which play significant
roles in tumor growth, survival, and tumorigenesis (Martínez-
Limón et al., 2020).

Second, the activation of p38 can inhibit tumor occurrence. The
p38α and p38β subtypes (Ambrosino and Nebreda, 2001) inhibit
G0, G1/S and G2/M cell cycle checkpoint control, leading to growth
arrest and induction of apoptosis (Bulavin and Fornace, 2004;
Kummer et al., 1997; She et al., 2001) or senescence (Wang et al.,
2002; Haq et al., 2002; Bulavin et al., 2002). p38 downregulates the
expression of cyclin through phosphorylation, thereby inhibiting
cell proliferation across various cancer cell lines (Gubern et al.,
2016). Moreover, p38α can limit the proliferation of hematopoietic
stem cells (Tamura et al., 2000), cardiomyocytes (Engel et al., 2005)
and pancreatic islets (Wong et al., 2009). Additionally, constitutive
activation of the p38MAPK pathway, throughMKK3 orMKK6, can

induce senescence in several cell types (Wang et al., 2002; Haq et al.,
2002) and inhibit tumor formation.

Thus, p38 not only has the capacity to inhibit tumor cell
proliferation, but also act as a tumor promoter (Martínez-
Limón et al., 2020). Experimental evidence suggests that
low p38 activity in the early stages of cancer may facilitate
tumor formation and growth, while increased activation of
this pathway in advanced tumor stages may be beneficial
(Igea and Nebreda, 2015).

Therapeutic targets of p38

Due to its crucial role in regulating cellular functions, p38 is
currently being extensively studied as a drug target, and various
inhibitors (Genovese, 2009) are being investigated for the treatment
of diseases such as pain, asthma, cognitive impairment, RA,
PD (Coulthard et al., 2009), cancer, myelodysplastic syndrome
and depression (Johansen et al., 2005). In 2011, the European
Commission approved Esbriet (pirfenidone), identified as a p38γ
inhibitor, for the treatment of idiopathic pulmonary fibrosis
(Moran, 2011). Another notable example is Ralimetinib (or
LY2228820), a potent and selective inhibitor of p38α and p38β,
utilized as either a single agent or in combination therapy
for ovarian cancer, glioblastoma and metastatic breast cancer
(Vergote et al., 2020). Furthermore, p38α inhibitors may be
beneficial in treating tumors reliant on the progression of p38
MAPK activity, potentially enhancing the efficacy of DNA-
damaging chemotherapy by inhibiting p38α-mediated cell cycle
arrest and affecting DNA repair mechanisms (Wagner and
Nebreda, 2009).

Despite these advancements, our understanding of the p38
signaling pathway remains limited. Nonetheless, novel drug targets
for p38 kinase or its downstream components continue to be
promising candidates for the development of new therapies
addressing a wide range of human diseases.

HOG MAPK

Many signaling pathways present in yeast have equivalent
systems in mammalian cells, exhibiting extensive functional
conservation (Han et al., 1994; Sheikh-Hamad and Gustin, 2004;
Jiménez et al., 2020). Mammalian p38 MAPK is both structurally
and functionally homologous of yeast HOG MAPK (Galcheva-
Gargova et al., 1994; Han et al., 1994; Nadal and Posas, 2015).
Notably, it has been reported that p38 can complement the normal
functions of HOG MAPK in mutant yeast strains (Han et al., 1994).
Consequently, in depth studies of the HOG signaling pathway
in yeast, which serves as the conserved homologue of p38 in
mammalian cells, may provide novel insights for disease treatment
targeting p38.

In S. cerevisiae, the HOG signaling pathway has been extensively
investigated. It coordinates multiple cellular functions, regulates cell
survival and growth, and plays a crucial role in osmotic signaling
(Nadal and Posas, 2022). Initially, the HOG signaling pathway
in S. cerevisiae was thought to be activated solely by osmotic
stress. However, recent studies have revealed that Hog1 is also
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activated by various other environmental stresses, including heat
(Winkler et al., 2002; Yamamoto et al., 2008; Dunayevich et al.,
2018), cold (Hayashi and Maeda, 2006; Panadero et al., 2006),
oxidative (Singh, 2000; Haghnazari and Heyer, 2004; Lee et al.,
2017), acid (citric acid (Lawrence et al., 2004), acetic acid (Mollapour
and Piper, 2006)), heavy metals [e.g., copper (Ren et al., 2022),
cadmium (Jiang et al., 2014; Zhao et al., 2021), iron (Martins et al.,
2018)], metalloid (arsenic (Sotelo and Rodríguez-Gabriel, 2006;
García et al., 2004; Lee and Levin, 2018), antimony (Thorsen et al.,
2006)), LPS (Marques et al., 2006), curcumin (CUR) (Azad et al.,
2014), hypoxia (Hickman et al., 2011) and caffeine (Elhasi and
Blomberg, 2023), methylglyoxal (MG) (Aguilera et al., 2005),
KP1019 (Singh et al., 2014) and carbon stress (Vallejo andMayinger,
2015), cesium chloride (Del Vescovo et al., 2008). In this section, we
primarily describe the HOG signaling pathway and its activation by
various environmental stresses.

HOG-MAPK signaling pathway

Saccharomyces cerevisiae is frequently exposed to adverse
environments, necessitating the evolution of regulatorymechanisms
that enable stress adaptation survival (Udom et al., 2019; Yao et al.,
2020; Lucena et al., 2020; Nadal and Posas, 2022). The HOG
MAPK pathway in yeast, a structural and functional homologue
of the mammalian p38 MAPK (Nadal and Posas, 2015), plays a
crucial role in mediating cellular adaptation to stress, particularly
in high osmotic pressure environments. Under osmotic stress,
HOG activation occurs through two independentmechanisms, each
involving a sensing mechanism and a tertiary cascade of MAPKKK
(Ssk2, Ssk22, and Ste11), MAPKK (Pbs2), and MAPK (Hog1)
(Duch et al., 2012). Ultimately, this cascade activates downstream
substrate (Brewster et al., 1993; Maeda et al., 1994; Maeda et al.,
1995; Posas and Saito, 1997; O'Rourke et al., 2002; Hohmann,
2002; O'Rourke and Herskowitz, 2004; Tatebayashi et al., 2007;
Macia et al., 2009; de Nadal et al., 2011; Saito and Posas, 2012;
Westfall et al., 2004) (Figure 3). One branch of this pathway involves
the osmotic stress receptor Sln1, a complex variant of thewell known
bacterial two-component system (Maeda et al., 1994; Hohmann,
2002). In this pathway, the histidine kinase activity of Sln1 is
inhibited, leading to the dephosphorylation of its downstream
target, Ssk1, which activates downstream MAPKKK (Ssk2, Ssk22)
(Posas et al., 1996; Posas et al., 1998;West & Stock, 2001; Horie et al.,
2008) (Figure 3). The other branch features the membrane protein
Sho1, which interacts with Ste20 and Ste50 to activate MAPKKK
(Ste11) (Maeda et al., 1995; Posas and Saito, 1997; Drogen et al.,
2000; Raitt et al., 2000; Reiser et al., 2000; Macia et al., 2009)
(Figure 3). In yeast, the mucin-like transmembrane proteins Hkr1
and Msb2 are potential osmosensors and share redundant functions
with Sho1 (O'Rourke and Herskowitz, 2002; de Nadal et al., 2007;
Tatebayashi et al., 2007; Tanaka et al., 2014) (Figure 3). In addition,
another element, Opy2, which is a transmembrane protein, acts
as the membrane anchor for Ste11/Ste50 (Wu et al., 2006). The
MAPKKK fromboth branches (Ssk2, Ssk22 and Ste11) subsequently
activate the common MAPKK (Pbs2), which acts as both a
scaffolding protein and a kinase, inducing the phosphorylation of
Thr174 and Tyr176 to activate Hog1 (MAPK) (Brewster et al., 1993)
(Figure 3). Activation of the Hog1 pathway is similar to that of

the p38 MAPK pathway in mammals, and is achieved through the
MAPK cascade reaction. Phosphorylated Hog1 translocates to the
nucleus, where it accumulates (Ferrigno et al., 1998; Reiser et al.,
1999) and recruits RNA polymerase and transcription factors
[Msn2 (Schmitt and McEntee, 1996), Msn4, and Hot1 (Rep et al.,
1999), Msn1 (Estruch and Carlson, 1990)] to the promoters of
hyperosmolarity-associated genes [CTT1, GPD1, GPD2, GPP1,
GPP2, STL1 and HSP12 (O'Rourke et al., 2002; Hohmann, 2002;
O'Rourke and Herskowitz, 2004)], thus regulating intranuclear
osmotic pressure through specific chromatin remodeling factors
to ensure normal transcription and expression of relevant genes
under hypertonic conditions (Posas et al., 2000; Capaldi et al.,
2008; Babazadeh et al., 2014; Hohmann, 2015; Udom et al.,
2019). Furthermore, pbs2Δ mutant or hog1Δ mutant, which encode
MAPK kinase (MAPKK) and MAPK, respectively, lead to increased
osmosensitivity and decreased glycerol levels (Brewster et al., 1993).
Hog1 research reveals how transcription factors mediate gene
expression in response to stress, and these mechanisms are equally
applicable in mammals.

However, sustained activation of Hog1 can be detrimental
to cell growth, making negative feedback regulation of HOG-
MAPK signaling essential (Sacristán-Reviriego et al., 2015; Vázquez-
Ibarra et al., 2020). In yeast cells, the protein phosphatases that
inactivate the HOG signaling pathway are divided into two classes.
The first class consists of protein tyrosine phosphatases (PTPs)
specifically Ptp2 and Ptp3. Ptp2 is predominantly located in the
nucleus (Mattison et al., 1999), where it binds and dephosphorylates
Hog1, playing a crucial role in the negative feedback regulation of
the HOG-MAPK signaling pathway (Maeda et al., 1994; Wurgler-
Murphy et al., 1997; Jacoby et al., 1997; Mattison and Ota, 2000;
Saito and Tatebayashi, 2004) (Figure 3). The second class comprises
type 2C Ser/Thr phosphatases (PTCs) Ptc1, Ptc2 and Ptc3, which
specifically dephosphorylates.

Thr174 of Hog1, thereby preventing overactivation of Hog1
phosphorylation (Warmka et al., 2001; Young et al., 2002; Sacristán-
Reviriego et al., 2015). The coordinated action of activation and
negative feedback regulation of the HOG signaling pathway ensures
that organisms can effectively adapt to environmental changes.

The HOG pathway plays a crucial role in various cellular
processes. First, it determines the short-term translation response
following hyperosmotic shock, regulating protein synthesis to
help the cell adapt to osmotic stress (Warringer et al., 2010;
de Nadal et al., 2011). Second, the p38/HOG stress-activated protein
kinase network is involved in coordinating growth and division
in Candida albicans, although its exact role remains under debate
(Sellam et al., 2019). Third, Hog1 has a dual role in the HOG
pathway, acting both as a direct kinase and as a coordinator of
secondary signaling mediated by effector kinases such as Rck2
(Romanov et al., 2017). In addition, under hypertonic stress,
Hog1 directly binds to the n-terminal regulatory domain of Fps1,
and in this case phosphorylates Rgc2 at multiple sites, shutting
down the saccharomyces cerevisians glycerol channel Fps1, thereby
regulating cellular osmotic balance (Tamás et al., 1999; Beese et al.,
2009; Lee et al., 2013). Finally, in S. cerevisiae, Hog1 MAPK
prevents crosstalk between the HOG pathway and the pheromone
response MAPK pathway, ensuring specific signal transduction
under osmotic stress conditions (O'Rourke and Herskowitz, 1998;
Vázquez-Ibarra et al., 2020).
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FIGURE 3
The HOG (High Osmolarity Glycerol) signal pathway in Saccharomyces cerevisiae. Under osmotic stress, Pbs2 integrates signals from two major
independent upstream osmotic sensing pathways: the Sln1 and Sho1 branches. Upon activation, Pbs2 triggers the activation of Hog1. The activated
Hog1 portion enters the nucleus and regulates transcription (RNA polymerase initiates transcription at the promoter, synthesizes the RNA chain, and
continues to extend forward.). The other part of Hog1 remains in the cytoplasm and directly regulates post-translational processes such as translation.
Thereby initiating a series of osmotic adaptive responses. The phosphorylation state is represented by “P”. An arrow indicates an activation state, while
the T-bar symbol represents an inhibitory state.

HOG MAPK activated by multiple
environmental stresses

In addition to its classical role under hyperosmotic stress
in S. cerevisiae, the HOG signaling pathway has been shown
to be activated by various environmental stresses. Therefore,
in the section, we will primarily discuss the activation of the
HOG signaling pathway in response to other environmental
stressors. The Hog1 study revealed that cells adapt to environmental
stress, which has similarities to the adaptation of the mammalian
p38 MAPK pathway to cell physiological functions in response
to environmental stress or inflammation. The aim is to
provide new perspectives for the study of p38 MAPK in
mammalian cells.

Heat stress

Cells of living organisms are constantly exposed to
environmental changes that can be detrimental, including rising
temperatures (30°C–37°C) (Parsell and Lindquist, 1993; Piper,
1993; Dunayevich et al., 2018). These temperature increases can
damage vital cell structures and impair essential biological functions
(Richter et al., 2010; de Nadal et al., 2011). In response to specific
stresses, cells regulate intracellular effectors and intracellular
signaling pathways (de Nadal et al., 2011).

In yeast cells, there are two main classes of signaling pathways
that detect and respond to sudden changes in external temperature.
One pathway involves the accumulation of denatured protein 26,
which is conserved in the heat-induced responses, leading to the

activation ofHeat Stress Factor (HSF) and the transient expression of
Heat Stress Proteins (HSPs) (Franzmann et al., 2008; de Nadal et al.,
2011). The other pathway responds directly to temperature changes
through key heat-senstive structures, such as DNA, RNA, proteins
and lipids, either by participating in or activating signal transduction
pathways (Franzmann et al., 2008; de Nadal et al., 2011).

Winkler A et al. demonstrated that heat stress (treated at
37°C) promotes Hog1 phosphorylation and Hog1-dependent
gene expression via the Sho1 phosphorylation branch (Figure 4)
(Winkler et al., 2002). Some researchers also suggest that Hog1
is involved in heat shock responses due to the transient increase
in pressure (de Nadal et al., 2011). Transcription of genes such as
HSP12, CTT1 or ALD3 is induced within 1–3 min of stimulation
(Gasch et al., 2000; de Nadal et al., 2011). Additionally, studies
have shown that the Ptp2 and Ptp3 can inactivate Hog1 to
prevent excessive activation of HOG MAPK, thereby avoiding
cell death (Winkler et al., 2002).

Following the activation of Hog1, the heat shock transcription
factor Hsf1 and the general stress transcription factors Msn2 and
Msn4 (collectively referred to as Msn2/4) are activated as master
regulators of the heat shock response in S. cerevisiae (Figure 4)
(Yamamoto et al., 2008). Hsf1 and Msn2/4 induce the expression of
proteins that protect cellular components from thermal inactivation
(Amorós and Estruch, 2001; Grably et al., 2002). Hsf1 is rapidly
and transiently activated to counteract the detrimental effects of
misfolded proteins and restore proteins homeostasis by inducing the
expression of chaperones and other protective proteins under heat
shock conditions (Hightower, 1990; Akerfelt et al., 2010; Rhodius
andMutalik, 2010). Additionally, Hsf1 promotes the transcription of
many HSP family target genes during the recovery period following
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FIGURE 4
The HOG signal pathway in response to the other enviromental stresses. The HOG pathway has two branches, and different environmental stimuli can
activate distinct branches, thereby regulating different transcription factors. These stresses pass through the Sln1-dependent branch, the
Sho1-dependent branch, or involve both branches simultaneously. Pathway-specific protein complexes are common and necessary for signaling.
Under different stress conditions, the transcription factors or genes corresponding to the bottom are different. Arrows represent the flow of
information, while question marks indicate uncertainty.

severe heat shock, including HSP104, HSP82 and HSP70 (Lindquist
and Kim, 1996; Sanchez et al., 1993).

Simultaneously the transcription factors Msn2/4 were also
activated to regulate the target genes such asHSP12,CTT1 andALD3
in response to heat shock (Gasch et al., 2000; de Nadal et al., 2011).
However, the sensor system and detailed mechanism of the HOG
signaling pathway remain largely unexplored.

Cold stress

Low temperatures (0°C–13°C) (Schade et al., 2004) can
lead to decreased membrane fluidity (Henry and Keith, 1971;
Alonso et al., 1997; Swan and Watson, 1997; Horváth et al., 1998;
Hayashi and Maeda, 2006; Panadero et al., 2006), reduced enzyme
activity, impaired protein translation efficiency, changes in lipid
composition, disruptions in the synthesis of damaged proteins,
and decreased secondary stability of DNA and RNA structures in
various organisms, including yeast (Panadero et al., 2006; López-
Malo et al., 2013). When yeast is exposed to low temperatures,
it triggers a rapid and dynamic stress response known as the
cold shock response (Aguilera et al., 2007). This response has
been extensively studied in bacteria and plants, but less so in
fungi. Yeast cells, in particular, HOG signal pathway has been
shown to play a crucial role in adapting to cold stress, providing
valuable insights into cellular mechanisms that protect against
frostbite induced by low temperatures (Hayashi and Maeda, 2006;
Panadero et al., 2006; Aguilera et al., 2007).

Using Western blot analysis, Hayashiet al. demonstrated that
the HOG signaling pathway is activated only in a Sln1branched
dependency manner when cells are exposed to cold stress (at 0 °C)
(Figure 4) (Hayashi and Maeda, 2006). The transcription factors
Msn2 and Msn4 bind to Stress Response Element (STRE) and are
involved in the coordinated regulation of low temperature response
genes (Kandror et al., 2004; Schade et al., 2004). However, there
is currently no direct evidence that Hog1 induces Msn2/Msn4
expression under cold stress. Panadero et al. (Panadero et al., 2006)

analyzed mRNA samples from wild-type and hog1Δ mutant cells
using Northern blot and examined the transcription profiles of
several genes.They found that the cold-induced expression ofGPD1,
GRE1, GLO1 and HSP12 was nearly completely inhibited in the
hog1Δ mutant (Figure 4). This suggests that Hog1 may be the
primary kinase regulating the expression of these genes.

Additionally, studies have shown that when cells are transferred
to 12°C or 4°C, wild-type cells accumulate significant amounts of
glycerol, resulting in improved freezing tolerance. In contrast, hog1Δ
and gpd1Δ mutants exhibit lower survival rates after freezing. This
suggests that an increased glycerol content following a temperature
drop may confer frost resistance (Panadero et al., 2006). However,
cells with mutations in the HOG signaling pathway grow more
slowly under cold stress but are not fatal indicating that other,
potentially more critical signaling pathways may also be involved in
response to cold stress.

Oxidative stress

Oxygen can cause forms of cellular damage through
intermediates with differing reactivity and distribution
(Bilsland et al., 2004). For instance, endogenous metabolites
produced by cells, such as hydrogen peroxide (H2O2), reactive
free radicals, and other oxidants, can lead to oxidative damage to
proteins, lipids, andDNA(Davies, 1995;Wallace, 1998; Singh, 2000).
To protect against oxidative damage, organisms constantly monitor
their environment and respond to oxidative stress through signal
transduction mechanisms (Lee et al., 2017). Oxidants like hydrogen
peroxide, menadione, ultraviolet light and у-radiation can induce
oxidative stress (Demple, 1998; Jamieson, 1992; Hidalgo et al.,
1997; Kielbassa et al., 1997; Wallace, 1998; Zheng et al., 1998). In
S. cerevisiae, the most typical HOG signal in the MAPK cascade
is associated with oxidative stress (Singh, 2000; Haghnazari and
Heyer, 2004).

Singh (Singh, 2000) found that sln1Δ ssk1Δ double mutants and
sho1Δ ssk2Δ double mutants exhibited sensitivity only to H2O2 and
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diamine, but not to the other oxidants like menadione, ultraviolet
light, and у-radiation. The Sho1 branch and Sln1branch were shown
to protect cells only from oxidative damage caused by H2O2 and
diamine, rather than other oxidants (Figure 4).

Surprisingly, a hallmark of the osmotic stress response of S.
cerevisiae is that upstream kinases, such as MAPKK phosphorylate
Hog1 kinase at tyrosine residues (Maeda et al., 1994; Schüller et al.,
1994; Gustin et al., 1998). However, when yeast cells were exposed
to H2O2, Hog 1 tyrosine phosphorylation did not increase.
Similarly, no significant increase in tyrosine phosphorylation was
observed after exposure to other oxidants, consistent with the
findings of Schüller et al. (1994). These results suggest that
direct phosphorylation of Hog1 is not involved in H2O2- induced
stress signaling. Interestingly, the hog1Δ mutant was sensitive to
H2O2, while the hog1Δ mutant expressing mouse p38 kinase
demonstrated resistance toH2O2.Thus, the expression of p38 kinase
compensates for the loss of Hog1 and protects cells from H2O2-
induced damage (Singh, 2000).

Lee et al. (2017) found that Hog1 MAPK could be activated
by oxidative stress (specifically H2O2) through spot dilution assay
and Western blot analysis. However, the activation mechanism was
shown to only through Ssk1-Ssk2 in Sln1 branch, rather than Ssk1-
Ssk22. While only a few cells exhibited nucleus localization of
Hog1 upon H2O2 exposure, most were remained in the cytoplasm.
Additionally, Lee YM et al. detected that both Hog1 and Rck2 were
activated and phosphorylated upon H2O2 stress. Interestingly, the
number of cells with Hog1 in the nucleus was significantly higher in
rckΔ mutant cells compared to wild-type cells (Bilsland et al., 2004).

Several important transcription factors, including Yap1, Skn7
and Sko1, which are regulated by Hog1, play crucial roles in
the oxidative stress response. These factors are necessary for the
regulation of genes involved in protection against oxidative damage
(Figure 4) (Rep et al., 2001). Furthermore, the genes of CTT1
and TSA2, which encode antioxidants, are induced in respond to
oxidative stress by these transcriptions factors (Schüller et al., 1994;
Wong et al., 2003). Massive genes associated with the CRE and
STRE elements, regulated by Hog1, are induced under oxidative
conditions (Lee et al., 2017; Yaakoub et al., 2022). Currently, it
remains controversy regarding the signaling pathway involved in the
oxidative stress response. Much work and further investigation are
needed in this research area to address existing challenges.

Acid stress

Acids can be categorized as weak or strong, and as organic or
inorganic. Regardless of the type, the growth of organisms requires
adaptation to external hydrogen ion concentrations (Lawrence et al.,
2004). Acid stress is influenced not only by the toxicity of high
concentrations of hydrogen ions but also depends on the chemical
nature of the acid to which the organism is exposed (Lawrence et al.,
2004). In fact, different properties of acids can produce different
inhibitory effects; for instance, different weak organic acids can exert
significantly different inhibitory effects on microorganisms, even at
the same pH (Salmond et al., 1984). In S. cerevisiae, theHOGMAPK
pathway has been showed to regulate resistance to citric acid as well
as acetic acid during acid stress (Lawrence et al., 2004; Mollapour
and Piper, 2006).

Citric acid, an intermediate metabolite of the tricarboxylic acid
(TCA) cycle, is a key component of normal respiratory metabolism
in S. cerevisiae and is commonly used as a preservative to prevent
microbial growth. Lawrence et al. (Lawrence et al., 2004) were the
first to discover that the HOG MAPK pathway is vital for the
regulation of citric acid stress adaptation, utilizing screening S.
cerevisiae cleavage, transcriptional analysis, and determination of
protein expression changes. By screening the S. cerevisiae mutant
cells, including HOG1, SSK1, MSN2, PBS2, PTC2, PTP2 and PTP3,
it was confirmed that the HOG MAPK pathway was activated
by the Sln1 branch upon citric acid stress (Figure 4). The genes
regulated by the HOG pathway, which are involved in glycerol and
trehalose metabolism (e.g., GPD1, GPP1, GPP2, TPS1, and TSL1)
(Figure 4), general stress response (e.g., CTT1,HSP42, andDDR48),
and cell wall integrity (e.g., SPI1 and CWP1), were upregulated
in wild type yeast cells under citric acid stress. Additionally,
genes such as CTT1, ALD3, PNC1, DDR48 and YDL204w, which
serve as marker for the transcription factor Msn2/4, were also
upregulated, indicating the activation of Msn2/4 in response
to citric acid stress. Moreover, Hog1 was found to negatively
regulate the expression of Bmh1p, Pdb1p, Ura1p, Fba1, Ydr533cp,
Gnd1p and Car1p during citric acid exposure. The study clearly
demonstrated that the HOG MAPK pathway was activated by the
Sln1 branch to regulate gene expression to alter biological processes
and cause glycerol accumulation in response to citric acid stress
(Lawrence et al., 2004). Furthermore, the HOG MAPK pathway
was similarly activated by the Sln1 branch in response to acetate
stress (Mollapour and Piper, 2006). The GPD1 gene and glycerol
content were induced only in an acetate culture with a pH of 6.8,
but not in culture with a pH of 4.5 (Mollapour and Piper, 2006;
Ludovico et al., 2001; Ludovico et al., 2003). In summary, the HOG
pathway by Sln1 branch is activated in response to both citric acid
and acetic acid stress. However, the mechanism governing gene
expression following the activation of the HOG signaling pathway
remains unclear.

Heavy metal

The widespread use of heavy metals and their improper disposal
pose a serious threat to the environment and human health.
While transition metals, heavy metals and quasi-metals can be
toxic, some transition metals are essential trace elements necessary
for biological function. All cells have mechanisms for metal ion
homeostasis. typically involving a balance between uptake and efflux
systems (Tamás and Wysocki, 2001; Rosen, 2002). Heavy metals
are cofactors for several microbial enzymes and are present at low
concentrations required for normal biological function in yeast
(Kirchman and Botta, 2007). However, when the concentration
exceeds permissible thresholds, heavy metals can impair cellular
function and viability (Dong et al., 2013; Jiang et al., 2014;
Gerwien et al., 2018; Ren et al., 2022).

In S. cerevisiae, regulatory mechanisms for developing tolerance
to various metals have been identified, including heavy metals such
as copper (Ren et al., 2022), cadmium (Jiang et al., 2014; Zhao et al.,
2021), iron (Martins et al., 2018)), as well as metalloids like arsenic
(Sotelo and Rodríguez-Gabriel, 2006; García et al., 2004; Lee and
Levin, 2018), antimony (Thorsen et al., 2006). These mechanisms
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are crucial for the survival and adaptation of yeast in environments
contaminated with toxic metals.

Copper

Copper is essential for life, yet it can become toxic when its
concentration exceeds physiological limits. In cellular contexts,
copper ions can exist in various valence states (Ren et al., 2022).
The toxicity of copper primarily arises from its REDOX properties,
enabling it to participate in Fenton-like reactions that generate
harmful reactive oxygen species (ROS) (Ren et al., 2022), This
leads to cellular damage, including protein oxidation, DNA and
RNA cleavage, and lipid peroxidation that compromises membrane
integrity (Dong et al., 2013; Gerwien et al., 2018; Castro et al., 2021).

RenMet al. demonstrated for the first time that copper exposure
induce oxidative stress, including increased levels of ROS and
malondialdehyde (MDA), the enzymes activity of GSH and SOD,
and upregulated expression of related genes to protect cells defend
against oxidative toxicity (Ren et al., 2022). In addition, trace
amounts of Hog1 were activated under copper stress, leading to the
upregulation of gene expression forCTT1,GPD1,HSP12,RTC3, and
ALD3, as confirmed through phenotypic assays, Western blot assays
and RT-PCR (Ren et al., 2022) (Figure 4). However, the specific
branch regulating Hog1 activation in response to copper remains
unidentified. Furthermore, copper exposure resulted in significant
cell cycle arrest in G1 phase, while Hog1 was partially involved in
regulating cell cycle progression (Ren et al., 2022). Despite these
findings, the HOG pathway response to copper exposure is under-
researched, and the precise mechanisms involved are still unclear.

Cadmium

Cadmium is a highly toxic trace elements that accumulates
in organisms, (Genchi et al., 2020; Farooq et al., 2020; El-
Esawi et al., 2020; Ozturk et al., 2021), triggering a cascade
of death and adaptive signals in eukaryotic cells, including the
formation of oxidants as well as the prevention of DNA damage
and DNA repair (Zhang and Reynolds, 2019). It is classified as a
carcinogen affecting various tissues (Bertin and Averbeck, 2006;
Bishak et al., 2015; Larsson et al., 2015).TheHOGpathway identified
as crucial for yeast cells in resisting cadmium-induced toxicity
(Ozturk et al., 2021; Zhao et al., 2021).

In Jiang et al. employed phenotypic screening ofmutants lacking
components of the HOG signaling pathway alongside Western blot
analysis, revealing that the upstream branches Sln1 and Sho1 can
activate the HOG signaling pathway in response to cadmium stress
(Figure 4) (Jiang et al., 2014). Notably, the MAPKKK involved
in cadmium signaling within the Sln1 branch was identified as
Ssk2, rather than Ssk22 (Jiang et al., 2014) (Figure 4). CYS3,
CYS4, and GSH1, which are involved in cysteine and glutathione
biosynthesis, were identified by transcriptomic, proteomic, and
degenomic methods, suggesting that cysteine and glutathione are
essential for cadmium tolerance in yeast cells (Jiang et al., 2014).
It was observed that ROS levels and cell death levels were induced
under the influence of Cd in mutant cells such as hog1∆ mutant and
pbs2∆ mutant (Zhao et al., 2021). Furthermore, cadmium-induced

Hog1 phosphorylation was shown to require the Unfolded protein-
response (UPR) pathway (Zhao et al., 2021). The loss of HAC1 and
IRE1 was found to enhance the nuclear accumulation of Hog1 and
increase Slt2 localization in the cytoplasm and bud neck, suggesting
that both Hog1 and Slt2 are crucial for regulating cellular processes
in the absence of the UPR signaling pathway (Zhao et al., 2021).
However, the mechanisms by which the HOG signaling pathway
regulates downstream transcription factors and gene expression
remain unclear.

Arsenic

Arsenic is a toxic metalloid that is widely present in the
environment, and exposure has been linked to various diseases,
including liver, kidney, and lung cancers (Evens et al., 2004;
Thorsen et al., 2006). Despite their toxicity, arsenic-containing drugs
have become part ofmodern therapies (Thorsen et al., 2006). Studies
involving arsenite have shown that activation of the HOG pathway
is crucial for tolerance in S. cerevisiae.

Sotelo and Rodríguez-Gabriel (2006) first demonstrated that
Hog1 is rapidly phosphorylated in response to arsenic stress and
triggers a transcriptional response via the Sln1 branch of the HOG
pathway (Figure 4).The abundance of several mRNAs in response to
sodium arsenic in thewild type and the hog1Δmutant was examined
by quantitative reverse transcript PCR (García et al., 2004). Among
the monitored mRNAs, the transcription factor Arr1, which is
critical for upregulating several genes involved in the sodium
arsenic response (Bouganim et al., 2001; Menezes et al., 2004),
including the plasma membrane transporter ARR3; the vacuolar
transporter YCF1; and Glycerol-3-phosphate dehydrogenase GPD1,
which plays a crucial role in hypertonic stress responses and is
regulated by Hog1 activity (Albertyn et al., 1994), it was observed
that ARR3 mRNA was strongly induced under arsenic treatment,
whereas its induction was significantly diminished in hog1Δ mutant
cells (Sotelo and Rodríguez-Gabriel, 2006) (Figure 4). The defective
induction of ARR3 and YCF1 expression is consistent with the
high sensitivity of the hog1Δ mutant to sodium arsenic (Sotelo and
Rodríguez-Gabriel, 2006). Furthermore, analysis of strains lacking
the transcription factors Sko1,Msn2/4, Hot1, and Smp1, all of which
are regulated by Hog1, it was found that Hog1 regulated the arsenic
response independently of these factors (Sotelo and Rodríguez-
Gabriel, 2006). Thorsen M et al. confirmed the above results and
showed that the increase in arsenite influx was dependent on the
aqueous triglyceride protein Fps1 (Thorsen et al., 2006).

Lee and Levin (2018) investigated the two main forms of
inorganic arsenic: trivalent arsenate [As (III)] and pentavalent
arsenate [As (V)]. Their findings revealed that Hog1 is activated
only when As (III) is converted to Mas (III), a metabolite that
activates Hog1 by inhibiting its tyrosine-specific phosphatases Ptp2
and Ptp3. These phosphatases typically maintain Hog1 in a state
of low activity, representing a negative feedback mechanism within
the HOG pathway. Hog1 is activated through arsenate [As (V)]
through a MAPK cascade (Lee and Levin, 2018; Lee et al., 2019),
a mechanism that differs from the activation by As (III). Both As
(III) and As (V) stimulate the expression of arsenic-protected genes,
includingACR2 andACR3 genes, through the ap-1 like transcription
factor ACR1 (Wysocki et al., 2004). Notably, the induction of ACR3
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by As (III) was found to be partially dependent on Hog1, while its
induction by As (V) occurred independently of Hog1. Despite these
insights, the underlying mechanisms remain unclear.

Lipopolysaccharide (LPS)

A typical activator of the immune and inflammatory systems is
lipopolysaccharide (LPS), a component of the outer leaflets of the cell
wall of Gram-negative bacteria, commonly referred to as bacterial
endotoxin. LPS triggers systemic changes associated with infectious
shock (Han et al., 1994; Marques et al., 2006).

Since p38 mediates the action of LPS in mammalian cells,
Marques et al. (Marques et al., 2006) investigated the adaptive
response of the HOG pathway to LPS in S. cerevisiae. They
found that exposure to LPS induced Hog1 phosphorylation and
translocation to the nucleus, where it is in a catalytically active state
and upregulates GPD1 mRNA levels (Figure 4). However, further
exploration is needed to elucidate the upstream branch of the HOG
signaling pathway and their regulatory effects on gene expression.

Curcumin (CUR)

CUR, an active polyphenol derived from the spice turmeric,
has garnered significant attention for its diverse therapeutic
and preventative applications. CUR has been used as a dietary
supplement for many years and is widely used in Ayurvedic
medicines (Aggarwal et al., 2007). CUR has good therapeutic
potential and may play an important role in the prevention of
neurodegenerative disorders, many forms of cancer including colon
and pancreatic cancer cancers, intestinal disorders, and other
disorders (Gupta et al., 2013; Shehzad et al., 2013; Monroy et al.,
2013; Vera-Ramirez et al., 2013). However, the exact mechanism
underlying these effects remain under investigation (Azad et al.,
2014). New aspects of the CUR-induced stress response in S.
cerevisiae have provided additional understanding of the treatment
of CUR. Azad G. K et al. first discovered that CUR exposure causes
Hog1 phosphorylation in S. cerevisiae across both Sln1 and Sho1
branches and the Ssk2 in the Sln1 branch is required for CUR-
induced Hog1 to achieve optimal phosphorylation by Western
blotting and mutant cell assays to achieve (Figure 4) (Azad et al.,
2014). The expression of GPD1 regulated by Hog1 was significantly
increased by RT-PCR. Meanwhile, immunoblotting indicated a
notable reduction in phosphorylated Hog1 levels following the
addition of iron, suggesting that CUR-induced iron deficiency
contributes to Hog1 phosphorylation, which can be restored by
iron supplementation (Azad et al., 2014). However, the specific
transcription factors and gene expressions regulated by Hog1
remain clear.

Hypoxic stress

Oxygen is a critical electron acceptor in aerobic respiration and
is essential for the biosynthesis of important cellular components
such as steroids, unsaturated fatty acids (UFAs), and hemoglobin
(Rosenfeld and Beauvoit, 2003; Hickman et al., 2011). However,

oxygen also has a downside side, during metabolism, it produces
reactive oxygen species, which can damage cellular components
(Jamieson, 1998; Hickman et al., 2011). To adapt to changes
in oxygen levels in the environment, most organisms respond
to changes in oxygen levels through different mechanisms. In
S. cerevisiae, the response to hypoxia is regulated via the HOG
signaling pathway.

Hickman et al. studied hypoxia induction in S. cerevisiae
by analyzing the hypoxic-induced seripauperin (PAU) gene and
showed for the first time that Hog1 is phosphorylated and involved
in the hypoxic growth response by phosphorylation-specific
antiserum analysis andWestern blot analysis (Hickman et al., 2011).
Additionally, the ssk1Δ ste11Δ double mutants exhibited the same
defect as the ssk1Δ single mutant, suggesting that Ste11 does no
play a role in the hypoxic activation of Hog1. This indicates that
the upstream Sln1 branch of the HOG pathway is involved in
hypoxia stress (Figure 4). Under hypoxia conditions, the mRNA
levels of three hypoxia genes (DAN1, INO1 and TDH1) were
also increased in the hog1Δ mutant. This suggests that HOG
signaling pathway is not the primary signaling pathway for hypoxia
stress, and other pathways may play a more central role in this
adaptive response.

Caffeine

Caffeine, a purine analogue ofmethylxanthines, occurs naturally
in many plants as a secondary metabolite. In plants, caffeine serves
a protective role and acts as an insecticide, paralyzing and killing
herbivorous insects (Elhasi and Blomberg, 2023). While caffeine
has both positive and negative effects on human health, its ability
to modulate various neurotransmitter systems can significantly
affect physiological functions. S. cerevisiae is highly responsive
to caffeine, which influences cell growth, morphology, DNA
repair, intracellular calcium homeostasis, and cell cycle progression
(Kuranda et al., 2006; Elhasi and Blomberg, 2023). Elhasi and
Blomberg found that caffeine treatment induces rapid, intense, and
transient phosphorylation of Hog1 (Elhasi and Blomberg, 2023).
Phosphorylated Hog1 is immediately accumulated in the nucleus
under caffeine stress with HOG1-GFP cells (Figure 4) (Elhasi and
Blomberg, 2023). However, the specific pathway through which
caffeine affects Hog1 phosphorylation remains unclear, and the
mechanism of cellular transcription following activation require
further investigation.

Methylglyoxal (MG)

MG is a glycolytic by product formed during the
dephosphorylation of dihydroxyacetone phosphate (DHAP),
which is an intermediate in the interconversion of DHAP and
glyceraldehyde phosphate (GA3P) (Phillips and Thornalley,
1993). The production of MG in S. cerevisiae occurs as a non-
enzymatic, spontaneous process (Martins et al., 2001). In addition,
MG is known to have significant toxic effects, influencing
DNA and proteins (Vander Jagt et al., 1992). To prevent the
overaccumulation of MG, yeast cells initiate a genetic response
when internal concentrations reach a certain threshold.
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Aguilera J et al. showed that the HOG signaling pathway
regulates the genetic response of yeast to MG (Aguilera et al., 2005).
Western blot analyses revealed that hog1Δ mutant and upstream
sln1Δ branch mutant exhibited sensitivity and impairment under
MG treatment, while sho1Δ ssk1Δ double mutants displayed an
attenuated response similar to that of ssk1Δ single mutant. This
indicates that MG response primarily depends on the Sln1 branch
(Figure 4). The absence of Hog1 protein led to reduced MG-
dependent mRNA accumulation of the three reporter genes GPD1,
GLO1 andGRE3 (Aguilera et al., 2005). Furthermore, the combined
deletion of the transcription factorsMsn1,Msn2 andMsn4 virtually
eliminated the accumulation of GLO1, GRE3, and GPD1 mRNAs
(Figure 4) (Aguilera et al., 2005).

Interestingly, MG does not induce hyperphosphorylation
of Hog1 or its nuclear translocation in the parental strains
(Aguilera et al., 2005). Although the phosphorylated form of Hog1
is crucial for transcriptional activity, dual phosphorylation of Hog1
is essential for triggering transcriptional responses (Aguilera et al.,
2005). The activity of the HOG pathway enhance the expression
of MG response genes under both non-induced and inducible
conditions, thereby protecting cells from this toxic glycolytic
byproduct (Aguilera et al., 2005). However, studies on MG stress
are limited, the specific mechanism involved remain unclear.

KP1019

Ruthenium is a non-essential transition metal known for its
diverse coordination chemistry, making it an attractive candidate
for development of pharmacologically active compounds. Among
these, KP1019 has emerged as a promising ruthenium-containing
drug candidates for cancer therapy. Research indicates that KP1019
induces DNA damage in S. cerevisiae, resulting in delayed cell cycle
progression and ultimately leading to cell death (Stevens et al., 2013).
Singh et al. were the first to investigate the tolerance of the HOG
pathway to KP1019. Their phenotype and Western blotting analyses
demonstrated that KP1019 induces the Hog1 phosphorylation
(Singh et al., 2014). Additionally, it was found that GPD1 mRNA
level was upregulated within 30 min after KP1019 treatment by RT-
PCR (Singh et al., 2014). Experiments involving mutant deletion
strains revealed that Hog1 activation is primarily regulated by the
Sho1 branch (Figure 4) (Singh et al., 2014). Therefore, the activation
of HOG pathway by KP1019 is mediated by the Sho1 branch.
Despite the potential of KP1019 as a novel anticancer agent, little
is known about the specific biological pathways and molecules
it targets (Singh et al., 2014).

Carbon stress

Yeast cells detect external nutrient levels through signaling
pathways that regulate metabolism and transcription. They
preferentially utilize glucose and fructose as carbon sources and
favors fermentation over oxidative phosphorylation to harness
energy and precursor molecules for biosynthesis. Consequently,
yeast cells can rapidly and extensively modify their transcriptional
programs in response to fluctuations in glucose levels (Vallejo and
Mayinger, 2015). Piao H et al. reported that glucose starvation

induced Hog1 phosphorylation (Piao et al., 2012). During glucose
starvation, Hog1 phosphorylation is slower and completely
dependent on Ssk1,but not on Sho1 (Vallejo and Mayinger, 2015).
However, the specific transcription factors involved and the resulting
changes in mRNA levels remain unclear.

Conclusion

From single cells to mammals, organisms respond to a variety
of environmental stimuli through the MAPK signaling pathway
to maximize survival. In mammals, the p38 signaling pathway
is a crucial MAPK signaling pathway that significantly impacts
human health and serves as an important area of research for
various diseases. p38 plays a role not only in cellular regulation
but also as a therapeutic target for conditions such as immune
response, neurodegenerative diseases, inflammation, cancer, and
viral infections. Although p38-related drugs have been extensively
studied in clinic settings, their successes have been limited, and
practical applications remain scarce. Thus, accurate and in-depth
studies on p38 are still ongoing.

The main role of Hog1 is to regulate the response of cells to
changes in the external environment under stress conditions such as
high osmotic pressure. In mammals, the p38 MAPK pathway has a
similar structure and function, especially in cellular stress response.
Therefore, the study of Hog1 activation mechanism provides a
framework for understanding the activation of p38 in mammals.

In the Hog1 signaling pathway, several key proteins mediate
signaling processes, including kinases, splices, and transcription
factors. For example, Ypd1 and Ssk1 regulate Hog1 activation
upstream. Similarly, in mammals, p38 activates downstream
signaling through the regulation of its upstream kinases, such as
MKK3/MKK6. The Hog1 study provides a better understanding of
how these transcription factors respond to environmental stress,
as well as how p38 regulates stress responses through similar
signaling mechanisms, and advances research into the role of these
factors in mammalian systems. p38 can activate or inhibit the Hog1
signaling pathway through certain conditions, and vice versa. An
understanding of this interplay can help develop more nuanced
intervention strategies. The mammalian p38 MAPK pathway and
the yeast HOG pathway are highly homologous in structure and
function. S. cerevisiae as a well-studied model eukaryote, provides
insights into the conserved of the HOG pathway across eukaryotes.
We hypothesize that by examining the changes in S. cerevisiae
in response to environmental stimuli, in conjunction with studies
on the p38 signaling pathway, we can gain valuable insight into
the role of p38 in human disease and health. Research on the
stress response of S. cerevisiae can enhance our understanding of
stress response in microorganisms and mammals, ultimately aiding
the development of therapeutic strategies for various diseases and
contributing to improved human health. Future studies should focus
on the HOG pathway of resistance mechanisms under various
adverse conditions, refining existing models. Future studies can
start from the aspects of targeting specific transcription factors,
kinase interactions, signaling pathway feedback mechanisms, etc.,
to provide new targets and strategies for the treatment of various
diseases (such as cancer, inflammatory diseases, neurodegenerative
diseases, etc.). Cross-species comparative studies, especially the

Frontiers in Cell and Developmental Biology 12 frontiersin.org

https://doi.org/10.3389/fcell.2025.1522294
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Du et al. 10.3389/fcell.2025.1522294

analogy between Hog1 and p38, will provide theoretical basis
and practical guidance for the development of more accurate and
effective targeted therapies. and exploring new access mechanisms.
Further exploration of the relationship between the HOG and
p38 MAPK pathways in response to stress is necessary, including
identifying specific transcription factors or promoters involved.
Another layer of the relationship between HOG pathway and
p38 MAPK pathway in response to adversity, whether there are
homologues, is not clear, whether kinases such as Hog1 and
their dependent factors can help p38 in disease management
and treatment. Given the significance of the Hog1/p38 signaling
pathway in both yeast and mammalian cells, further investment in
understanding this mechanism is warranted for the advancement of
human health.
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