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Introduction: Prion diseases are neurodegenerative disorders where infectious
prion proteins (PrP) featuring an amyloidogenic amino acid sequence, PrP
(106–126), accumulate in the brain leading to neuroinflammation while it can
also access circulation by breaching the blood-brain barrier. Platelets are highly
sensitive cells in blood, which have been widely employed as “peripheral” model
for neurons. In addition to their stellar roles in hemostasis and thrombosis,
platelets are also known to function as immune cells and possess necessary
components of functional inflammasome. This study demonstrates that prion
proteins drive inflammasome assembly in platelets and upregulate activity of
caspase-1, a critical readout of functional inflammasomes.

Methods: Flow cytometric analysis was performed to measure intracellular ROS
levels, caspase-1 activity, and platelet-monocyte/neutrophil interactions.
Microscopy was used to assess the co-localization of NLRP3 and ASC.

Results: Inflammasome activation is fuelled by reactive oxygen species (ROS)
generated in prion-stimulated platelets that eventually leads to formation of
platelet-monocyte/neutrophil aggregates, which was prohibited by small-
molecule inhibitors of either caspase-1 or ROS.

Discussion: Thus, in addition to their neurotoxic effects on neuronal cells and
stimulation of pro-coagulant activity in platelets, prions also unleash an
inflammatory response in the organism.
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Introduction

Prion disease is a neurodegenerative disorder caused by the
scrapie form of prions (PrPsc), which induces abnormal folding of
cellular prion (PrPc) leading to protease-resistant β-pleated sheets
(Sandberg et al., 2011). In cerebrospinal fluid concentration of prion
protein ranges from 1.5 ng/mL to 546 ng/mL (Vallabh et al., 2019)
while prions in circulation are likely sourced from platelets (Robertson
et al., 2006), endothelial cells (Simák et al., 2002) and lymphocytes
(Prinz et al., 2003), which carry membrane-bound PrPc released into
the bloodstream. PrP can cross the blood-brain barrier in both
directions, i.e., either from blood-to-brain or brain-to-blood (Banks
et al., 2009). The synthetic PrP (106–126) resembles PrPsc in several
ways as it carries a protease-resistant amyloidogenic β-pleated sheet.
Thus, PrP (106–126) has been extensively employed as a model for
PrPsc-related research (Ettaiche et al., 2000; Gautam et al., 2022; Gu
et al., 2002; Mallick et al., 2015; Melo et al., 2007).

Human platelets are anucleate blood cells essential for
hemostasis; however, hyperactivity of platelets leads to
pathological thrombus formation. Besides hemostatic activities,
platelets also play a seminal role in innate and adaptive immune
responses (Semple et al., 2011). Activated platelets interact with
circulating neutrophils and monocytes that are critical mediators of
inflammation and innate immunity, thereby driving an
inflammatory phenotype. Platelets express numerous pattern
recognition receptors, including toll-like receptors (TLRs) and
nucleotide-binding oligomerization domain-like receptors (NLRs),
which enable them to act as circulating cellular sensors that provide
a unique link between hemostasis and inflammation (Zhang et al.,
2015). NLRs recognize pathogen/damage-associated molecular
patterns (PAMPs/DAMPs) and homeostasis-altering molecular
patterns (HAMPs). Inflammation is directly linked with
inflammasome assembly that produces pro-inflammatory
cytokines, interleukin (IL)-1β and IL-18. NLRP3 inflammasome
is a multimeric protein complex consisting of NLRs, apoptosis-
associated speck-like protein (ASC), and pro-caspase-1.
Inflammasome assembly instigates caspase-1 activation, which
results in proteolytic cleavage of pro-IL-1β and pro-IL-18 into
their active mature forms, IL-1β and IL-18, respectively.

Platelets possess all the components required for assembly of an
inflammasome complex (Qiao et al., 2018). Of these, NLRP3 in
platelets has received the greatest attention and has been linked to a
variety of illnesses, such as sepsis (Cornelius et al., 2020), dengue
(Hottz et al., 2013) and sickle cell disease (Vogel et al., 2018).
Oxidative stress plays a significant role in promoting the
activation of inflammasome complexes (Zhao and Zhao, 2020).
Calcium overload has been reported to impair mitochondrial
function and generate excessive ROS in sepsis resulting in
inflammasome activation (Zhao et al., 2020). Epigallocatechin-3-
Gallate (EGCG), a polyphenol and green tea extract known for its
antioxidant properties, also inhibits prion-mediated neurotoxicity
(Lee et al., 2015) and has recently been reported as an inhibitor for
NLRP3 inflammasome (Zhang et al., 2021). NLPR3 also contributes
to platelet activation, aggregation, and thrombus formation in vitro
(Murthy et al., 2017) and regulate integrin outside-in signaling (Qiao
et al., 2018).

We have previously reported that prion proteins unleash a
prothrombotic state in platelets associated with raised intracellular

calcium and microvesicle release (Mallick et al., 2015), which is
restrained in the presence of fibrinogen (Gautam et al., 2022). It
was reported that prion protein (100 µM) also activates
NLRP3 inflammasome in microglial cells (Shi et al., 2012), which is
linked to its neurotoxicity (Hafner-Bratkovič et al., 2012). Additionally,
as platelets can be exposed to PrPC released from their α-granules upon
stimulation (Starke et al., 2005), we queried whether prion might also
play a role in activating the platelet inflammasome. In this study, we
report that exposure to PrP fuels inflammasome assembly and caspase-
1 activation in platelets mediated through an upsurge in ROS, that
leads to formation of platelet-monocyte/neutrophil aggregates
unleashing an inflammatory phenotype.

Materials

Prion peptide (106–126) (KTNMKHAGAAAAGAVVGGLG)
was purchased from Biomatik, United States. Antibodies against
NLRP3 (#NBP2-12446), and ASC (#NBP1-78977APC) were from
Novus Biologicals, United States. Antibodies against IL-1β (#12242)
and β-actin (#A2066) were procured from Cell Signaling Technology
and Sigma, respectively. HRP-conjugated goat anti-rabbit and anti-
mouse IgG were the products of Bangalore Genei. APC-Mouse anti-
human CD41a (#559777), FITC-Mouse anti-human CD14
(#555397), FACS lysis solution and FACS Flow sheath fluid were
from BD Biosciences. Calcein AM (#C3100MP) and goat anti-rabbit
IgG (Alexa Flour 488-conjugated) (#A11008) were procured from
Invitrogen. Permanox slides (#160005) were from ThermoFisher. The
FAM-FLICA Caspase-1 Assay kit (#SKU 97) was from
ImmunoChemistry Technologies. Fibrinogen (Fg, #4883), YVAD-
CHO (#400011), thrombin receptor-activating peptide (TRAP,
#S1820), 2′,7′-dichlorodihydrofluoresceindiacetate (H2DCFDA,
#D6883), epigallocatechin gallate (EGCG, #E4143), N-acetyl
L-cysteine (NAC, #A7250), IgG (#5006), ethylenediaminetetraacetic
acid (EDTA), sodium orthovanadate, dimethylsulfoxide (DMSO),
Triton X-100, prostaglandin E1 (PGE1), paraformaldehyde (PFA)
were purchased from Sigma while bovine serum albumin (BSA) were
fromHIMedia. All reagents were of analytical grade. Type I deionized
water (18.2 MΩ cm, Millipore) was used for preparation of solutions.
Experiments were carried out strictly as per the guidelines of
Institutional Ethical Committee.

Methods

Platelet preparation

Peripheral venous blood was collected from healthy volunteers
(both male and female participants with age varying between 20 and
40 years) in acid citrate dextrose (trisodium citrate, 74.8 mM; citric
acid, 38.06 mM; and dextrose, 136 mM). Platelets were isolated by
differential centrifugation. Blood was centrifuged at 100 g for
20 min. PGE1 (1 µM) and EDTA (2 mM) were added to the
supernatant (platelet-rich plasma, PRP). PRP was centrifuged at
800 g for 7 min. Cells were washed in buffer A (20 mM HEPES,
134 mM NaCl, 2.9 mM KCl, 1 mMMgCl2, 5 mM glucose, 0.34 mM
NaH2PO4, 12 mM NaHCO3, 0.35% BSA, 1uM PGE1, pH 6.2) and
centrifuged again at 800 g for 7 min. Finally, cells were suspended in
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buffer B (pH 7.4), which was the same as Buffer A but without
PGE1 and BSA. Cell count was maintained at 2–4 × 108 cells/mL by
an automated cell counter (Multisizer 4, Beckman Coulter).
Leucocyte contamination was found to be less than 0.015%. All
steps were executed under sterile conditions, and precautions were
taken to maintain the cells in a resting state.

Preparation of prion (106–126) fragment

PrP (106–126) (KTNMKHMAGAAAAGAVVGGLG) was
dissolved in 1 mL buffer B (please see above) at 0.5 mM stock
concentration and stored at −20°C in aliquots. In the untreated
control counterparts (resting platelets), buffer B substituted prion
solution as the vehicle.

Assessment of Caspase-1 activity

The activity of caspase-1 was determined using a fluorescent
inhibitor of caspase-1 (FLICA), whose structure is represented by 5-
carboxyfluorescein-Tyr-Val-Ala-Asp-fluoromethylketone (FAM-
YVAD-FMK). FLICA is cell-permeant dye that covalently
interacts with ‘active’ caspase-1 through YVAD sequence
emitting green fluorescent signal while inhibiting further
enzymatic activity. Unbound dye diffuses out of the cell during
the wash steps. Thus, the degree of fluorescence reflects the extent of
caspase-1activity. Staining was carried out as per the manufacturer’s
protocol. In brief, prior to exposure to PrP (50 µM for 20 min at RT)
platelets were incubated with either EGCG (5 µM) or NAC (1 mM)
for 10 min at 37°C, followed by incubation with FLICA reagent for
30 min at 37°C in the dark. Stained cells were washed, followed by
fixation. Cells were suspended in sheath fluid and analyzed on a flow
cytometer (FACSCalibur, BD Biosciences).

Measurement of intracellular ROS

Platelets were incubated with H2DCFDA for 30 min at RT in the
dark. H2DCFDA enters the cell, is deacetylated by esterases, and
oxidized by ROS to highly fluorescent 2′,7′- dichlorofluorescein
(DCF). Platelets were pre-treated with either EGCG (5 µM) or NAC
(1 mM) for 10 min at 37°C, followed by incubation with either PrP
(50 µM) or buffer B (vehicle) for 20 min at RT. Population of stained
cells were analyzed by flow cytometry (FACSCalibur, BD
Biosciences). Data were evaluated using CellQuest Pro Software
as described earlier (Chaurasia et al., 2022).

Co-localization of ASC and NLRP3

Platelets pre-treated with either prion (50 µM) or buffer B
(vehicle) were allowed to adhere to Permanox slides for 30 min,
washed thrice with 1X PBS, and fixed with 4% PFA for 10 min.
Following three washes, platelets were permeabilized with 0.1%
Triton X-100 for 1 min. Slides were blocked with 2% BSA for
1 h, washed and incubated with anti-NLRP3 antibody (1:50)
overnight at 4°C, washed thrice, and then exposed to anti-rabbit

Alexa Flour 488-conjugated secondary antibody (1:100) for 2 h at
RT. Slides were rewashed and incubated with APC-conjugated
rabbit anti-ASC antibody for 2 h at RT. Controls were processed
identically except for the omission of primary antibodies. Slides were
examined under Zeiss LSM 700 laser scanning confocal microscope
with ×63 oil objective (numerical aperture, 1.40) and 1 AU pinhole
size. Results were representative of three different experiments.

Analysis of platelet-monocyte/neutrophil
interaction

Platelet-monocyte/neutrophil (PMN) interaction was evaluated
as described earlier (Ekhlak et al., 2023). Fresh human blood (20 μL)
was added to a cocktail containing 10 μL each from APC-anti-
CD41a (platelet-specific) and FITC-anti-CD14 (leucocyte-specific)
antibodies and mixed gently. Then it was treated with either EGCG
(5 µM) or YVAD (1 µM), followed by incubation with TRAP (2 μM)
or PrP (50 µM) for 15–20 min at RT. RBCs were lysed with 800 μL
FACS lysis solution (1X, BD Biosciences) for 10 min at RT. PMN
interaction was analysed on a flow cytometer. Side scatter voltage
was set at 350 with a threshold of 52 V. A dot plot of side scatter
(SSC) versus log FITC-CD14 fluorescence was created using the
CellQuest Pro software. Amorphous gates were drawn for monocyte
(high fluorescence and low SSC) and neutrophil (low fluorescence
and high SSC) populations. Fluorescence data were acquired from
each sample using four-quadrant logarithmic amplification for
1,000 events in either neutrophil or monocyte gate and analysed
with CellQuest Pro Software.

Results

Prion stimulates assembly of
NLRP3 inflammasome complex and
caspase-1 activation in human platelets

We have earlier demonstrated that, prion induces platelets to
adopt a procoagulant state (Gautam et al., 2022; Mallick et al., 2015).
In the present study, we further investigated the role of prions in
transforming these cells to an inflammatory phenotype. Exposure of
platelets to PrP (106–126) (50 µM) for 20 min brought about focal
accumulations of NLRP3 and ASC, the key components of the
inflammasome, in platelet cytosol (Figure 1A), reflective of the
complex formation (Vogel et al., 2018)). This was associated with
significant enhancement in caspase-1 activity (by 296%) in PrP-
treated platelets (Figures 1B, C). Our previous study demonstrates
that prion promotes platelet agglutination rather than aggregation
(Mallick et al., 2015), this might be the reason behind the clustering
of cells in PrP-treated platelets (Figure 1A).

Inflammasome activation in prion-
stimulated platelets is fuelled by the
generation of reactive oxygen species

We next investigated the underpinning molecular mechanism
governing inflammasome activation in prion-challenged
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platelets. ROS is known to play a vital role in inflammasome
activation (Abais et al., 2015). Level of platelet intracellular ROS
was found to be augmented by 200% upon exposure to PrP
(106–126). The rise was significantly blunted by 84% and 65%,
respectively, upon pre-treatment of cells with either EGCG
(5 µM) or NAC (1 mM), the known scavengers of ROS
(Figures 2A, B). Next, we interrogated the role of ROS in
driving prion-mediated inflammasome signaling. Prior
exposure to either EGCG or NAC prohibited caspase-1 activity
by 57% and 51%, respectively, thus implicating prion-ROS-
inflammasome-caspase-1 signaling axis in transformation of
resting platelets to functionally active inflammatory units

(Figures 2C, D). It is noteworthy to state here that, PrP
(106–126) induces ROS generation and caspase-1 activation in
a dose-dependent manner evaluated at 20 μM and 50 µM prion
concentrations (Supplementary Figure 3).

As prion induces NLRP3 inflammasome activation (signal 2) in
platelets, it prompted us to ask whether it also instigates the priming
signal (signal 1) that involves synthesis of pro-IL-1β and NLRP3.
Although LPS has been shown to promote synthesis of pro-IL-1β in
anucleate platelets (Brown et al., 2013; Lindemann et al., 2001), the
necessity of signal-1 for inflammasome initiation in platelets has
been a subject of debate (Hottz et al., 2013). We did not observe
synthesis of either pro-IL-1β or NLRP3 in response to PrP

FIGURE 1
Prion promotes inflammasome assembly in platelets. (A) Confocal images representing inflammasome assembly in platelets treated either with
prion or buffer B (Control). NLRP3 (green) and ASC (red) proteins were dispersed uniformly in control platelets while PrP treatment allowed focal
clustering of these proteins prompting brighter visualization (scale bar, 10 µm). Arrows indicate co-localization of NLRP3 and ASC in PrP-treated platelets.
RP, resting platelets. Images are representative of three independent experiments. (B, C) PrP (50 µM) provoked robust caspase-1 activation. The bar
graph represents mean ± SEM (n = 4). *P < 0.05 as compared to RP, analysed by paired Student’s t-test.
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(106–126) in platelets (Supplementary Figure 2), thus ruling out the
induction of priming signal in these cells.

Inflammasome activity in prion-treated
platelets drives platelet-monocyte/
neutrophil interaction

Platelets interaction with circulating monocytes and neutrophils
is a sensitive index of the state of platelet activity (Cerletti et al., 2012;
Ortiz-Muñoz et al., 2014). PMN interaction generates a pro-
inflammatory phenotype by activating leucocytes and the
emergence of neutrophil extracellular traps (NETs) (Margraf and
Zarbock, 2019). Circulating amyloid-β, another β pleat-rich peptide,
reportedly activates platelets leading to a localized inflammatory
response by promoting NET formation (Canobbio et al., 2017).
Since prion peptide upregulated NLRP3 inflammasome activity in
platelets, we asked whether it would provoke interaction with

leucocytes. Predictably, platelet agonist TRAP (2 µM) prompted a
surge in platelet-monocyte as well as platelet-neutrophil aggregate
formation, which was impaired by YVAD, a specific inhibitor of
caspase-1 (Supplementary Figure 1), thus linking inflammasome to
platelet-monocyte/neutrophil (PMN) interaction. Prion peptide,
too, propelled platelet-monocyte and platelet-neutrophil
interactions significantly by 178% and 39%, respectively
(Figure 3). These prion-instigated events were forestalled either
by the ROS-scavenger EGCG (by 31% and 29%, respectively), or
by YVAD (by 33% and 32%, respectively) (Figure 3), thus
implicating the prion-ROS-caspase-1 axis in evolution pro-
inflammatory phenotype.

Several laboratories including ours have demonstrated high-
affinity interaction between fibrinogen and β pleat-rich peptides
such as prion and amyloid-β that prohibits action of these proteins
on neuronal cells, as well as on platelets (Ahn et al., 2014; Ahn et al.,
2010; Gautam et al., 2022; Sonkar et al., 2014). Keeping with above,
we observed a 42% decline in prion-induced caspase-1 activity when

FIGURE 2
ROS plays a key role in inflammasome activation in platelets. (A, B) PrP (106–126) (50 µM) induced a significant rise in intracellular ROS in platelets,
which was prevented upon pre-treatment with either EGCG (5 µM) or NAC (1 mM). (C, D) PrP-induced caspase-1 activity in platelets was significantly
prohibited by either EGCG or NAC. RP, resting platelets treated with buffer B. Data are presented as mean ± SEM and are representatives of at least four
different experiments. Statistical analysis was performed using repeated measures one-way ANOVA (paired), with Sidak’s multiple comparison test.
*P < 0.05; **P < 0.01.
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platelets were pre-treated with fibrinogen (Figures 4A, B), reflective
of impaired inflammasome activation. Concordantly, prion-
mediated ROS generation, too, was restrained by 58% upon prior
exposure of platelets to fibrinogen (Figures 4C–E). However,
fibrinogen was unable to restrict prion-mediated PMN
interaction (data not shown), which could be attributable to
factors in blood interacting with either fibrinogen or PrP, thus
precluding their association.

Discussion

Platelets express approximately 2000 PrPc on their surface, while
they also store them in their α-granules (Starke et al., 2005). Platelet
activation triggers the release of stored PrPc from granules,
augmenting prion surface count to as many as 4,500 molecules
per platelet and raising potential for its interaction with nearby
platelets (Holada et al., 1998). Prions can also cross the blood-brain
barrier and enter vasculature, exposing themselves to blood cells in
circulation (Banks et al., 2009). Diseases associated with protein
misfolding such as prion disease, Alzheimer’s disease, type-2
diabetes, and Parkinson’s disease are marked by inflammatory
responses (Shi et al., 2015). Misfolded proteins trigger cellular
stress (Rao and Bredesen, 2004), which promotes inflammasome

activation (Shi et al., 2015). Prion has also been shown to promote
the transcription of DAMP receptors in neuronal cells (Carroll et al.,
2018) and activate NLRP3 inflammasome in microglial cells (Shi
et al., 2012). The effect of prion on platelets is not a novel concept as
we have earlier identified its role in hemostasis (Gautam et al., 2022;
Mallick et al., 2015; Shi et al., 2012). Beyond their primary
contribution to hemostasis, platelets are also recognized as
immune effector cells, which induce NLRP3 inflammasome
activation in innate immune cells like monocytes (Rolfes et al.,
2020). Previous research has demonstrated that inflammasome
complex formation in activated platelets facilitates the
progression of dengue and sickle cell disease (Hottz et al., 2013;
Vogel et al., 2018). These findings inspired us to explore the role of
misfolded prion protein in inflammasome signaling in platelets.

Oxidative stress plays a crucial role in the conversion of PrPc to
PrPsc (Prasad and Bondy, 2019). Prion promotes ROS generation
and Ca2+ metabolism in neuronal cells (De Mario et al., 2019) while
increased calcium level provokes higher production of ROS
(Görlach et al., 2015). In the CNS, oxidative stress and
neuroinflammation are two of the main pathological hallmarks
associated with multiple neurodegenerative diseases (Braidy et al.,
2022). We have already demonstrated that prion instigates an
increase in the level of intracellular free calcium in platelets
(Mallick et al., 2015), which prompted us to examine the

FIGURE 3
Prion prompts platelet-monocyte/neutrophil (PMN) aggregate formation. Flow cytometric analysis of platelet-monocyte (A–D) and platelet-
neutrophil (F–I) interactions in whole blood stained with anti-CD41a-APC (specific for platelets) and anti-CD14-FITC (specific for neutrophils/
monocytes), followed by treatment with PrP (106–126) (50 µM) in presence or absence of either EGCG (5 µM) or YVAD (1 µM), as indicated. Control
platelets were treated with buffer B (vehicle) in place of PrP. Amorphous gates were drawn for monocyte (high fluorescence and low SSC) and
neutrophil (low fluorescence and high SSC) populations. (E) (n = 7) and (J) (n = 6), bar diagrams showing the percentage of platelet-monocyte and
platelet-neutrophil aggregate formation, respectively (mean ± SEM). *P < 0.05, **P < 0.01, as analysed by repeated measures one-way ANOVA (paired)
with Dunnet’s multiple comparison test.
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cytosolic oxidant status in these cells. In present study, prion was
found to facilitate intracellular ROS production in platelets, which
was inhibited in the presence of either of two ROS scavengers, EGCG
and NAC. EGCG, known for its anti-oxidant property (Mokra et al.,
2022), also inhibits NLRP3 inflammasome (Zhang et al., 2021). It
has anti-prion activity (Barreca et al., 2018) and protects against
prion protein-induced damage by regulating autophagy (Lee et al.,
2015). We found that prion promotes inflammasome complex
formation by generating active caspase-1, which subsequently
triggers a pro-inflammatory response in platelets. ROS scavengers
(NAC and EGCG) effectively attenuate caspase-1 activation, which
underscores their potential in addressing inflammatory disorders.
Inflammasome assembly was validated in our study from co-
localization of NLRP3 and ASC proteins, and cleavage of pro-
caspase-1 into its enzymatically active form.

In a recent study, blocking inflammasome activation was
reported to attenuate proliferation and invasion of circulating
pro-inflammatory monocytes in cases of stroke (Baek, 2024).
PrPsc activates microglia and astrocytes to release pro-
inflammatory cytokines, namely, IL-1β, IL-8, TNF-α, and IL-6,
unleashing an inflammatory phenotype. Activated platelets
engage with leucocytes through numerous surface receptors that

include P-selectin on platelets ligating with P-selectin glycoprotein
ligand-1 (PSGL-1) expressed on leucocyte membrane. Similarly,
CD40L, GPIIb/IIIa and GPIb, respectively, allow platelets and
platelet-derived extracellular vesicles (PEVs) to interact with
CD40, ICAM-1 and Mac-1 receptors present on leucocytes. In
recent years, PEVs have emerged as a significant source of non-
coding regulatory RNAs in the blood (Tao et al., 2017), which are
capable of binding to leucocytes (Fendl et al., 2018). We have earlier
demonstrated significant shedding of PEVs from prion-challenged
platelets (Mallick et al., 2015). Here we demonstrate that prion
promotes platelet-monocyte/neutrophil interaction, which is
repressed either by EGCG or YVAD, the inhibitor of caspase-1.

Pro-thrombotic attributes of platelet-monocyte/neutrophil
interaction have already been recognized (Ghasemzadeh and
Hosseini, 2013). Thrombus is a dynamic structure composed of
platelets, RBCs, leucocytes, fibrin, and von Willebrand Factor, with
platelets and fibrin playing seminal roles in its formation and
stability. However, the sizeable presence of prions within the
thrombus milieu sourced from platelets cannot be disregarded.
Research into this area could lead to newer insights into role of
prions linked to inflammation and thrombogenesis. In conclusion,
we found that prion stimulates ROS production in platelets leading

FIGURE 4
Fibrinogen prohibits prion-induced caspase-1 activation and generation of ROS. (A, B) prion-induced caspase-1 activity in the absence or presence
of fibrinogen (Fg) (2mg/mL). Fibrinogen was incubated for 10min before adding PrP (106–126) (50 µM). (C–E) prion-induced surge in Intracellular ROS in
platelet population in the absence or presence of fibrinogen, respectively. The bar graphs representmean ± SEM from four independent experiments. RP,
resting platelets treated with buffer B. *P < 0.05 as compared with PrP-treated platelets, analysis by paired Student’s t-test.
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to activation of caspase-1 and platelet-monocyte/neutrophil
aggregate formation, thus implicating a prion-ROS-
inflammasome-caspase-1 signaling axis in transformation of
resting platelets to functionally active inflammatory units.
However, considerable caution must be used in drawing such a
conclusion due to limitations like only one type of prion fragment
being employed in the study and experiments being performed only
ex vivo on isolated platelets and whole blood.
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