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From genes to patterns: a
framework for modeling the
emergence of embryonic
development from
transcriptional regulation

Jimena Garcia-Guillen and Ezzat El-Sherif*

School of Integrative Biological and Chemical Sciences (SIBCS), University of Texas Rio Grande Valley
(UTRGV), Edinburg, TX, United States

Understanding embryonic patterning, the process by which groups of cells
are partitioned into distinct identities defined by gene expression, is a central
challenge in developmental biology. This complex phenomenon is driven
by precise spatial and temporal regulation of gene expression across many
cells, resulting in the emergence of highly organized tissue structures. While
similar emergent behavior is well understood in other fields, such as statistical
mechanics, the regulation of gene expression in development remains less
clear, particularly regarding how molecular-level gene interactions lead to
the large-scale patterns observed in embryos. In this study, we present a
modeling framework that bridges the gap between molecular gene regulation
and tissue-level embryonic patterning. Beginning with basic chemical reaction
models of transcription at the single-gene level, we progress to model
gene regulatory networks (GRNs) that mediate specific cellular functions.
We then introduce phenomenological models of pattern formation, including
the French Flag and Temporal Patterning/Speed Regulation models, and
integrate themwith molecular/GRN realizations. To facilitate understanding and
application of our models, we accompany our mathematical framework with
computer simulations, providing intuitive and simple code for each model.
A key feature of our framework is the explicit articulation of underlying
assumptions at each level of the model, from transcriptional regulation
to tissue patterning. By making these assumptions clear, we provide a
foundation for future experimental and theoretical work to critically examine
and challenge them, thereby improving the accuracy and relevance of gene
regulatory models in developmental biology. As a case study, we explore how
different strategies for integrating enhancer activity affect the robustness and
evolvability of GRNs that govern embryonic pattern formation. Our simulations
suggest that a two-step regulation strategy, enhancer activation followed by
competitive integration at the promoter, ensures more standardized integration
of new enhancers into developmental GRNs, highlighting the adaptability of
eukaryotic transcription. These findings shed new light on the transcriptional
mechanisms underlying embryonic patterning, while the overall modeling
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framework serves as a foundation for future experimental and theoretical
investigations.

KEYWORDS

pattern formation, transcription, enhancers,modelling, gene regulatory network (GRN),
development, oscillations, gene regulation

1 Introduction

A fundamental challenge in developmental biology is
understanding how a group of cells is partitioned into distinct
identities, where each group is defined by the expression of one
or a few specific genes (Negrete and Oates, 2021; Wolpert, 1969;
Green and Sharpe, 2015; Müller and El-Sherif, 2020). This process
of cell diversification is further subdivided recursively, creating
increasingly specialized subgroups, ultimately forming the complex
and highly organized structure of the embryo with its diverse
cell types. This phenomenon is known as embryonic patterning
(Wolpert, 1969; Green and Sharpe, 2015; Müller and El-Sherif,
2020; Wolpert, 1989; Landge et al., 2020; Meinhardt et al., 1991;
Roth, 2011; Briscoe and Small, 2015). Embryonic patterning
relies on the precise regulation of gene expression—spatially and
temporally—ensuring the right genes are activated in the right
cells at the right time (Negrete and Oates, 2021; Wolpert, 1969;
Spitz and Furlong, 2012). This regulation controls how cells acquire
their identities and organize into complex structures. Embryonic
patterning, therefore, is an emergent phenomenon, resulting from
the intricate regulation of many interacting genes across numerous
cells. This concept of emergence parallels statistical mechanics,
where complex behaviors in macroscopic systems, like gases or
liquids, arise from interactions among many microscopic particles
(Anderson, 1972). Although the underlying laws for these particles,
such as Newton’s laws or quantum mechanics, are relatively simple,
their collective behavior leads to emergent large-scale phenomena.
Similarly, in embryonic development, gene interactions across
many cells produce the complex patterns guiding embryonic
development (Davidson, 2010; Levine and Davidson, 2005).
However, unlike well-understood models in statistical mechanics,
our knowledge of gene regulation remains incomplete, particularly
regarding how individual genes and their interactions drive these
developmental patterns.

In emergent phenomena, not all features of the underlying
microscopic elements are critical to the behavior of the larger
macroscopic system. Similarly, in embryonic development, not
all details of transcription at the single-gene level, which are
often intricate (Fuda et al., 2009), are essential contributors to
the emergent patterns of gene expression that guide development.
Therefore, a key step in understanding how gene regulationmediates
embryonic patterning is to develop abstract, simplified models
(Alon, 2006; Alon, 2007) that focus on the essential mechanisms
at the single-gene level while still capturing the emergent gene
expression patterns. However, we currently lack such models.

On one hand, reductionist approaches that delve into the
molecular details of transcriptional machinery have uncovered vast
amounts of information (Spitz and Furlong, 2012; Cramer, 2019;
Furlong and Levine, 2018; Fukaya et al., 2016), but they often fail
to clarify how these details contribute to the overarching process

of pattern formation. On the other hand, existing models of gene
regulation in embryonic pattern formation often rely on simplified
systems, such as those found in bacteria (Alon, 2006; Alon, 2007;
Kalir et al., 2005; Bintu et al., 2005a; Bintu et al., 2005b; Shea
and Ackers, 1985). While these models provide insights, they fall
short in capturing the much greater complexity of transcription in
eukaryotes, especially in metazoans (Kim et al., 2022; Vincent et al.,
2016; Samee et al., 2017; Park et al., 2019). This raises the question
of which aspects of eukaryotic transcription are essential for
mediating pattern formation. Identifying these key aspects, even
at a theoretical level, would enable more targeted experimental
work aimed at understanding the transcriptional mechanisms that
drive embryonic patterning. To address this challenge, we need to
establish a modeling framework that links gene regulation at the
molecular level to the higher-level process of pattern formation
across embryonic tissues. Such a framework should not simply aim
to reproduce experimental data, but rather expose the underlying
assumptions about how gene regulation occurs, providing new
perspectives on the problem. Moreover, to enhance understanding,
it is crucial to supplement these models with computer simulations,
offering intuitive and straightforward code that researchers can
easily use and modify.

In this paper, we propose such a framework by developing
simple toy models of transcription and gene regulatory interactions
at the single-gene level. Building on these models, we construct
basic pattern formation models that generate realistic yet simplified
gene expression patterns. Even if some of these models are
based on outdated experiments in bacteria, this effort will clarify
the assumptions driving our understanding of gene regulation,
highlight areas for future investigation, and point to key differences
between bacterial and eukaryotic transcription. By making these
assumptions explicit, we aim to shed light on the connection
between themolecular processes of transcription and the large-scale
phenomenon of embryonic pattern formation, opening new avenues
for exploration in developmental biology and developmental
genetics. To enhance accessibility and encourage further research,
we provide accompanying computer simulations with intuitive and
simple code for each model.

We begin our modeling effort by focusing on the transcription
process of single genes, using basic chemical reaction models.
From there, we model how multiple genes interact to form gene
regulatory networks (GRNs) that mediate specific functions within
single cells. Next, we introduce phenomenological models of
embryonic pattern formation, including various versions of the
French Flag model and the Temporal Patterning/Speed Regulation
models. These models are then extended with molecular or GRN
realizations, representing a comprehensive modeling approach
that connects transcriptional-level processes to tissue-level pattern
formation. As a case study, we then explore the impact of different
strategies for integrating the activities of multiple enhancers
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regulating a single gene on the robustness and evolvability of
embryonic patterning. Our simulations suggest that the two-step
gene regulation strategy observed in eukaryotes—first enhancer
activation, followed by competitive integration of enhancer activities
at the promoter—provides a more standardized approach for
incorporating newly evolved enhancers into developmental GRNs.
This insight emphasizes the evolutionary adaptability of eukaryotic
transcriptional regulation and its role in shaping robust embryonic
development.

2 Materials and methods

2.1 Modeling the regulation of a single
gene

We begin our modeling of transcription during embryonic
patterning by focusing on the kinetics of a single gene regulated
by a single activator. Transcription initiation is typically controlled
by a non-coding DNA sequence associated with the gene. In
prokaryotes and simple eukaryotes, this regulatory region is a short
DNA sequence located directly upstream of the coding sequence,
near or overlapping the promoter, sometimes called the “operator”.
Transcription factors (TFs) that regulate the gene bind to the
operator, either aiding in the recruitment of RNApolymerase (in the
case of activator TFs) or blocking it (in the case of repressor TFs),
thereby controlling transcription (Chen et al., 2021).

In higher eukaryotes, transcription initiation is more complex
(Fuda et al., 2009) and often occurs in two stages. Regulatory TFs
first bind to a non-coding region associated with the gene, known
as an enhancer (Spitz and Furlong, 2012), which can be located
at variable distances from the promoter, including far upstream,
downstream, or within introns. These enhancers influence the
recruitment of general TFs to the promoter, where transcription
is initiated. For simplicity, we will start our effort of modeling
gene regulation by modeling the binding of a single activator to a
single regulatory region. This region may be considered a functional
combination of both the promoter and an enhancer, abstracting
away the details of their interaction. Later in the paper, we will
extend this model to explore the case of interactions between one or
more enhancers and the gene promoter, capturing themore complex
regulatory dynamics of transcription.

In this simple model of gene activation, an activator TF, denoted
as X, binds to the regulatory region of a gene Y (Figure 1A). We
represent the unbound regulatory region asD0 and the region bound
to X as D1. Transcription factors bind and unbind the regulatory
region stochastically, with binding and unbinding rates denoted as
k1 and k−1, respectively (Figure 1A), described by the equation:

D0 +X
k1
⇌
k−1

D1 (1.1)

When the regulatory region is unbound (D0), transcription is
inactive, whereas when X is bound (D1), the gene Y is transcribed at
a rate kt, producing transcripts of Y, as described by the equation:

D1
kt→ D1 +Y (1.2)

Gene transcripts (or gene products more broadly) degrade at a
rate λ, as modeled by the equation:

Y
λ
→∅ (1.3)

For simplicity, we assume that no transcription occurs in the
absence of activator binding (i.e., no basal transcription).

The transcriptional activation of gene Y by TF X, described
by Equations 1.1–1.3, can be translated into differential
equations using the mass action law, as follows [For a
detailed explanation of this conversion process, refer to
Supplementary Text S1, Supplementary Figure S1, and Computer
Simulations 1 and 2 (Supplementary Text S2)].

dD1

dt
= k1(1−D1)X− k−1D1 (2.1)

dX
dt
= −

dD1

dt
(2.2)

dY
dt
= ktD1 − λY (2.3)

Here, D1 represents the fraction of DNA bound by X (with
D1 +D0 = 1). These three differential equations can be solved to
determine Y(t), the concentration of gene Y transcripts over
time (Supplementary Figure S2A; Computer Simulation S3 in
Supplementary Text S2). However, because TF binding to DNA
occurs on themillisecond timescale, while transcription proceeds on
the order of seconds (Lammers et al., 2020), we can apply the quasi-
steady-state assumption. This assumption implies that the steady-
state levels of X and D1 are established much more rapidly than
that of Y. Consequently, on the timescale at which Y varies, we can
reasonably assume that:

dD1

dt
= 0 (3)

By substituting Equation 3 into Equations 2.1–2.3, we reduce the
system to a single equation, which takes the form of the Michaelis-
Menten equation:

dY
dt
= kt

X
KX

1+ X
KX

− λY (4.1)

Here, KX is the dissociation constant of TF X, representing the rate
at which TF X detaches from DNA relative to its binding rate, and
serves as a measure of the binding strength of X to DNA (lower
values of KX indicate stronger binding):

KX =
k−1
k1

(4.2)

As demonstrated by Computer Simulations 3,
and 4 (Supplementary Text S2), the Michaelis-Menten
equation (Equation 4.1) yields results consistent with the
three original equations when k1,k−1 ≫ kt (compare
the solution of the full equations describing gene
activation, Equations 2.1−2.3, vs. Michaelis-Menten equation,
Equation 4.1; Supplementary Figures S2B, C, respectively). To
calculate the steady-state concentration of Y as a function of
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FIGURE 1
Modeling the regulation of a single gene. (A) Schematic representation of gene activation by a single activator transcription factor. The transcription
factor X binds to the unbound regulatory region (D0) of gene Y, transitioning it to the bound state (D1). Binding and unbinding occur at rates k1 and k-1,
respectively. Transcripts are degraded at rate λ. As an illustration, transcript degradation is shown here but will be omitted in subsequent schematics. (B)
Simulation of steady-state transcription levels as a function of activator concentration. The graph depicts the steady-state concentration of gene Y
transcripts (Yss) increasing monotonically with activator X concentration. Saturation is observed when the concentration of X surpasses the dissociation
constant (Kx), resulting in a maximum transcription rate of kt/λ. This simulation corresponds to Computer Simulation 5 (Supplementary Text S2). (C)
Schematic representation of gene repression by a single repressor transcription factor. Repressor X binds to the regulatory region of gene Y, inhibiting

(Continued)
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FIGURE 1 (Continued)
transcription. The unbound state D0 transitions to the bound state D1 upon binding of X, with rates k1 and kk-1 indicating binding and unbinding
dynamics, respectively. (D) Simulation of steady-state transcription levels as a function of repressor concentration. The graph depicts the
steady-state concentration of gene Y transcripts (Yss) decreasing as the concentration of repressor X increases. Maximum transcription occurs when
X is zero, diminishing progressively with higher X concentrations. This simulation corresponds to Computer Simulation 6 (Supplementary Text S2). (E)
Modeling cooperativity in gene activation. Schematic representation of the cooperative binding of two copies (n = 2) of activator X to the regulatory
region of gene Y. Both copies must bind simultaneously to activate transcription, representing extreme cooperativity. (F) Effect of cooperative
binding on gene activation (n = 2). The simulation demonstrates how cooperative binding of two activator molecules leads to a switch-like increase
in gene expression. The response curve shows a sharper transition compared to non-cooperative binding. This simulation corresponds to Computer
Simulation 7 with n = 2 (Supplementary Text S2). (G) Effect of cooperative binding on gene activation (n = 5). The simulation illustrates that with
higher cooperativity (n = 5), the gene's response to activator concentration becomes more digital, exhibiting an even sharper switch-like behavior.
This simulation corresponds to Computer Simulation 7 with n = 5 (Supplementary Text S2). Some elements of this figure was created by
BioRender.com.

changing X, we set the transcription rate dY
dt
= 0, yielding the

steady-state solution Yss:

Yss =
kt
λ

X
KX

1+ X
KX

(4.3)

This results in amonotonic increase in steady-state transcription
as the concentration of TF X increases, with saturation occurring at
a maximum transcription rate of kt

λ
as X exceeds the dissociation

constant KX (see Computer Simulation 5 (Supplementary Text S2),
and simulation results in Figure 1B).

The proposed model of gene activation significantly
oversimplifies the transcription process, particularly in eukaryotes,
by neglecting critical aspects such as chromatin remodeling,
nucleosome clearance, transcription pausing and release,
transcriptional bursting, and other important details (Fuda et al.,
2009; Lammers et al., 2020; Yokoshi and Fukaya, 2019; Adelman
and Lis, 2012; Gaertner and Zeitlinger, 2014; Green, 2005; Nechaev
and Adelman, 2011). Additionally, the quasi-steady-state (or
equilibrium) assumption, along with the simplification of TF
binding and unbinding as fast dynamics, overlooks how these
factors might influence the slower overall dynamics of transcription
(Fuda et al., 2009). While this model’s simplicity has made it useful
for gaining insights into gene regulation during development,
assuming that slow dynamic processes have no effect on gene
regulation may be misguided. As we will discuss in relation to
combinatorial gene regulation, slow dynamics can indeed impact
the overall transcriptional logic (Scholes et al., 2017).

2.1.1 Thermodynamic state ensemble (TSE)
modelling

As shown above, deriving the Michaelis-Menten relationship
from reaction equations can be quite tedious, particularly for
more complex scenarios involving multiple TFs binding to the
cis-regulatory region. A more streamlined approach for modeling
transcriptional regulation that produces comparable results is the
“Thermodynamic State Ensemble” (TSE) modeling (Bintu et al.,
2005a; Bintu et al., 2005b; Sherman and Cohen, 2012). In
this method, changes in transcript levels are influenced by the
transcription rate (Ty) and transcript degradation:

dY
dt
= Ty − λY (5.1)

The transcription rate, Ty, is expressed as the proportion
of TF, DNA, and RNA polymerase configurations conducive to

transcription relative to all possible configurations. Implicit in this
approach the assumption that all processes involved in transcription
are at equilibrium, and so it shares the quasi-steady state assumption
as our modeling of gene activation presented above. Below, we
outline how to use the TSE strategy to model gene regulation; for
a more in-depth and rigorous explanation, readers are referred to
the detailed exposition in (Sherman and Cohen, 2012).

As an example, we will use the TSE strategy to re-derive the
rate equation governing the binding of a single activator X to the
cis-regulatory region of gene Y. In this case, the denominator of
Ty accounts for two possible states: unbound DNA (represented
by 1) and DNA bound by X (represented by X

KX
, where KX is the

dissociation constant of X). The numerator includes only the states
conducive to transcription—DNA bound by X, represented by X

KX
.

The overall expression is then multiplied by the transcription rate kt,
which occurs once RNA polymerase binds to the DNA. This yields:

Ty = kt

X
KX

1+ X
KX

(5.2)

Substituting this into the differential equation for transcript
dynamics gives the familiar Michaelis-Menten expression for a
single activator (Equation 4.1):

dY
dt
= kt

X
KX

1+ X
KX

− λY (5.3)

Next, we apply the TSE strategy to model gene regulation by
a single repressor X (Figure 1C). In this case, the denominator
of Ty remains similar to the activation case, but the numerator
reflects only the state conducive to transcription—unbound
DNA, represented by 1 (i.e., transcription occurs in the absence
of repressor X). This yields the following equation for the
transcription rate:

dY
dt
= kt

1
1+ X

KX

− λY (6)

When plotting the steady-state value of Y as a function of X,
the transcription rate reaches a maximum at zero concentration of
the repressor X, then progressively decreases as X concentration
increases (see Computer Simulation 6 (Supplementary Text S2),
which results are depicted in Figure 1D).
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2.1.2 Modeling cooperativity
Often, multiple copies of the same TF are required to bind

cooperatively in order to effectively recruit RNA polymerases. In
this section, we will use the TSE approach to model the cooperative
binding of n copies of activator TF X for the activation of gene Y.
We will assume a case of extreme cooperativity, meaning that all n
copies of X must bind simultaneously to the regulatory region of Y,
whereas fewer than n copies are unable to bind.

In this scenario, the denominator of Ty represents all possible
binding events, which include unbound DNA and the binding
of n copies of X to the cis-regulatory elements. The numerator,
however, includes only the state conducive to gene activation, which
is the simultaneous binding of n copies of X to the regulatory
region of Y (see Figure 1E). This yields the rate equation:

Ty = kt
( X
KX
)
n

1+ ( X
KX
)
n (7.1)

This type of equation is commonly referred to as the
Hill equation.

Cooperativity introduces a nonlinear, switch-like behavior in
the gene’s response to activator binding. The higher the value of
n, the more pronounced this switch-like behavior becomes, with a
sharper transition from low to high input. As n increases further,
the gene’s response approaches digital behavior, as demonstrated by
comparing the cases of n = 2 and n = 5 in Figures 1F, G, respectively
(see Computer Simulation 7 (Supplementary Text S2)). The point
at which the gene switches from low to high output is determined
by the dissociation constant KX, which characterizes the binding
affinity of TF X (as shown in Equation 7.1).

Similarly, the Hill equation for the cooperative binding of n
repressors follows a comparable form:

Ty = kt
1

1+ ( X
KX
)
n (7.2)

In both cases, the cooperative binding of TFs leads to a sharp,
switch-like regulation of gene expression, reflecting the impact of
cooperativity on transcriptional control.

2.1.3 Modeling multiple TFs binding
cis-regulatory module

So far, we have considered the binding of one or multiple copies
of the same transcription factor (either activator or repressor) to the
regulatory region of a gene. In this section, we will extend this by
considering the binding of multiple different TFs. Specifically, we
will examine the binding of 2 TFs, A and B, to the regulatory region
of gene Y. This can be extended to cases involving a greater number
of different TFs with straightforward modifications.

The effect of binding multiple TFs depends on the logic that
governs their regulation of the gene, often referred to as the
“transcription logic” of the regulatory module. Below, we will
explore several common transcriptional logic models, though more
elaborate scenarios are certainly possible.

2.1.3.1 Two ORed activators
In this model, the binding of either A, B, or both

activates the gene (Figure 2A). Using the TSE approach, and

assuming there is no cooperative binding between A and B (i.e.,
the binding of A does not influence the binding of B and vice versa),
we obtain the following equation:

dY
dt
=

A
KA
+ B

KB
+ 2 A

KA

B
KB

1+ A
KA
+ B

KB
+ A

KA

B
KB

− λY =
A
KA

1+ A
KA

+
B
KB

1+ B
KB

− λY (8.1)

In cases where multiple copies of A and multiple copies of
B, each bind cooperatively (with cooperativity values nA and nB,
respectively), but without cooperative interactions between A and
B, we derive the following Hill equation

dY
dt
=
( A
KA
)
nA

1+ ( A
KA
)
nA
+
( B
KB
)
nB

1+ ( B
KB
)
nB
− λY (8.2)

As shown in Figure 2B, simulation result of this
relationship matches the OR logic as expected [see Computer
Simulation 8 (Supplementary Text S2)]. Moving forward, we will
focus on the binding of single copies of A and B, as the extension to
cooperative binding is straightforward.

2.1.3.2 Two competitive ORed activators
Here, we consider the case where both A and B are activators

that bind the same site on the regulatory region of gene Y, leading
to competitive binding (Figure 2C). In this case, the denominator
includes unbound DNA, DNA-bound A, and DNA-bound B.
However, the simultaneous binding of both A and B is excluded
because they compete for the same binding site and cannot bind at
the same time.The numerator includes the states where A or B binds
independently, resulting in the reaction equation:

dY
dt
=

A
KA
+ B

KB

1+ A
KA
+ B

KB

− λY (9)

As expected, simulation result of the Hill-function
extension of this relationship matches the competitive
OR logic as described above [Figure 2D; see Computer
Simulation 9 (Supplementary Text S2)].

2.1.3.3 Two ANDed activators
In this scenario, both A and B must bind simultaneously

to activate gene expression (Figure 2E). This logic results in the
following equation:

dY
dt
=

A
KA
· B
KB

1+ A
KA
+ B

KB
+ A

KA

B
KB

− λY =
A
KA

1+ A
KA

×
B
KB

1+ B
KB

− λY (10)

As expected, simulation result of the Hill-function extension of
this relationship matches the competitive AND logic [Figure 2F; see
Computer Simulation 10 (Supplementary Text S2)].

2.1.3.4 Two ANDed repressors
So far, we have considered activators, but the extension to

models involving both activators and repressors is straightforward.
As an example, we will examine the case of two ANDed repressors.
In this case, only unbound DNA allows for transcription, and the
transcription rate Ty is the product of the individual repression
effects of A and B:

dY
dt
= 1

1+ A
KA
+ B

KB
+ A

KA

B
KB

− λY = 1
1+ A

KA

× 1
1+ B

KB

− λY (11)
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FIGURE 2
Modeling multiple transcription factors binding to a cis-regulatory module. (A) Schematic of gene activation by two ORed activators. Transcription
factors A and B independently bind to the regulatory region of gene Y. The presence of either A or B is sufficient to activate transcription, illustrating an
OR logic gate. (B) Simulation of transcription levels with two ORed activators. The graph shows how the steady-state concentration of gene Y
transcripts varies with different concentrations of A and B, reflecting the OR logic. This simulation corresponds to Computer Simulation 8
(Supplementary Text S2). (C) Schematic of gene activation by two competitive ORed activators. Activators A and B compete for the same binding site
on gene Y’s regulatory region. Binding of either A or B activates transcription, but they cannot bind simultaneously due to competition. (D) Simulation
of transcription levels with competitive ORed activators. The graph illustrates how the competition between A and B affects gene Y’s expression, with
transcription levels depending on the relative concentrations of (A, B). This simulation corresponds to Computer Simulation 9 (Supplementary Text S2).
(E) Schematic of gene activation by two ANDed activators. Both transcription factors A and B must simultaneously bind to gene Y’s regulatory region to
initiate transcription, representing an AND logic gate. (F) Simulation of transcription levels with ANDed activators. This simulation corresponds to
Computer Simulation 10 (Supplementary Text S2). Some elements of this figure was created by BioRender.com.
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The transcriptional logics presented above represent relatively
simple cases. However, more complex scenarios could be modeled
within the TSE framework by incorporating cooperative binding
between different TFs (Kim et al., 2022). However, the modeling
approach presented here shares the same limitations as our earlier
approach using rate equations (Equations 1.1−1.3 and 2.1−2.3), as
it neglects many details of the transcription cycle in eukaryotes.
Additionally, TSEmodels assume that binding and unbinding events
are at equilibrium, similar to the quasi-steady state assumption
used in the rate equations (Equations 3 and 4.1−4.3). However, the
rate equation framework (Equations 1.1−1.3 and 2.1−2.3) is less
constrained by assumptions and can, in principle, accommodate
more transcriptional details. Employing rate equations to capture
these complexities has proven effective in providing insights into
gene regulation in eukaryotes, revealing a range of potential
mechanisms for achieving combinatorial transcriptional logic
beyond those typically assumed within TSE models (Scholes et al.,
2017). Nevertheless, for simplicity, we will continue with the TSE
modeling results in this study.

2.2 Modeling gene regulatory networks

So far, we have considered the regulation of single genes by
one or more TFs. During development, terminal and housekeeping
genes may be passively regulated by other transcription factors.
However, many TFs regulate other TFs, forming gene regulatory
networks (GRNs) (Figure 3A) (Levine and Davidson, 2005). In this
section, we will explore examples of GRNs that act within a single
cell and how to model them. Later, we will extend this to GRNs that
function across multiple cells within embryonic tissues.

2.2.1 Positive feedback loop
We begin by considering feedback loops involving two genes. If

activation is positive and repression is negative, a positive feedback
loop results when the product of all regulatory links’ signs is positive
(Alon, 2006; Alon, 2007; Longabaugh et al., 2005). Positive feedback
loops can function as toggle switches or memory devices—if one of
the genes is activated, it remains active.

A positive feedback loop can be realized as either two
genes activating each other (Equations 12.1, 12.2; Figure 3B)
or two genes repressing each other (Equations 13.1, 13.2;
Figure 3C). In a loop of two activators, both genes can be
either high (“on”) or low (“off”) (Figures 3B’, 3B”; see Computer
Simulation 11 (Supplementary Text S2)). In a loop of two
repressors, the GRN stabilizes in a state where one gene is
active and the other is repressed (Figures 3B’, 3C”; see Computer
Simulation 12 (Supplementary Text S2)). In these equations, KXY
denotes the dissociation constant of TF Y binding to the regulatory
region of gene X.

dX
dt
=
( Y
KXY
)
n

1+ ( Y
KXY
)
n − λX (12.1)

dY
dt
=
( X
KYX
)
n

1+ ( X
KYX
)
n − λY (12.2)

For a repression-based positive feedback loop, the
equations become:

dX
dt
= 1

1+ ( Y
KXY
)
n − λX (13.1)

dY
dt
= 1

1+ ( X
KYX
)
n − λY (13.2)

2.2.2 Negative feedback loop
A two-gene negative feedback loop (Figure 3D) can help

maintain homeostasis, ensuring that gene expression remains
stable around set values. For instance, the GRN modeled by
Equations 14.1, 14.2 maintains gene Y’s transcriptional activity
around the activation threshold for TF X binding to its regulatory
region (KYX), and geneX’s activity around the deactivation threshold
for TF Y binding to its regulatory region (KXY) (Figure 3D’; see
Computer Simulation 13 (Supplementary Text S2)).

dX
dt
= 1

1+ ( Y
KXY
)
n − λX (14.1)

dY
dt
=
( X
KYX
)
n

1+ ( X
KYX
)
n − λY (14.2)

2.2.3 Oscillatory GRNs
While two-gene negative feedback loops typically maintain

homeostasis, more complex three-gene negative feedback
loops can result in oscillations, depending on network
parameters. For example, a GRN with two activators and
one repressor (Figure 3E, E’; see Computer Simulation
14 (Supplementary Text S2)) can behave as an oscillator
(Equations 15.1–15.3). A GRN composed of three repressors,
also known as a repressilator (Elowitz and Leibler, 2000), can
also function as an oscillator [Figure 3F, F’; see Computer
Simulation 15 (Supplementary Text S1)].

dX
dt
= 1

1+ ( Z
KXZ
)
n − λX (15.1)

dY
dt
=
( X
KYX
)
n

1+ ( X
KYX
)
n − λY (15.2)

dZ
dt
=
( Y
KZY
)
n

1+ ( Y
KZY
)
n − λZ (15.3)

2.2.4 Developmentally inspired GRNs
So far, we have presented example GRNs with specific wiring

capable of executing various functions within the cell.The structures
we’ve discussed are not the only possible configurations, as
many different GRN architectures with varying parameter values
can accomplish the same function. However, GRNs involved in
development, particularly those involved in embryonic pattern
formation, have distinct characteristics. One notable feature is the
minimal reliance on activators; most TFs involved in embryonic
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FIGURE 3
Modeling gene regulatory networks (GRNs). (A) Schematic representation of a gene regulatory network (GRN). Multiple genes usually interact to
regulate each other’s expression, forming complex networks that mediate specific cellular functions. Shown is a positive feedback loop between two
genes as an example. (B) Positive feedback loop between two activator genes. Genes X and Y activate each other’s expression. This mutual activation
can lead to bistable states where both genes are either on or off. (B′, B″) Simulation of gene expression states in the positive feedback loop. The graph
shows stable states achieved in the system, with both genes being not expressed or highly expressed, depending on initial conditions. This simulation
corresponds to Computer Simulation 11 (Supplementary Text S2). (C) Positive feedback loop between two repressor genes. Genes X and Y repress each
other’s expression. This mutual repression results in a system where one gene is active while the other is repressed. (C′, C′′) Simulation of gene
expression states in the mutual repression loop. The graph demonstrates the system stabilizing with one gene active and the other inactive, based on
initial expression levels. This simulation corresponds to Computer Simulation 12 (Supplementary Text S2). (D) Negative feedback loop between an
activator and a repressor gene. Gene X activates gene Y, while gene Y represses gene X. This configuration promotes homeostasis, maintaining stable
gene expression levels. (D′) Simulation of gene expression in the negative feedback loop. The graph shows how the system maintains stable expression
levels of genes X and Y over time. This simulation corresponds to Computer Simulation 13 (Supplementary Text S2). (E) Oscillatory GRN with two
activators and one repressor. Gene X activates gene Y, gene Y activates gene Z, and gene Z represses gene X. This network can produce oscillations in
gene expression over time. (E′) Simulation of oscillatory behavior in the gene network. The graph displays cyclic fluctuations in the expression levels of
genes X, Y, and Z, characteristic of an oscillatory system. This simulation corresponds to Computer Simulation 14 (Supplementary Text S2). (F)
Repressilator network composed of three repressor genes. Genes X, Y, and Z repress one another in a cyclic manner, forming an oscillatory system
known as a repressilator. (F′) Simulation of oscillations in the repressilator network. The graph shows the periodic expression patterns of genes X, Y, and
Z over time. This simulation corresponds to Computer Simulation 15 (Supplementary Text S2). (G) Multi-stable GRN with mutually repressing genes.
Multiple genes repress each other strongly, leading to stable states where only one gene is expressed while the others are repressed. (G′) Simulation of

(Continued)
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FIGURE 3 (Continued)
gene expression states in the multi-stable network. The graph shows that depending on initial conditions, one gene remains active while others are
inactive. This simulation corresponds to Computer Simulation 16 (Supplementary Text S2). (H) Genetic cascade illustrating sequential gene
activation. Each gene in the cascade represses the previous gene and weakly represses the next one. Activation of the first gene triggers a domino
effect of gene expression. (H') Simulation of gene expression in the genetic cascade. The graph depicts the sequential activation and repression of
genes over time, following the cascade logic. This simulation corresponds to Computer Simulation 17 (Supplementary Text S2). (I) Oscillatory gene
network in which a series of genes repress each other in sequence without the last gene repressing the first, resulting in continuous oscillations of
gene expression. (I') Simulation of oscillations in the gene network. The graph shows the cyclic expression patterns of the genes over time. This
simulation corresponds to Computer Simulation 18 (Supplementary Text S2). Some elements of this figure was created by BioRender.com.

patterning are repressors, where activation is achieved through
the repression of a repressor, a process called de-repression
(Averbukh et al., 2018; Tufcea and François, 2015). For example,
most of the patterning genes involved in the patterning of the
Anterior-Posterior (AP) and Dorsoventral (DV) axes in the early
Drosophila embryo are transcriptional repressors (Clark et al., 2019;
Diaz-Cuadros et al., 2021; Moussian and Roth, 2005).

We will now explore some common GRN architectures that
perform specific tasks during embryonic pattern formation, relying
on repression and de-repression to mediate regulatory relationships
between genes. Another important feature of these GRNs is the
extensive cross-regulation between the genes, where oftentimes
all constituent genes repress each other. Despite this complexity,
variations in the strength of repression among the genes can produce
meaningful and distinct functions, as illustrated by the GRNs
discussed below.

2.2.4.1 Multi-stable GRNs
A multi-stable GRN (Tufcea and François, 2015) functions

similarly to the positive feedback loop or genetic toggle switch
discussed earlier. However, developmental GRNs typically consist
of more than two genes. The simplest extension of the toggle
switch to more than two genes is a multi-stable GRN, composed
of M mutually repressing genes. This repression is characterized
by small dissociation constants (θs), indicating strong repression
(Equation 16; Figure 3G). In this configuration, depending
on the initial conditions, one gene remains active while the
others are inactive [Figure 3G’; see Computer Simulation 16
(Supplementary Text S2)]. Other variations of this realization are
possible, where subsets of genes are co-expressed due to weakened
repressive links between them (Zhu et al., 2017).

dGm

dt
=

i≠m

∏
∀i

1

1+ (Gi
θs
)
n − λGm (16)

2.2.4.2 Genetic cascade
Another developmentally inspired GRN is the genetic cascade,

where a sequence of genes is activated one after another. A simple
realization of this cascade involves one gene activating the next,
which in turn represses the previous gene, and so on. In a GRN
based on de-repression logic (Averbukh et al., 2018; Zhu et al.,
2017; Jaeger et al., 2004), all genes are naturally active but kept
repressed by other genes in the cascade (with small dissociation
constants, θs, indicating strong repression; Equations 17.1, 17.2).The
only exception is that a gene weakly represses the gene preceding
it in the cascade (with larger dissociation constants, θw, indicating
weaker repression) (Figure 3H). When the cascade is initialized

by activating the first gene, a domino effect occurs where the
next gene represses the previous one, leading to the de-repression
of the subsequent gene, and so forth [Figure 3H’; see Computer
Simulation 17 (Supplementary Text S2)].

For m = 1:
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For m ≠ 1:
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= 1
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θw
)
n ×
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∏
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1

1+ (Gi
θs
)
n − λGm (17.2)

2.2.4.3 Oscillators
The basic logic of an oscillator, which is based on mutually

repressive links and de-repressive interactions, is similar to that
of a genetic cascade. However, in this case, the last gene in the
sequence does not repress the first gene, allowing the system
to cycle continuously (Equations 18.1, 18.2 [where N is the
total number of genes in the GRN); Figure 3I, I’; see Computer
Simulation 18 (Supplementary Text S2)].

For m = 1:

dG1

dt
=

i≠1,N

∏
∀i

1

1+ (Gi
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)
n − λG1 (18.1)

For m ≠ 1:

dGm

dt
= 1

1+ (Gm−1
θw
)
n ×

i≠m,m−1

∏
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1

1+ (Gi
θs
)
n − λGm (18.2)

In our modeling framework of GRNs presented above, the cis-
regulatory regions of constituent genes primarily encoded AND
and/or OR regulatory logics of activators and repressors. However,
developmental genes might exhibit more complex regulatory logic
(Kim et al., 2022; Setty et al., 2003;Mayo et al., 2006; Yuh et al., 1998),
with TFs acting as activators in some conditions and repressors in
others (Hanna-Rose et al., 1997; Zuo et al., 1991; Ilsley et al., 2013).
Given this complexity, one might question the value of the GRN
models presented here—as well as many GRN implementations
found in the literature—especially that their functionality often
relies heavily on parameters that are experimentally challenging
to determine. Some modeling approaches sidestep explicit GRN
interactions altogether, focusing instead on the overall dynamic
behavior of the network using simple equations to characterize
overall functionality, like homeostasis or oscillations (Jaeger and
Monk, 2014; Jutras-Dubé et al., 2020; Corson and Siggia, 2012),

Frontiers in Cell and Developmental Biology 10 frontiersin.org

https://doi.org/10.3389/fcell.2025.1522725
http://BioRender.com
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Garcia-Guillen and El-Sherif 10.3389/fcell.2025.1522725

an approach that is often called “geometric” modeling. While such
approaches have their merits, GRN modeling remains valuable
despite its unverified assumptions. Although the detailed wiring
may not be entirely accurate, the overall regulatory logic of a
GRN can capture essential system dynamics. For instance, as
discussed, developmental genetic cascades can follow different
overall regulatory logics—either a relay logic, where each gene
activates the next, or a logic that depends of de-repressions,
where downregulation of one gene releases the next gene within
the cascade. These two realizations may perform similarly under
normal conditions but differ in robustness and responses to genetic
perturbations (Averbukh et al., 2018). Pure dynamical modeling
cannot capture these differences, whereas traditional GRN models,
despite their limitations, offer insights into critical aspects of the
network’s regulatory logic.

2.3 Cellular differentiation of GRNs: space
enters the scene

So far, we have discussedGRNs that functionwithin a single cell.
In development, although cells within a tissue share the same genes
and GRNs (due to having the same genome), they are regulated
differently, allowing each cell to express a unique set of TFs and
follow distinct developmental trajectories. This manifests as gene
expression patterns across the tissue, where different subsets of cells
express different genes.

While such expression patterns could, in theory, take any
form, they usually adopt specific, stereotyped patterns. Two major
classes of patterns typically observed during early developmental
stages are periodic and non-periodic patterns (Figures 4A, A’;
shown for simplicity as a one-dimensional row of cells) (Negrete
and Oates, 2021; Diaz-Cuadros et al., 2021). Periodic patterns
mediate the division of tissue into serial structures, such as
demarcating the segmented structures along the AP axis in
arthropods and vertebrates. Non-periodic patterns, which are
more common, mediate the division of tissue into distinct cell
fates (regionalization). This differential expression of genes across
a tissue results from regulating the same GRN differently in
various cells (Figure 4B).

To regulate cells differently across a tissue, amorphogen gradient
is often employed (Briscoe and Small, 2015; Rogers and Schier, 2011;
Simsek and Özbudak, 2022). An organizer (usually positioned at
one extremity of the tissue to be patterned) secretes a ligand that
diffuses and forms a morphogen gradient (Figure 4C). Different
concentrations of the gradient set distinct developmental paths for
cells along the tissue. However, tissue elongation—whether due
to growth or convergent extension—often accompanies embryonic
patterning. In some cases, tissue elongation occurs after patterning
(Figure 4C’), while in others, it takes place concurrently with
patterning (Figure 4D).

Patterning a tissue during elongation is mechanistically distinct
from patterning a non-elongating tissue (or a tissue patterned
after elongation), as it often involves a dynamically retracting
morphogen gradient. As a result, cells are exposed to changing
concentrations of the morphogen over time (Figure 4D). In
summary, embryonic patterning can be categorized based on the
nature of the pattern (periodic vs non-periodic) and whether

the tissue is elongating or non-elongating (Diaz-Cuadros et al.,
2021). These developmental processes are explored further in the
Results section.

The mechanisms that drive morphogen gradient formation
range from passive diffusion to highly regulated ligand transport
across a tissue, which are covered extensively in other reviews
(Rogers and Schier, 2011; Zhu et al., 2020; Bollenbach et al., 2008;
Stapornwongkul and Vincent, 2021; Lord et al., 2021) and are
beyond the scope of this study. Here, we use a simplified formulation
for the gradient, independent of themechanism that generates it. For
the case of a non-retracting gradient in a non-elongating tissue, we
use the following sigmoid function, where x0 specifies the inflection
point of the gradient, and k denotes the gradient slope:

M(x) = 1
1+ e−k(x−x0)

(19.1)

For the case of a retracting gradient, we employ the following
moving sigmoid function, where v is the velocity of gradient
retraction:

M(x, t) = 1
1+ e−k[x−(x0(0)−vt)]

(19.2)

3 Results

In this section, we will discuss two of the most prominent
models of embryonic pattern formation: the French Flag model
(Wolpert, 1969; Green and Sharpe, 2015) and the Temporal
Patterning (or Speed Regulation) model (Diaz-Cuadros et al.,
2021; Zhu et al., 2017; Boos et al., 2018; Rudolf et al., 2020; El-
Sherif et al., 2012; El-Sherif et al., 2014; Ebisuya and Briscoe,
2018; Dessaud et al., 2007). These models are phenomenological
in nature, focusing on descriptive aspects and leaving out the
molecular details of their genetic or molecular realization.
We will explore four variations of each model, addressing the
four common scenarios of embryonic patterning (Negrete and
Oates, 2021): a non-periodic pattern in a non-elongating tissue
(Wolpert, 1969), a non-periodic pattern in an elongating tissue
(Green and Sharpe, 2015), a periodic pattern in a non-elongating
tissue, and (Müller and El-Sherif, 2020) a periodic pattern in an
elongating tissue.

Following this, we will apply the gene regulation models
previously discussed to investigate different molecular and genetic
realizations of these two phenomenological models of embryonic
pattern formation. Although the reaction-diffusionmodel is another
significant framework for understanding pattern formation, little is
known about its regulation at the molecular level, and it will not be
covered in this study.

3.1 The french flag model

The core mechanism of the French Flag model (Wolpert,
1969; Green and Sharpe, 2015; Diaz-Cuadros et al., 2021) is
that different concentrations of a morphogen gradient activate
different genes or cellular states (Figure 5A). This mechanism is
ideal for mediating non-periodic patterns in non-elongating tissue
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FIGURE 4
Introduction of spatial patterns in gene regulatory networks. (A, A′) Illustration of non-periodic and periodic patterns in a tissue. The schematic shows a
linear arrangement of cells exhibiting non-periodic (distinct regions) and periodic (repeating units) gene expression patterns. (B) Conceptual
representation of cells within a tissue sharing the same GRN but being regulated differently. Different regulatory inputs lead to distinct expression
patterns despite identical GRNs in each cell. (C) Formation of a morphogen gradient by an organizer. An organizer at one end of the tissue secretes a
ligand that diffuses to form a gradient, providing positional information to cells. (C′) Patterning followed by tissue elongation. The diagram illustrates
how a tissue is patterned by a morphogen gradient before undergoing elongation, resulting in the expansion of patterned regions. (D) Concurrent
tissue elongation and patterning with a retracting gradient. A moving morphogen gradient, exposing cells to changing morphogen concentrations over
time, patterns the tissue as it elongates. Some elements of this figure was created by BioRender.com.

(Figure 5A, left panel), where certain ranges of the morphogen
gradient activate specific genes. However, a more challenging
scenario arises when applying the French Flag model to pattern
an elongating tissue during elongation, as the model assumes a
stable gradient to set precise boundaries between gene expression
domains. To address this, a retracting gradient (M’; black in
Figure 5A, right panel; Equation 20.1) activates a gene (M; grey
in Figure 5A, right panel; Equation 20.2) with a slow decay rate
(ideally λ = 0), forming a stable long-range morphogen gradient
(grey in Figure 5A) from a retracting short-range gradient (black
in Figure 5A). This stable gradient then mediates the division
of the tissue into distinct gene expression domains. Extending
the French Flag model to periodic patterns (Figure 5B) is
conceptually straightforward: alternating ranges of morphogen
gradient concentrations turn a gene on and off. However,

achieving this at the molecular level is more complex as will be
discussed later.

M′ = 1
1+ e−k[x−(x0(0)−vt)]

(20.1)

dM
dt
= M′

1+M′
(20.2)

It is important to note that the French Flag model is a purely
phenomenological, descriptive model and does not specify how
it is realized at the molecular or genetic level. Here, we will
explore potential molecular and GRN realizations of this model.
Despite the simplicity of the French Flag model, realizing it at the
GRN level is challenging, as some genes must be both activated
and repressed by the same morphogen gradient. For instance, in
Figure 5A, the red gene is activated by moderately high levels
of the morphogen gradient (grey) but repressed at very high
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FIGURE 5
The French Flag Model and its gene regulatory network realizations. (A) French Flag model for non-periodic patterning. Left panel: A stable morphogen
gradient divides the tissue into distinct gene expression domains (blue, red, green). Right panel: In an elongating tissue, a retracting gradient (black)
induces a stable gradient with slow decay (gray) to pattern the tissue. (B) French Flag model applied to periodic patterning. Alternating concentrations
of a morphogen gradient lead to the activation and repression of genes, creating repeating patterns across the tissue. (C) A GRN realization of the
French Flag, where patterning genes (shown G1-G4) are activated or repressed by different thresholds of the morphogen gradient M (gray), resulting in
specific expression domains. (C′) Simulation of GRN realization shown in (C). This simulation corresponds to Computer Simulation 19
(Supplementary Text S2). (D) Gene expression boundaries defined by two morphogen gradients. Gradients M1 (dark gray) and M2 (light gray) overlap to

(Continued)
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FIGURE 5 (Continued)

establish precise expression domains for genes G1 (blue) and G2 (red). (D') Simulation of GRN realization shown in (D). This simulation corresponds
to Computer Simulation 20 (Supplementary Text S2). (E) GRN configuration involving cross-regulatory interactions (nested feedforward loops). The
morphogen gradient M activates genes G1, G2, and G3 at different thresholds, while cross-repressions between them refine their expression
domains. (E') Simulation of GRN realization shown in (E). This simulation corresponds to Computer Simulation 21 (Supplementary Text S2). (F) The
periodic expression of the gene evein Drosophilais the result of the additive effect of multiple stripe-specific enhancers, each mediating one or two
stripes. The logic of each enhancer is mediated by the multiplicative effect of several TF factors. Shown is the regulatory logic of enhancer 3 + 7
(mediating the expression of eve stripes 3 and 7), and enhancer 4 + 6 (mediating the expression of eve stripes 4 and 6). Both enhancers mediate the
formation of stripes by integrating inputs from gap gene morphogens (mainly hb and kni). (G) A closer look at the regulatory logic of the eve 3 + 7
and 4 + 6 enhancers in Drosophilagiven the gene expression patterns of gap genes hband kni. Harboring strong binding sites (thick line) for
kni(green) but weak bind sites (thin line) for hb(blue), enhancer 3 + 7 place stripes 3 and 7 away from kniexpression and close to abutting
hbexpressions. Harboring weak binding sites for knibut strong bind sites for hb, enhancer 4 + 6 place stripes 4 and 6 closer to central kniexpression
and away from abutting hbexpressions. (H) Additive effect of separate enhancers on gene expression. Gene G is expressed in two domains, each
regulated by a distinct enhancer (E1 and E2). The overall expression pattern is the sum of both enhancer activities. The same basic principle can be
extended to form periodic pattern of arbitrary repetitions. (H') Simulation of GRN realization shown in (H). This simulation corresponds to Computer
Simulation 22 (Supplementary Text S2). Some elements of this figure was created by BioRender.com.

concentrations. This implies that the red gene responds to two
different thresholds, T1 and T2, of the same morphogen gradient.
None of the transcriptionmodels discussed so far can accommodate
this feature for a single gene. While this phenomenon has been
experimentally observed (Zuo et al., 1991), it has not yet been
fully mechanistically elucidated. For now, we will limit ourselves to
simpler models where each gene responds to a single threshold of
the morphogen.

We will start by reviewing potential GRN realizations of
the French Flag model through a basic gene expression pattern
where genes are expressed in bands extending to the tissue ends
(Figures 5C, C’). This simple pattern can be realized by adjusting
the activation and repression thresholds of patterning genes. For
example, in Figure 5C, the blue gene (G1) is strongly activated by
the morphogen gradient [M, grey in Figures 5C, C’; see Computer
Simulation 19 (Supplementary Text S2)], extending its expression
towards the lower end of the gradient. The red gene (G2), on
the other hand, is weakly activated by M. This can be achieved
by setting G1 to have a low activation threshold (low KG1M,
indicating strong binding sites for M at G1’s Cis-Regulatory Module
(CRM)) and G2 to have a high activation threshold (high KG2M,
indicating weaker binding sites for M at G2’s CRM). The expression
domains of the green and orange genes (G3 and G4, respectively)
are formed by having them repressed by M—strongly in the
case of G3 (low KG3M) and weakly in the case of G4 (high
KG4M) (Equation 22).

dGi

dt
|
i=1,2
=
( M
KGiM
)
n

1+ ( M
KGiM
)
n − λGi,

dGi

dt
|
i=3,4
= 1

1+ ( M
KGiM
)
n − λGi (22)

To create gene expression domains that do not extend to the
boundaries of the morphogen gradient, two morphogen gradients
can be employed. An example of this is shown in Figure 5D, D’
[see Computer Simulation 20; (Supplementary Text S2)], where
two gradients (M1 and M2, represented by light and dark grey,
respectively) together define the boundaries of the blue and red
genes (G1 and G2). In this scenario, G1 is strongly repressed by
M1 but weakly repressed by M2 (i.e., small KG1M1 and large KG1M2),
while G2 is weakly repressed by M1 and strongly repressed by M2
(i.e., largeKG2M1 and smallKG2M2) (Equation 23).This approach can
be easily generalized to multiple genes by adjusting the repression

thresholds of the two gradients for each gene.
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= 1
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KGiM1
)
n ·

1

1+ ( M2
KGiM2
)
n − λGi (23)

To generate multiple gene expression domains from a single
morphogen gradient, cross-regulatory interactions between
genes are required. The specific GRN wiring can vary, but
one straightforward realization is shown in Figure 5E. In this
configuration, the morphogen gradient M activates patterning
genes (G1, G2, and G3) at different thresholds. Without cross-
regulatory interactions, this would result in broad expression
domains, extending from the high concentration of M to the
respective activation thresholds. Repression from other genes is
needed to refine these domains. For instance, G1 is repressed by
both G2 and G3, restricting its expression to the lower end of
the gradient (see Computer Simulation 21 and its simulation in
Figure 5E, E’; Equations 24.1–24.3; Note that the circuit depicted
in Figure 5E is for a 3 genes realization of this regulatory scheme,
whereas Simulation 21; Figure 5E’ are for a 5-genes realization)

dGi

dt
=
( M
KGiM
)
n

1+ ( M
KGiM
)
n ·

1

1+ (Gi+1
θw
)
n ·

N

∏
j=i+2

1

1+ (
Gj

θs
)
n − λGi (24.1)

For i = N− 1:

dGi

dt
=
( M
KGiM
)
n

1+ ( M
KGiM
)
n ·

1

1+ (Gi+1
θw
)
n − λGi (24.2)

For i = N:

dGi

dt
=
( M
KGiM
)
n

1+ ( M
KGiM
)
n − λGi (24.3)

This GRN configuration can be seen as a nested feedforward
loop motifs (Mangan and Alon, 2003), where the morphogen
gradient regulates each gene via two parallel paths: one direct,
and one indirect through an intermediate gene. Such configuration
was shown to be effective in generating single or multiple
gene expression domains (Ishihara et al., 2005). Other GRN
configurations are also possible. For instance, in the AC-DC GRN
motif (Balaskas et al., 2012; Perez-Carrasco et al., 2018; Panovska-
Griffiths et al., 2013), the morphogen gradient thresholds emerge
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from cross-regulation between genes, rather than being dictated by
the gradient itself.

So far, we have discussed the formation of non-periodic patterns,
noting that their GRN realization is more challenging than the
simplicity of the phenomenological French Flag model suggests.
This difficulty primarily stems from the challenge of making a single
gene respond to two different thresholds of the same morphogen
gradient, whichwe addressed using either twomorphogen gradients
or cross-regulatory interactions. Applying the French Flag model
to periodic patterns is even more complex, as genes must respond
to multiple thresholds, with the morphogen gradient alternately
activating and repressing the same gene. One solution is similar
to the non-periodic case: decomposing the periodic pattern into
several non-periodic patterns, each mediated separately by two
morphogen gradients. The final periodic pattern is the sum of all
sub-patterns.

This method of generating periodic patterns has been
extensively studied in the context of AP patterning in the early
Drosophila embryo (Figures 5F, G), providing insights into the
organization of cis-regulatory modules during development
(Schroeder et al., 2011). A notable example is the expression of the
even-skipped (eve) gene, which forms seven distinct stripes in the
early Drosophila embryo (Schroeder et al., 2011; Goto et al., 1989).
Rather than arising from a periodic process like an oscillator or
reaction-diffusion mechanism (Landge et al., 2020; Meinhardt et al.,
1991), this pattern results from decomposing the periodic pattern
into several non-periodic sub-patterns, each composed of a single
stripe or pair of stripes (Clark et al., 2019; Diaz-Cuadros et al., 2021;
Akam, 1989; Lynch et al., 2012). Each sub-pattern is mediated by
a dedicated enhancer, and the final expression of eve is the sum
of all enhancer activities. The regulatory logic of each enhancer is
primarily determined by the multiplicative (AND) interactions
of repressing TFs known as gap genes, which form (localized)
morphogen gradients in the early Drosophila embryo. Figures 5F, G
illustrates the regulatory logic of two enhancers (Clyde et al., 2003):
the 3 + 7 enhancer (whichmediates the formation of the 3rd and 7th
stripes) and the 4 + 6 enhancer (whichmediates the formation of the
4th and 6th stripes). The positioning of these stripes is determined
by the binding strengths of the gap genemorphogens hunchback (hb)
and knirps (kni) to the 3 + 7 and 4 + 6 enhancers along the AP axis.

This example, along with others, demonstrates that an additive
OR logic is mediated by using separate enhancers spaced far enough
to avoid interference between their activities, while multiplicative
AND logic is mediated by placing TF binding sites close to each
other within the same enhancer.

A simple example of modeling this mechanism is shown
in Figure 5H, H’, where gene G is expressed in two domains,
each mediated by the additive effects of two separate enhancers:
Enhancer 1 (E1) and Enhancer 2 (E2). E1 is strongly repressed by
morphogen 1 (M1) and weakly repressed by morphogen 2 (M2),
while E2 is weakly repressed by M1 and strongly repressed by
M2 (see Computer Simulation 22 and its simulation in Figure 5H’;
Equations 25.1, 25.2).

Ei =
( M1
KEiM1
)
n

1+ ( M1
KEiM1
)
n ·
( M2
KEiM2
)
n

1+ ( M2
KEiM2
)
n − λGi (25.1)

G = E1 +E2 − λG (25.2)

In the GRN realizations of the French Flag model presented
above, we considered only the case of non-elongating tissues.
The extension to the case to elongating tissues, where both M
and M′ gradients are used (right panels in Figures 5A, B) is
straight forward (Boos et al., 2018).

3.2 Temporal patterning or the speed
regulation model

In temporal patterning, a temporal sequence is translated into
a spatial pattern rather than directly mediating a spatial pattern
(Diaz-Cuadros et al., 2021; Durston et al., 2012; Palmeirim et al.,
1997). This mode of patterning, although less intuitive, is a standard
mechanismduring neurogenesis (Kohwi andDoe, 2013;Naidu et al.,
2020; Filippopoulou andKonstantinides, 2024) inmany animals and
at various stages of development. Recent studies have shown it is
involved in many other tissues as well, such as segmentation and
regionalization of the AP axis in short-germ insects (El-Sherif et al.,
2012; Sarrazin et al., 2012) and vertebrates (Palmeirim et al., 1997;
Oates et al., 2012; Pourquié, 2003), ventral neural tube patterning
(Dessaud et al., 2007), and limb bud development (McQueen and
Towers, 2020; Roensch et al., 2013). This raises the possibility that
temporal patterning may be the default mechanism for embryonic
pattern formation. While the reason for this preference is not
fully understood, it has been suggested that this mechanism may
offer greater robustness compared to alternatives, such as the
French Flag model (Jutras-Dubé et al., 2020; El-Sherif et al., 2014;
Balaskas et al., 2012). It has also been hypothesized that since
animals evolved from single-celled organisms, many evolutionarily
conserved GRNs are temporal in nature, and multicellularity may
have evolved by translating these conserved temporal patterns into
spatial ones (Filippopoulou and Konstantinides, 2024).

The Speed Regulation (SR) model (Zhu et al., 2017) was recently
proposed as a unifying mechanism for various types of temporal
patterning observed in different tissues. The SR model synthesizes
several patterning schemes that all share the core feature of a
morphogen gradient modulating the speed of a temporal sequence,
whether periodic or non-periodic. In the non-periodic version of the
SR model, each cell within a tissue progresses through successive
states (depicted in different colors in Figure 6A), with each state
defined by the expression of one or more genes. The speed of
transitions between these states is controlled by a molecular factor
(referred to as the “speed regulator,” shown in grey at the top
of Figure 6A). At very low or zero concentrations of the speed
regulator, the transitions slow down to the point where the states are
indefinitely stabilized. When a group of cells experiences a gradient
of the speed regulator (Figure 6A’; left panel: ‘for non-elongating
tissues’), all cells transition through successive states, but at
progressively slower speeds as they encounter lower concentrations
of the gradient.This creates the illusion of cellular states propagating
as waves from high to low gradient concentrations. These waves,
known as “kinematic” or “pseudo-waves,” do not rely on diffusion or
cell-to-cell communication (BECK andVÁRADI, 1972; Rohde et al.,
2024). We refer to this version of the model as “gradient-based
speed regulation,” which is particularly suited for patterning non-
elongating tissues (Figure 6A’, left). The model can also pattern
elongating tissues if the gradient retracts as a wavefront, a process
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we call “wavefront-based speed regulation” (Figure 6A’, right). The
SR model can also generate periodic structures if the sequential
gene activation process is driven by a biological clock instead of a
sequential transition of states (Diaz-Cuadros et al., 2021). Notably,
in the wavefront-based version of SR, if the wavefront is in the form
of a tapered gradient (a superposition of the gradient-based and
wavefront-based SR models), kinematic waves will propagate from
high to low concentrations of the gradient, in the opposite direction
of wavefront retraction, as the tissue elongates.

Like the French Flag (FF) model, the SR model is
phenomenological and does not propose a molecular mechanism
or GRN realization that can transform temporal sequences (or
oscillations) into patterns. A straightforward realization of the
model is for amorphogen gradient (the speed regulator) tomodulate
the overall transcription rate, including gene product decay rates
(Boos et al., 2018) (Figure 6B) M2 [see Computer Simulation 23
(Supplementary Text S2)] and its simulation in Figure 6B’; Note
that the circuit depicted in Figure 6B is for a 3 genes realization of
this regulatory scheme, whereas Simulation 23 and Figure 5B’ are
for a 5-genes realization).

For j = 1:

Gj =
M

1+M
×(

J

∏
i=2

1

1+ (Gi
θs
)
n − λGj) (26.1)

For j ≠ 1:

Gj =
M

1+M
×( 1

1+ (Gm−1
θw
)
n

J

∏
i=1,i≠j,j−1

1

1+ (Gi
θs
)
n − λGj) (26.2)

While this approach works well, it requires that the decay
rates of all gene products involved in patterning be regulated
by the morphogen gradient in proportion to the regulation of
their transcription. Achieving this at the molecular level may be
unfeasible.

An alternative mechanism, recently proposed to modulate
the timing of GRNs, is the Enhancer Switching Model (Diaz-
Cuadros et al., 2021; Zhu et al., 2017; Mau et al., 2023). This
model posits that each patterning gene is simultaneously wired into
two GRNs (Figure 6C): (i) a dynamic GRN that drives periodic
or sequential gene activities, and (ii) a static GRN that stabilizes
gene expression patterns. The concentration of the speed regulator
(shown in grey in Figure 6C) activates the dynamic GRN while
repressing the static GRN, thus balancing the contribution of
each GRN to the overall dynamics and consequently regulating
the speed of gene expression. At high concentrations of the
speed regulator, the dynamic GRN is dominant, facilitating rapid
oscillations or sequential gene activities. At low concentrations,
the static GRN dominates, resulting in slower oscillations or
sequential gene activities. Each gene is connected to these two
GRNs through two enhancers: (i) a dynamic enhancer that encodes
the wiring of the gene within the dynamic GRN, and (ii) a static
enhancer that encodes the wiring of the gene within the static
GRN (Figure 1D) (Equations 27.1–27.4; see Computer Simulation
24 (Supplementary Text S2) and its simulation in Figure 6C’; Note
that the circuit depicted in Figure 6C is for a 3 genes realization of
this regulatory scheme, whereas Simulation 24 and Figure 5C’’ are

for a 5-genes realization).

Gj = ktdEdj + ktsEsj − λGj (27.1)

For the dynamic enhancer, Edj:
For j = 1:

Edj =
M

1+M
×

i≠1

∏
∀i

1

1+ (Gi
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)
n (27.2)

For j ≠ 1:
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For the static enhancer, Esj:

Esj =
1

1+M
×

J

∏
i=1,i≠j

1

1+ (Gi
θs
)
n (27.4)

The Enhancer Switching model has been proposed as
the molecular mechanism underlying AP patterning in the
intermediate-germ insect Tribolium castaneum, with partial
experimental support (Boos et al., 2018; Mau et al., 2023). This
model also aligns with recent findings on AP patterning in
Drosophila (El-Sherif and Levine, 2016; Clark and Akam, 2016;
Koromila et al., 2020; Soluri et al., 2020). However, further rigorous
validation is needed to confirm its broader applicability.

It is worth noting here that timing control observed in the
enhancer switching model arises from its influence at the GRN
level rather than at the molecular DNA binding timescale. This
occurs because the staticmodule, amulti-stable network, introduces
attractor points in the phase space of the dynamic module, which
governs cyclical or sequential expression. The relative strength
between the dynamic and static modules, determined by the
speed regulator, dictates the extent to which cyclical or sequential
attractors are influenced by fixed-point attractors, effectively slowing
down their progression (Jutras-Dubé et al., 2020).

Many of the presented models exhibit robustness to variations
in key parameters. For example, the Enhancer Switching
model continues to produce largely accurate gene expression
patterns despite one or more fold changes in the DNA binding
dissociation constants (θs) of strong repressors within the Enhancer
Switching GRN, modifications in gene product decay rates (λ), or
variations in the relative strength of static and dynamic modules
(kts/ktd) (Supplementary Figure S3).

3.3 Case study: impact of enhancer
integration mechanisms on embryonic
patterning

So far, we have discussed various embryonic pattern formation
mechanisms using basic models of transcription. To that end, we
employed simple toy models at each level of the modeling process.
One of the main advantages of this approach is that it allows
us to examine the effect of fundamental transcriptional and gene
regulatory mechanisms on the overall performance of embryonic
patterning systems. In this section, wewill explore a specific example
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FIGURE 6
Temporal Patterning or the Speed Regulation Model. (A) Schematic of the temporal sequence of cellular states in temporal patterning. Cells progress
through successive states (depicted in different colors), with transitions regulated by a speed regulator (gray). (A′) Gradient-based and wavefront-based
speed regulation in tissue patterning. Left: In a non-elongating tissue, a morphogen gradient modulates the speed of transitions between cellular
states, resulting in the induction of non-periodic waves that eventually stabilize into a non-periodic pattern. Right: In an elongating tissue, a retracting
wavefront regulates the speed of state transitions, resulting in the formation of a non-periodic pattern. (B) Realization of the Speed Regulation model
by modulating transcription and decay rates. The morphogen gradient jointly affects the overall transcription and gene product degradation rates to
control the timing of gene expression. (B′) Simulation of the GRN realization in (B). This simulation corresponds to Computer Simulation 23
(Supplementary Text S2). (C) Enhancer switching model as a GRN realization of the Speed Regulation model. Each patterning gene is regulated by the
additive sum of a dynamic GRN (driving sequential activities) and a static GRN (stabilizing expression) through two separate enhancers. The speed
regulator modulates the balance between these GRNs. (C′) Simulation of the GRN realization in (C). This simulation corresponds to Computer
Simulation 24 (Supplementary Text S2). Some elements of this figure was created by BioRender.com.
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to demonstrate this.Wewill examine how the integration ofmultiple
enhancer activities influences the performance of the Enhancer
Switching model.

In our modeling of the enhancer switching mechanism
(Figure 6C; Equations 27.1–27.4), we used a weighted sum of the
two enhancer activities (Equation 27.1). The physical interpretation
of this relationship is that each enhancer can transcribe the gene
independently (Figure 7A). In other models of enhancer function,
however, enhancers compete for binding to the promoter, and
the enhancer that wins the competition sets the transcriptional
state of the promoter (Equation 28; Figure 7B) (Bothma et al.,
2015). In the first scenario (Figure 7A; Equation 27.1), each
enhancer determines its own final transcriptional rate (denoted
as ktd and kts in Equation 27.1), whereas in the second scenario,
the normalized activities of competing enhancers set the
transcriptional state of the promoter, but the maximum final
transcriptional rate (denoted as kt in Equation 28) is set by the
promoter itself (Figure 7B).

Gj = kt(
kedEdj + kesEsj

1+ kedEdj + kesEsj
)− λGj (28)

The normalization effect of the enhancer competition scenario
may be a crucial mechanism for integrating enhancer activities.
The overall transcription level of a gene is a key parameter in
any GRN, as the activation thresholds of genes within a GRN
depend on the average transcription rates of the genes regulating
them. Enhancers are rapidly evolving genetic elements and are the
primary drivers of novelty in animal evolution. However, this also
introduces a risk, as allowing a newly evolved enhancer to take
control of a key transcriptional parameter, such as the overall average
transcription rate, could disrupt normal function. Alternatively, in
the enhancer competitionmodel, enhancers first compete to activate
the promoter, with the promoter acting as the final arbiter for the
transcription rate.

To investigate this further, we simulated our enhancer
switching model for both the additive case [Figures 7A, A’;
see Computer Simulation 25 (Supplementary Text S2)] and
the enhancer competition case [Figures 7B, B’; see Computer
Simulation 26 (Supplementary Text S2)]. Both scenarios resulted
in comparable performance (Figure 7A’, B’). We then examined
the effect of an overactive enhancer (Figure 7A”, B”). In the
additive case, the overactive enhancer disrupted the overall
function of the GRN (Figure 7A”), whereas in the enhancer
competition case, the normalization effect mitigated the impact
of the overactive enhancer, preserving the overall performance
of the GRN (Figure 7B”).

4 Discussion

In this paper, we developed a comprehensive framework
to model the emergence of embryonic patterning, linking
molecular gene regulation to tissue-level organization. We began
by modeling transcription at the single-gene level using basic
chemical reaction models and extended this to model GRNs
that govern specific cellular functions. We then introduced
phenomenological models of embryonic pattern formation,
such as the French Flag model and Speed Regulation models,

integrating these with molecular and GRN realizations. To
facilitate understanding and application of our models, we
accompanied our mathematical framework with computer
simulations, providing intuitive and simple code for each model.
Through our case study on enhancer integration, we demonstrated
that a two-step gene regulation strategy—enhancer activation
followed by competitive integration at the promoter—ensures
robustness and evolvability in gene expression patterns,
emphasizing the adaptability of eukaryotic transcriptional
regulation.

Modeling gene regulation during embryonic development has
traditionally followed two distinct strategies. The first involves using
finely tuned GRN models to fit large datasets, which we refer
to as the “simulation approach” (Jaeger et al., 2004; Verd et al.,
2018; Manu et al., 2009). The second relies on simplified, abstract
models that capture the overall behavior of the observed data, which
we call the “toy model approach” (Alon, 2006; Zhu et al., 2017;
Balaskas et al., 2012; François et al., 2007; François and Siggia,
2010). In our view, the simulation approach is only appropriate
when detailed biochemical data are available, which is often not
the case. By contrast, while the toy model approach is inherently
oversimplified, it offers the advantage of conceptual clarity. However,
both approaches share a significant limitation in modeling gene
regulation during development: they rely on gene regulatory models
that are largely inspired by bacterial systems. These models may
not accurately reflect the complexity of eukaryotic transcriptional
machinery, particularly in animals. In this paper, we adopted the toy
model approach, acknowledging its inherent limitations. However,
our aim was to explicitly articulate the various assumptions made
when modeling gene regulation, from the molecular scale to the
tissue level. This transparency allows for critical examination of
these assumptions. The simplicity and low computational cost of
the toy model approach—unlike the simulation approach, which
requires extensive data collection and optimization—facilitates
this exploration. Moreover, we provided accompanying computer
simulations with intuitive and simple code, making our models
accessible and facilitating their use as educational tools or starting
points for further research. In fact, we present our model not as
a definitive framework, but as a basis for questioning and refining
the assumptions at each step. Our hope is that future work by
our group and others will further challenge and improve upon
these ideas.

One specific aspect of gene regulation we examine in this paper,
which relates to the complex transcriptional machinery of animals,
is the impact of multiple enhancer integration on the performance
of GRNs during development—an aspect largely overlooked in
previous modeling efforts. This represents a small departure from
the bacteria-inspired models traditionally used in gene regulation
studies, moving instead toward the more intricate transcriptional
mechanisms found in animals, particularly during development.
However, this is neither the only nor the most critical aspect to
reconsider in efforts to model gene regulation more realistically. A
widely used assumption, which we also adopted in our modeling,
is the simplistic regulatory logic of individual genes within the
GRN, typically modeled with basic OR and/or AND relationships.
Under this assumption, the complexity of GRN performance stems
from the network’s structure rather than from the computational
capabilities of individual genes. Yet, it has been observed that single
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FIGURE 7
Case study: Impact of enhancer integration mechanisms on embryonic patterning. (A) Additive enhancer integration model. Multiple enhancers
independently contribute to the transcription rate of a gene. The total transcription is the weighted sum of the individual enhancer activities. (A′)
Simulation of gene expression with additive enhancer integration under normal conditions. The performance of the enhancer switching model is
shown, demonstrating effective temporal patterning. This simulation corresponds to Computer Simulation 25 (Supplementary Text S2) with mut_flag =
0 (wild-type). (A″) Impact of an overactive enhancer in the additive model. The simulation illustrates how an overactive enhancer disrupts gene
expression, leading to aberrant patterning and loss of GRN function. This simulation corresponds to Computer Simulation 25 (Supplementary Text S2)
with mut_flag = 1 (overactive dynamic enhancer of Gene 3). (B) Enhancer competition integration model. Enhancers compete for binding to the
promoter of a gene. The promoter’s transcriptional state is determined by the enhancer that successfully binds, normalizing the transcriptional output.
(B′) Simulation of gene expression with enhancer competition integration under normal conditions. The model shows comparable performance to the
additive case, maintaining proper temporal patterning. This simulation corresponds to Computer Simulation 26 (Supplementary Text S2) with mut_flag
= 0 (wild-type). (B″) Mitigation of overactive enhancer effects in the competition model. The simulation demonstrates that the competitive mechanism
normalizes transcription levels, preserving GRN function despite the presence of an overactive enhancer. This simulation corresponds to Computer
Simulation 26 (Supplementary Text S2) with mut_flag = 1 (overactive dynamic enhancer of Gene 3).

genes can exhibit far more complex regulatory logic (Yuh et al.,
1998). For instance, a single TFmay act as an activator or a repressor,
depending on the concentration of co-regulating TFs (Hanna-
Rose et al., 1997). These intricate regulatory interactions are likely
evolutionarily conserved and could serve as modular building
blocks, akin to Lego pieces, which can be used as is or slightly
modified to construct more extensive GRNs.

Another key aspect of gene regulation that warrants further
investigation using our modeling framework is how the timing of
GRNs is modulated. Recent findings suggest that many phenomena
in embryonic patterning arise from the modulation of GRN
timing by morphogen gradients, supporting a temporal or speed
regulation model. In this paper, we modeled this effect using
two distinct hypotheses (shown in Figures 6B, C, respectively).
However, given the largely unexplored computational complexity of
transcriptional machinery of developmental genes, it is conceivable

that additional mechanisms for timing regulation exist. Moreover,
recent experimental findings suggest other assumptions in current
models of gene regulation may need re-evaluation. For example, the
effects of transcriptional bursting (Fukaya et al., 2016; Dar et al.,
2012) and the formation of TF clusters or condensates (Cho et al.,
2016; Sabari et al., 2018; Hamamoto and Fukaya, 2022) on
GRN performance—particularly in embryonic patterning—remain
unclear. These newly discovered phenomena could significantly
influence how GRNs function.

With so many uncertainties surrounding current gene
regulation and GRN modeling approaches, how can we approach
the complex task of modeling embryonic patterning? While the
answer is not straightforward, careful and minimal use of simple,
transparent models—despite their inaccuracies—can yield partial
insights.This is achievable as long as we remain aware of themodels’
assumptions and are willing to critically evaluate them. In this paper,
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our goal has been to accomplish exactly that. To support further
exploration, we offered a simple and transparent computational
framework for modeling gene regulation during embryonic pattern
formation, complete with accessible simulations and intuitive code.
This enables researchers to test and expand upon our models,
promoting a deeper understanding of the mechanisms underlying
gene regulation in development.
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SUPPLEMENTARY FIGURE S1 |
Modeling the kinetics of simple chemical reactions. (A, A') Simulation of the
kinetics of a simple chemical reaction where chemical species A and B react to
form chemical species C. The reaction follows the equation, with a reaction rate
proportional to the concentrations of A and B. The graph shows the
concentrations of A (blue curve), B (red curve), and C (orange curve) over time. As
the reaction progresses, the concentrations of reactants A and B decrease while
the concentration of product C increases, illustrating the consumption of
reactants and formation of product over time. This simulation corresponds to
Computer Simulation 1 (Supplementary Text S1). (B, B') Simulation of a reversible
chemical reaction where chemical species A and B react to form species C,
which can also decompose back into A and B. The reaction follows the equation,
incorporating both forward and reverse reactions with rate constants and,
respectively. The graph displays the concentrations of A (blue curve), B (red curve),
and C (orange curve) over time. The system approaches equilibrium where the
rates of the forward and reverse reactions balance, resulting in constant
concentrations of A, B, and C. This simulation demonstrates how reversible
reactions reach equilibrium within a given timeframe and corresponds to
Computer Simulation 2 (Supplementary Text S2).

SUPPLEMENTARY FIGURE S2 |
Modeling gene activation dynamics and the effects of transcription factor binding
kinetics. (A) Simulation of gene activation by a single activator TF with slow
binding dynamics (low and). The graph depicts the concentrations of X (blue
curve), D1 (orange curve), and Y (red curve) over time. Slower TF binding and
unbinding result in delayed formation of the active DNA state and a gradual
increase in mRNA levels. This demonstrates that slow TF-DNA binding kinetics
can lead to a delayed gene expression response, affecting the timing of
downstream cellular processes. This simulation corresponds to Computer
Simulation 3 (Supplementary Text S2) with low and values. (B) Simulation of gene
activation by a single activator transcription factor (TF) with slow binding dynamics
(high and). The model illustrates the interaction between TF X, the active DNA
state D1, and the mRNA transcript Y. The graph shows the concentrations of X
(blue curve), D1 (orange curve), and Y (red curve) over time. Rapid TF binding and
unbinding lead to quick fluctuations in the active DNA state and a prompt
increase in mRNA production, resulting in a swift response in gene expression
levels. This highlights how fast TF-DNA interactions can affect the timing of gene
activation. This simulation corresponds to Computer Simulation 3 (Text S2) with
high and values. (C) Simulation of gene activation using Michaelis-Menten
kinetics. The model describes how the concentration of mRNA transcript Y
changes over time in response to a constant concentration of activator TF X. The
graph shows the concentration of Y (orange curve) increasing over time and
reaching a steady state. The use of Michaelis-Menten kinetics captures the
saturation effect where, at high TF concentrations, the rate of mRNA production
approaches a maximum due to the limited number of available binding sites on
the DNA. This results in a hyperbolic relationship between TF concentration and
gene expression level, illustrating the principles of enzyme kinetics applied to
transcriptional activation. This simulation corresponds to Computer Simulation 4
(Supplementary Text S2).

SUPPLEMENTARY FIGURE S3 |
Sensitivity analysis of key parameters of the Enhancer Switching model. Study of
0.2x-5x fold changes in key parameters of the Enhancer Switching GRNmodel:
(A) the binding dissociation constants ( ) of strong repressions within the GRN, (B)
gene product decay rates (λ), and (C) relative strength of static and dynamic
modules (kts/ktd).
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