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Objectives: Evaluating response to epidermal growth factor receptor (EGFR)-
tyrosine kinase inhibitors (TKIs) is crucial in non-small cell lung cancer (NSCLC)
patients with brain metastases (BM). To explore values of multi-sequence MRI
in early assessing response to EGFR-TKIs in non-small cell lung cancer (NSCLC)
patients with BM.

Approach: A primary cohort of 133 patients (January 2018 to March 2024) from
center one and an external cohort of 52 patients (May 2017 to December 2022)
from center two were established. Radiomics features were extracted from
4 mm brain-tumor interface (BTI) and whole BM region across T1-weighted
contrast enhanced (T1CE) and T2-weighted (T2W) and T2 fluid-attenuated
inversion recovery (T2-FLAIR) MRI sequences. The most relevant features were
selected using the U test and least absolute shrinkage and selection operator
(LASSO) method to develop the multi-sequence models based on BTI (RS-
BTI-COM) and BM (RS-BM-COM). By integrating RS-BTI-COM with peritumoral
edema volume (VPE), the combined model was built using logistic regression.
Model performance was evaluated using the area under the ROC curve (AUC),
sensitivity (SEN), specificity (SPE) and accuracy (ACC).

Main Results: The constructed RS-BTI-COM demonstrated a higher association
with early response to EGFR-TKI therapy than RS-BM-COM. The combined RS-
BTIplusVPE, incorporating BTI-based radiomics features and VPE, exhibited the
highest AUCs (0.843–0.938), SPE (0.808–0.905) and ACC (0.712–0.875) in the
training, internal validation, and external validation cohort, respectively.

Significance: The study developed a validated non-invasive model (RS-
BTIplusVPE) based on integrating BTI-based radiomics features and VPE, which
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showed improved prediction of EGFR-TKI response in NSCLC patients with BM
compared to tumor-focused models.
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1 Introduction

Lung cancer has become the leading cause of cancer deaths
globally, accounting for more than 25% of all cancer deaths each
year (Brainard and Farver, 2019). Non-small cell lung cancer
(NSCLC) is themost common subtype of lung cancer, accounting for
approximately 85% of all lung cancers (Gridelli et al., 2015). Studies
have shown that approximately 40% of NSCLC cases have distal
metastases at the time of diagnosis (Little et al., 2007; Schuchert
and Luketich, 2003). Brain or central nervous system as the most
common site of metastasis in NSCLC with the incidence rate of
40%–50% (Sørensen et al., 1988; Yawn et al., 2003).Thedevelopment
of brain metastasis (BM) would severely lead to poor prognosis for
NSCLC patient, with the median overall survival ranging between
2–9 months (Peters et al., 2016).

In recent years, epidermal growth factor receptor tyrosine kinase
inhibitor (EGFR-TKI) therapy has been shown to display superior
efficacy compared to standard chemotherapy (Ettinger et al., 2017),
and has profoundly impacted the therapeutic landscape of NSCLC
(Yuan et al., 2019; Lynch et al., 2004). However, approximately
one-third of TKI-treated NSCLC patients do not benefit from the
EGFR-TKI therapy.Their tumors continue to have rapid progression
despite the treatment (Kawaguchi et al., 2014; Spigel et al.,
2017), which indicates that many patients may be at risk for
rapid deterioration of clinical symptoms, delayed treatment, poor
prognosis and even death (Yang et al., 2013).

The Response Evaluation Criteria for Solid Tumours (RECIST
1.1) provides an objective, standardized method for assessing the
efficacy of EGFR-TKIs (Eisenhauer et al., 2009), and requires the
visual assessment of the tumor size based on radiological imaging
(Mayerhoefer et al., 2020). Magnetic Resonance Imaging (MRI) has
been widely and routinely used to assess response to EGFR-TKI.
However, it relies heavily on visual assessment, making it highly
subjective and less accurate (Mayerhoefer et al., 2020; Chetan and
Gleeson, 2021). This limitation arises from the lack of preoperative
specific biomarkers in MRI imaging that can identify patients
who would benefit from EGFR-TKI therapy. Previous studies
(Hsiao et al., 2020; Guo et al., 2020; Li et al., 2015) have explored
molecular markers for predicting EGFR-TKI efficacy, including
soluble cadherin-3, genetic alterations, and COX-2 serum levels, but
these markers have not been widely validated. For PET/CT imaging,
recent studies (Zhu et al., 2022; Agüloğlu et al., 2022; Shao et al.,
2020) have shown its potential in predicting treatment response
and progression-free survival, but its role in predicting the response
to EGFR-TKI therapy in BM remains unclear. Therefore, a novel
method that enable early predict response to EGFR-TKI before
treatment is essential for the development of an appropriately
individualized treatment regimens.

Radiomics have been addressed to the field of precision
medicine for making individual therapeutic decisions based on

medical imaging data (Sharpton et al., 2014). Previous studies have
shown that the development of radiomic can be helpful to identify
valuable features associatedwith EGFR-TKI response, enabling non-
invasive assessment of therapeutic efficacy of EGFR-TKI (Chetan
and Gleeson, 2021; Sharpton et al., 2014; Zhang et al., 2023;
Song et al., 2020; Mu et al., 2020; Song et al., 2018; Bera et al.,
2022). Fan’s group recently conducted radiomic studies investigating
the role of brain MRI on BM for assessment of response to EGFR-
TKI (Fan et al., 2023a; Fan et al., 2022). However, the studies only
evaluated T1-weighted contrast enhanced (T1CE) and T2-weighted
(T2W) MRI, and neglected the potential value of brain T2 fluid-
attenuated inversion recovery (T2-FLAIR) sequence.TheT2-FLAIR
sequence can effectively suppress cerebrospinal fluid signals and
highlight adjacent lesions, and has been widely used in the diagnosis
of central nervous system diseases (Tha et al., 2009). Moreover,
the T2-FLAIR can quantify the degree of peritumoral edema and
inflammation in BM (Zakaria et al., 2021). Previous reports have
demonstrated that features derived from T2-FLAIR are strongly
correlatedwith genemutation status (Wang et al., 2021) and immune
responses (Madi et al., 2022). While, the role of T2-FLAIR MRI on
BM for predicting EGFR-TKI therapeutic efficacy has not yet been
investigated.

Besides, the BM has a unique microenvironment (Eichler et al.,
2011). The interface between brain parenchyma and tumor (brain-
to-tumor interface, BTI) represents the area that metastatic tumor
cells interact with endocranial brain cells and patient’s immune
system (Berghoff et al., 2013). This region has garnered significant
interest in recent years, with BTI-focused radiomics proven to
effectively indicate the extent of brain invasion (Xiao et al., 2021b;
Joo et al., 2021; Li et al., 2021) and assess tumor grading (Zhao et al.,
2024).This underscores the potential utility of the BTI in computer-
aided diagnosis of BM. This study aims to evaluate the value
of the MRI image of BM for predicting response to EGFR-TKI
therapy based on the BTI area in NSCLC patients. Our findings and
developedmodelswere further testedwith an external validation set.

2 Materials and method

2.1 Patients

TheMRI data of patients with BM included in this retrospective
study were obtained with the approval of the local ethics committee
(number: 20,220,659), and all patient data were anonymized to
ensure confidentiality. Center one enrolled 133 patients with EGFR-
mutant NSCLCwith BM from January 2018 toMarch 2024, forming
the primary cohort used to construct the training set and internal
validation set. Center two included 52 patients with EGFR-mutant
NSCLC with BM from May 2017 to December 2022, serving as
an external validation cohort. The inclusion criteria for all the
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FIGURE 1
Flowchart of the patients included in this study.

patients were as follows: (i) patients with complete EGFR gene
testing results, (ii) received EGFR-TKI treatment, (iii) with no
history of systemic anti-cancer treatment, and (iv) with complete
T1CE, T2W and T2-FLAIR scans data before the treatment. Patients
were excluded if they met any of the following criteria: (i) with
poor quality of MRI images, (ii) missing or incomplete clinical
information, or (iii) presence of other tumor disease. The response
to EGFR-TKI treatment was evaluated using the RECIST 1.1 criteria
(Therasse et al., 2000; Therasse et al., 2006). The primary cohort
(Center 1) was divided into a training cohort and an internal
validation cohort in a stratified 2:1 ratio. Stratified random sampling
was performed using the strata function in R with the srswor
method, ensuring random assignment without replacement. The
external cohort (Center 2) was utilized for independent external
validation of the developed radiomics models. Figure 1 shows the
patient inclusion flowchart.

2.2 MRI protocol and tumor delineation

T1CE, T2W, and T2-FLAIR sequences were acquired on a 3.0 T
scanner for image analysis. Details of the brain MRI scanning

devices and parameters were listed in Supplementary Material 1.
Regions of interest (ROIs) segmentation was performed by the
first radiologist (Y.J.H., with 4 years’ experience), who had no
knowledge of the patient’s clinicopathological information, except
for the tumour location. ROIs of the BM and peritumoral edema
area (PEA) in the brain were manually drawn using the open-source
software ITK-SNAP (version 3.6.1, www.itksnap.org). All manual
depictions were validated by the second radiologist (Z.G.Y., with
19 years’ experience).

2.3 BTI generation

We utilized a semi-automatic segmentation algorithm to
delineate the BTI region. In the Python software, the manually
outlined BM contour was eroded by 2 mm inwards and dilated by
2 mm outwards, resulting in a final annular region with a width
of 4 mm. After obtaining the ROI of the BTI region, we calculate
the entropy value of the BTI region to quantify the entropy of the
pixel intensity distribution within the region, reflecting its texture
complexity and information content.The formula for calculating the
entropy is shown in the Supplementary Material 2. The peritumoral
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FIGURE 2
Overview of radiomics analysis workflow.

edema volume (VPE) was computed based on the PEA that was
demarcated by using the ITK-SNAP software. In summary, the
three regions used in this study are: (i) BM, manually delineated
for feature extraction and BM-based model development; (ii) PEA,
the edema region surrounding the BM, manually delineated to
calculate the value of VPE; and (iii) BTI, an annular region
derived by expanding and contracting the BM contour through a
python script, containing information about the interface between
the PEA and the active tumor region of BM, used for feature
extraction and BTI-based model development. The representative
brain MR images of three different sequences are shown in the
(Supplementary Figure S1).

2.4 Feature extraction

First-order, texture, shape and filter features were extracted
from the manually segmented tumor regions and the BTI region.
The first-order features can provide information about the overall
brightness, contrast, and distribution of an image. The texture
features include 24 Gray-level co-occurrence matrix, 14 Gray-
level dependence matrix, 16 Gray-level size zone matrix and 16
Gray-level run length matrix. The shape features quantitatively
describe the 2D size and shape of the ROIs. To obtained
filtered features, the original images were filtered by using

eight filters, which include Wavelet, square, squareroot, laplacian
of Gaussian, logarithm, gradient, exponential, and local binary
pattern 2D/3D, then used to calculate textural and first-order
features. Finally, a total of 1,967 radiomics features were generated
for each MR sequence (T1CE, T2W and T2-FLAIR). Imaging
preprocessing and feature calculating were performed using the
Pyradiomics package (version 3.0.1) according to a previous report
(van Griethuysen et al., 2017).

2.5 Feature selection and model
construction

To select highly correlated and minimally redundant features,
we employed the following feature selection strategy: Firstly,
we applied the Mann-Whitney U test to the features, where
features with a p-value <0.05 were considered significantly
different and retained for further screening. Secondly, the most
predictive features were determined using the least absolute
shrinkage and selection operator (LASSO) with ten-fold cross-
validation (Tibshirani, 1997). Thirdly, we identified the most
predictive features using logistic regression with stepwise selection
based on Akaike Information Criterion (AIC) minimization,
derived from the BTI and BM regions (Pan, 2001). Finally,
we evaluated these most predictive features using intra-class
correlation coefficient (ICC) (Leijenaar et al., 2013). We randomly
selected thirty patients to assess the reproducibility of the selected
features. Features with an ICC >0.80 were considered to have
better reproducibility and were retained for further construction.
More detailed information on the ICC calculation can be
found in the Supplementary Material 1.

In the subsequent model construction process, we predicted
the response to EGFR-TKI therapy using a logistic regression
classifier, a widely accepted and effective machine learning classifier,
implemented using the glmnet package in R (Bera et al., 2022).
Specifically, the selected most predictivefeatures were used to
develop radiomics models based on the BTI region, the combined
radiomics signatures (RSs) named RS-BTI-COM was constructed
by integrating all the features from T1CE, T2W and T2-FLAIR
sequences to predict response to EGFR-TKI treatment. Similarly, the
RS-BM-COM were established based on BM. Finally, the VPE was
incorporated into the RS-BTI-COM as a clinical model, resulting
in a new model that integrates both radiomics features and VPE,
referred to as RS-BTIplusVPE.

2.6 Statistical analysis

Clinical factors between responders and non-responders were
statistically analyzed using SPSS (version 27.0) and R language
(version 4.2.2). The Mann-Whitney U test and chi-square test were
used for continuous and categorical variables, respectively. A p-value
of less than 0.05 was considered statistically significant. Receiver
Operating Characteristic (ROC) curves and Area Under Curve
(AUC) were used to assess the ability of features to predict response
to EGFR-TKIs. Delong’s test (DeLong et al., 1988) was used to
compare differences in AUC values of the models. Figure 2 shows
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the study design. This study was approved by the ethics committee
on 23 August 2022.

3 Results

3.1 Patient characteristics

Table 1 listed the demographic and clinical characteristics of
all patients with BM from NSCLC in both centers. There was
no statistical significance in age, gender, smoking status and
performance status (PS) of the patients. While, for predicting
response to EGFR-TKI, a significant difference (p < 0.05) in VPE
was found between the responder and non-responder groups across
all three cohorts, which suggests that VPE may be correlated with
patients’ responses to EGFR-TKI treatment (Fan et al., 2023b).

3.2 Prediction performance of the
multi-sequence radiomics signatures

A total of nine radiomics features were selected from the
BTI region as the most predictive features with LASSO logistic
regression. Supplementary Material 2 shows the process of LASSO-
based selection of the features (Supplementary Figure S2). From
T1CE, T2W and T2-FLAIR MRI, there were four, one and
four features were identified as the most predictive features
and used to establish the combined radiomics models (RS-
BTI-COM). Formulas of the developed radiomics models
were listed in Supplementary Material 1.

Table 2 compares predictive performance of the constructed RSs
based on the BTI and BM region. The multi-sequence fused RS-
BTI-COM achieves higher AUC, SEN, SPE and ACC compared
with RS-BM-COM. A possible explanation is that the invasion of
metastatic brain tumor cells involves interactions with the brain
microenvironment, including changes in astrocytes and vascular
structures. The invasive process may lead to dynamic alterations of
the BTI, which could be associated with the response to EGFR-TKI
(Lorger and Felding-Habermann, 2009). Figure 3 depicted ROC
curves of the established RS-BTI-COM and RS-BM-COM.

3.3 Prediction performance of the
combined model

TheRS-BTI-COMwas then integrated with VPE to establish the
RS-BTIplusVPE. Table 3 compared performances of the VPE, RS-
BTI-COM and RS-BTIplusVPE. When the VPE was used alone to
predict response to EGFR-TKI, the AUCs yielded were ranged from
0.674 to 0.725 in primary and external cohorts.The RS-BTIplusVPE
exhibited the highest AUCs (0.843–0.938), SPE (0.808–0.905) and
ACC (0.712–0.875). Delong’s test indicates a significant difference
(p < 0.05) between VPE and RS-BTIplusVPE in both the training
and internal validation cohorts. These results demonstrated that
VPE may serve as a clinical indicator, providing complementary
information for BTI-based radiomicmodels. Figure 4 depicted ROC
curves of the VPE and RS-BTIplusVPE.
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FIGURE 3
ROC curves of RS-BTI-COM and RS-BM-COM illustrating the performance of radiomics models for predicting response to EGFR-TKI in the training (A),
internal validation (B), and external validation (C) cohorts.

3.4 Radiomics features analysis

A total of nine radiomics features were identified as key
predictors for determining the response to EGFR-TKI treatment.
Among these, eight features were classified under the textural
category, reflecting complex patterns within the image data,
while only the remaining one features belonged to the first-
order category, capturing essential statistical information from the
voxel intensity distributions. These selected features play a crucial
role in differentiating between responders and non-responders to
EGFR-TKI therapy. Detailed performance metrics of the identified
features are summarized in Table 4. The detailed meanings of
the identified features are provided in Supplementary Material 1.
Supplementary Material 2 shows cluster analyses of the selected
radiomics features (Supplementary Figure S3).

4 Discussion

NSCLC is the most common subtype of lung cancer, therefore,
early assessment of the response to targeted therapy can significantly
benefit the personalized treatment of NSCLC patients (Ai et al.,
2018). Most previous studies have focused on predicting the efficacy
of EGFR-TKI therapy only based on the primary lung tumor
(Wang et al., 2019; Zhao et al., 2017; Chen et al., 2022; Xu et al.,
2019). Fan et al. (Fan et al., 2022; Fan et al., 2023b; Fan et al.,
2023a) have revealed that important information for predicting the
response to EGFR-TKI therapy also exists within BM. However,
these studies have primarily concentrated on T1-weighted and
T2W MRI sequences. The potential of T2-FLAIR in reflecting the
microenvironment and medical mechanisms of brain metastases
remains unexplored. In this study, the RS-BTIplusVPE model
was developed and validated for the early prediction of the
response to EGFR-TKI therapy in NSCLC patients with BM,
which integrating BTI radiomics features from T1CE, T2W
and T2-FLAIR MRI sequences and VPE. The RS-BTIplusVPE
model outperformed BTI-based model, demonstrating that VPE
is significantly associated with the response to EGFR-TKI therapy

(p < 0.05). Additionally,our research confirmed that the BTI region
exhibits greater heterogeneity than whole BM area, containing more
information that plays a positive role in predicting EGFR-TKI
treatment response. Furthermore, we found that incorporating the
T2-FLAIRMRI sequence enables the extraction of valuable features
from the BTI region more effectively.

BTI is a biologically active zone where tumor cells invade
and spread into adjacent brain tissue while interacting with
the surrounding brain microenvironment, including immune
components (Tabassum et al., 2023). At this interface, tumor
cells can also evade immune surveillance by expressing
immunosuppressive molecules, such as PD-L1, thereby promoting
tumor growth and dissemination (Xiao et al., 2021b). Studies have
shown (Li et al., 2023) that the activity of immune cells (e.g.,
macrophages and T cells) at the tumor margins within the BTI
microenvironment can directly impact the patient’s therapeutic
prognosis.This interaction between the BTI microenvironment and
the host immune system may provide valuable insights into tumor
behavior under EGFR-TKI treatment, suggesting that the BTI region
holds more predictive value than features derived solely from the
tumor mass of BM. Additionally, peritumoral edema is another
common feature in the BTI, often associated with pro-inflammatory
and angiogenic factors (e.g., VEGF) released by tumor cells, which
compromise vascular integrity and lead to fluid leakage into the
brain parenchyma (Chen et al., 2024). MRI-based studies (Joo et al.,
2021) have indicated that radiomic features of the BTI, such as
tumor margin blurriness, are closely related to tumor invasiveness,
providing critical information for assessing tumor progression and
predicting response to targeted therapies. Our findings also suggest
that the BTI in BMs likely contains important information relevant
to therapeutic response, further supporting the potential of BTI-
based radiomics in improving clinical decision-making for targeted
treatments. Further research is needed to deepen our understanding
of the biological mechanisms underlying these findings.

The incorporation of the T2-FLAIR sequence in brain MRI is
crucial for extracting high-value features from the BTI region. T2-
FLAIR is particularly effective at suppressing cerebrospinal fluid
signals, thereby enhancing the visibility of peritumoral edema and
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other abnormal brain tissues (Zhang et al., 2021). Given that
peritumoral edema is a common feature in the BTI region, T2-
FLAIR allows for the extraction of valuable radiomic features
that are difficult to capture using other sequences like T1 or T2-
weighted images. Studies have shown that combining T2-FLAIR
with radiomic analysis significantly improves the accuracy of
predicting tumor invasiveness and treatment response, especially
in gliomas and BMs (Dvořák, 2015; Rajkumar and Kavitha, 2011).
The enhanced contrast between abnormal and normal brain tissues
provided by T2-FLAIR facilitates more precise segmentation and
feature extraction in the BTI, which is critical for evaluating the
biological behavior of the tumor (Xiao et al., 2021a). Moreover, T2-
FLAIR-based analysis of the BTI has been associated with more
accurate predictions of therapeutic outcomes. By capturing subtle
changes at the tumor-brain interface, T2-FLAIR-derived features
offer deeper insights into tumor invasiveness and progression,
supporting the development of more personalized treatment
strategies (Aboian et al., 2022).

In feature analysis of this study, we found that eight texture
features and only one first-order extracted from the BTI region
showed significant differences between patients with and without a
response to EGFR-TKI therapy (p < 0.05). According to the texture
feature analysis, we found that four texture features extracted from
the gray-level co-occurrence matrix (GLCM) in the BTI region
showed significant differences between patients with and without
a response to EGFR-TKI therapy (p < 0.05). These GLCM-based
features reflect the disorder or randomness of intensity values,
which are typically associated with varying cellular densities or the
presence of different tissue types (e.g., tumor infiltration) (Qin et al.,
2017). This finding suggests that the heterogeneity within the BTI
region is closely related to the efficacy of targeted therapy observed
in this study. Moreover, the only first-order feature extracted from
the T2-FLAIR sequence within the BTI region, which reflects the
average intensity, effectively reveals the pattern of edema spread and
its predictive value for response to EGFR-TKI (Liu et al., 2021).
This study also found a correlation between the value of VPE and
treatment response (p<0.05) across all three cohorts, suggesting that
features from this region could serve as potential predictive markers
of therapeutic efficacy.

We assessed the value of VPE in predicting the response to
EGFR-TKI therapy in NSCLC patients with brain metastases. While
VPE has been recognized as an important imaging marker in
differentiating between primary brain tumors and BMs (Baris et al.,
2016), its role in predicting therapeutic outcomes remains uncertain.
Our analysis showed that although VPE contributed to model
performance, its predictive ability was relatively limited compared to
other radiomic features (such as those derived from the BTI region).
VPE reflects the extent of vasogenic edema surrounding the tumor,
which is associated with factors like tumor-induced disruption of
the blood-brain barrier and local inflammation (Esquenazi et al.,
2017). However, it does not fully capture the biological complexity
related to EGFR-TKI response. This suggests that while VPE is
a useful imaging marker for assessing tumor burden and edema,
its contribution to predicting EGFR-TKI response is limited, and
further research is needed to explore its underlying biological
mechanisms.

This study has several limitations. First, the retrospective nature
of the study and the limited sample size necessitate further validation
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FIGURE 4
ROC curves of VPE and RS-BTIplusVPE in the training (A), internal validation (B) and external validation (C) cohorts.

TABLE 4 Performance metrics of the selected features for predicting EGFR-TKI response in NSCLC patients with BM in the training cohort.

Feature Sequence Weighting coefficient Mean ± SD AUC p

Responder Non-responder

Wavelet-HHH_glrlm_
HighGrayLevelRunEmphasis (F1)

T2-FLAIR −24.698193 −0.23 ± 1.11 0.25 ± 0.81 0.674 0.003∗

Wavelet-HHL_glcm_SumEntropy
(F2)

T2-FLAIR 44.793039 0.21 ± 0.84 −0.23 ± 1.12 0.624 0.044∗

Wavelet-HLH_glcm_
ClusterShade (F3)

T2-FLAIR −5.974253 −0.22 ± 1.17 0.24 ± 0.72 0.641 0.018∗

Wavelet-LHH_firstorder_Mean
(F4)

T2-FLAIR 1.185793 0.21 ± 0.95 −0.23 ± 1.01 0.641 0.019∗

lbp-3D-k_glszm_
GrayLevelNonUniformityNormalized
(F5)

T1CE 7.918925 0.23 ± 0.97 −0.25 ± 0.99 0.649 0.015∗

Wavelet-HHH_firstorder_
Uniformity (F6)

T1CE 1,679.037251 0.23 ± 0.86 −0.25 ± 1.09 0.643 0.015∗

Wavelet-HHH_glcm_
SumAverage (F7)

T1CE −15.838085 −0.21 ± 0.12 0.23 ± 1.42 0.631 0.027∗

Wavelet-HLH_glcm_MCC (F8) T1CE −11.903183 −0.22 ± 0.74 0.24 ± 1.19 0.636 0.027∗

Log-sigma-5-0-mm-3D_gldm_
SmallDependenceEmphasis (F9)

T2W 165.294229 0.26 ± 1.12 −0.28 ± 0.77 0.644 0.015∗

SD, standard deviation; ∗, p < 0.05.

of the model using prospective data. Second, although the BTI
regionwere derived fromMR images, pathological confirmationwas
not performed due to the study’s retrospective design. Third, while
BTI region segmentation was automated, tumor and peritumoral
edema segmentation was done manually, introducing potential
subjective bias. Fourth, future work will focus on exploring the
correlations between MRI-based morphological variations and
histologicalmicrostructure to enhance the intratumoral partitioning

algorithm. Fifth, although this study suggests a potential correlation
between the 4 mm BTI and the efficacy of EGFR-TKI treatment,
it lacks the determination of the optimal expansion distance for
generating the BTI ROI. Lastly, future studies should further
investigate the relationship between tumor heterogeneity in brain
tissue and EGFR-TKI treatment response, aiming to explore the
underlying biological mechanisms and enhance the interpretability
of radiomics models.
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5 Conclusion

In conclusion, our study developed a validated non-invasive
model (RS-BTIplusVPE) by integrating multi-sequence radiomic
model and VPE, which showed improved prediction of EGFR-TKI
response in NSCLC patients with brain metastases compared to
tumor-focused models. Our findings were validated with clinically
obtained data from two centers, which may indicate good potential
of our model for assisting in clinical decision-making.
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