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Introduction: Orthobiologics, such as autologous nanofat, are emerging as a
potential treatment option for osteoarthritis (OA), a common degenerative joint
causing pain and disability in the elderly. Nanofat, a minimally processed human
fat graft rich in stromal vascular fraction (SVF) secretory factors, has shown
promise in relieving pain. This study aimed to elucidate the molecular
mechanisms underlying nanofat treatment of OA-affected cells and compare
two filtration systems used for nanofat preparation.

Methods: Chondrocytes and synoviocytes were isolated from articular cartilage
and synovium of 22 OA-patients. Lipoaspirates from 13 OA-patients were
emulsified using the Adinizer

®
or Lipocube™ Nano filter systems to generate

nanofat. The fluid phase of SVF from both filtered and unfiltered lipoaspirates was
applied to OA-affected cells. Luminex multiplex ELISA were performed with
lipoaspirates and cell supernatants alongside functional assays evaluating cell
migration, proliferation, metabolic activity, and senescence.

Results: A total of 62 cytokines, chemokines, growth factors, neuropeptides,
matrix-degrading enzymes, and complement components were identified in
lipoaspirates. Among these, significant concentration differences were
observed for TIMP-2, TGF-ß3, and complement component C3 between the
filtered and unfiltered samples. Nanofat enhanced chondrocyte proliferation and
migration, as well as synoviocyte migration andmetabolic activity, while reducing
chondrocyte metabolic activity. Pain-related factors like β-NGF, MCP-1,
Substance P, VEGF, and αCGRP were reduced, while anti-inflammatory TGF-
β1+3 increased and pro-inflammatory cytokines (IL-5, IL-7, IL-15, and IFN-γ)
decreased. Nanofat also elevated secretion of complement components and
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TIMPs in both cell types. Notably, our results revealed no significant differences in
cellular effects between sSVF filtered using the Adinizer

®
and Lipocube™ Nano

systems, as well as compared to unfiltered sSVF.

Discussion: Here, we provide first insights into how autologous nanofat therapy
may ameliorate OA by enhancing chondrocyte proliferation and synoviocyte
migration while modulating inflammatory and pain-related factors. However,
further research is needed to determine its effects on cartilage regeneration.
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GRAPHICAL ABSTRACT

Introduction

In 2020, Osteoarthritis (OA) affected over 500 million people
worldwide, with hand, hip, and knee being the most impacted joints
(Steinmetz et al., 2023). The pathogenesis of OA involves a complex
interplay of mechanical forces, inflammation, and metabolic factors,
affecting cartilage, subchondral bone, and synovium among other joint
tissues (Hunter and Bierma-Zeinstra, 2019; Kulkarni et al., 2021).

Articular cartilage, composed of chondrocytes, is embedded in a
vast extracellular matrix (ECM) including water, collagen,
proteoglycans, and glycoproteins, and undergoes significant changes
in OA. Chondrocytes in OA often display a senescent phenotype,

differentiating into hypertrophic chondrocytes that contribute to
cartilage degradation through the abnormal expression of matrix
metalloproteinases (MMPs) and reduced collagen II synthesis
(Goldring et al., 2011; Wang et al., 2004). Senescent chondrocytes
display a senescence-associated secretory phenotype (SASP) with
secretion of inflammatory factors that contribute to the joint’s pro-
inflammatory environment. Similarly, senescent synovial fibroblasts,
macrophages, and adipocytes exacerbate inflammation and joint
damage (Childs et al., 2015).

Inflammed synovial tissue, recognized as a critical factor in OA
pathophysiology, contains immune cells and cytokines that drive
pain and structural damage (Benito et al., 2005). Studies have linked
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synovitis with pain, with recent findings showing that synovial
inflammation correlates with pain sensation (Philpott et al.,
2022). Although articular cartilage lacks blood vessels and nerve
fibers, inflammatory processes can induce neoangiogenesis and
nociceptive nerve fiber growth in joint tissues, leading to pain
when cartilage is damaged (Ulici et al., 2024; Coaccioli et al., 2022).

Current OA treatments primarily focus on symptomatic relief
through nonsteroidal anti-inflammatory drugs, acetaminophen,
opioids, and intra-articular injections. However, these treatments
often have limited efficacy and safety concerns. Disease-modifying
OA drugs (DMOADs) aim to slow or reverse joint damage but face
unresolved challenges due to disease heterogeneity (Hunter and Bierma-
Zeinstra, 2019; Coaccioli et al., 2022; Schäfer and Grässel, 2022a).

Recent advances include the development of DMOADs
targeting ECM homeostasis and chondrocyte metabolism. For
example, the recombinant fibroblast growth factor 18, Sprifermin,
promoted dose-dependent cartilage thickness but no significant
changes in pain scores (Hochberg et al., 2019). An ADAMTS-5
inhibitor, S201086/GLPG 1972, and the WNT-β-catenin pathway
inhibitor Lorecivivint (SM04690) have demonstrated potential in
reducing cartilage loss and are currently under clinical investigation
(Schäfer and Grässel, 2022a; Schnitzer et al., 2023; Kim et al., 2022).

Orthobiologics, such as autologous nanofat, introduced by
Tonnard et al., in 2013, refers to mechanically emulsified
lipoaspirates used in regenerative medicine, dermatology, and
orthopedics. It has emerged as a promising new therapeutic
option for alleviating pain in OA due to its regenerative potential
and ability tomodulate the inflammatory environment within joints.
Its application in OA could offer a novel approach to managing the
disorder, addressing not only pain relief but also potentially slowing
disease progression (Tonnard et al., 2013). Unlike enzymatically
prepared adipose-derived stromal vascular fraction, nanofat
contains mesenchymal stem cells (MSCs), stromal cells, ECM
macromolecules, and numerous paracrine factors (Trivisonno
et al., 2019; Jeyaraman et al., 2021). Nanofat has shown
comparable success to cellular stromal vascular fractions in
reducing joint pain and improving mobility (Vargel et al., 2022).

This study aims to elucidate the molecular composition of a critical
nanofat component, the fluid phase of the SVF (sSVF, containing
both–intact adipocytes and secretomes of chopped adipocytes), on
metabolism of chondrocytes and synoviocytes isolated from OA-
affected knee joints. We compared nanofat prepared using the
Lipocube™ Nano and Adinizer® filter systems to each other and to
unfiltered lipoaspirates. Soluble paracrine factors were analyzed with
Luminex Multiplex-ELISA, and cellular responses were evaluated in
OA-chondrocytes and OA-synoviocytes in vitro. This study aimed to
deepen our understanding regarding the influence of nanofat on OA
pain, progression and treatment outcomes by systematically identifying
and analyzing its specific components and their effects.

Methods

Isolation and cultivation of human OA-
chondrocytes and -synoviocytes

The experimental design of this study included human articular
cartilage explants and synovial membranes prepared from knee

joints of 22 OA-patients (Supplementary Table S1) after total
knee replacement surgery. The use of human tissue was approved
by the ethics committee at the University of Regensburg (ethics vote:
25-101-0189, ethikkommission@ur.de).

Chondrocytes were isolated as published previously (Köck et al.,
2023). Synoviocytes (synovial fibroblasts and macrophages) were
isolated by chopping the synovial membrane and digesting the pieces
withDispase II in PBS at 37°C for 2 h. Afterwards, the digested tissue was
passed through a 70 μm cell strainer and cultured in DMEM/F12 with
10% FCS and 1% P/S. Both cell types were cultivated at 37°C, 5% CO2

and 95% humidity. For all further experiments, chondrocytes and
synoviocytes at passage 1 and 2 were used.

Preparation of lipoaspirates

Human adipose tissue was extracted from the abdomen of 13 OA-
patients undergoing liposuction for nanofat pain therapy
(Supplementary Table S1). The use of human tissue was conducted
with full approval from the ethics committee at the University of
Regensburg (ethics vote: 22-2915-101, Ethikkommission@ur.de). It is
important to highlight that, in accordance with German regulations, the
obtained nanofat emulsionmust only be transplanted into sub-synovial
fat tissue or theHoffa’s fat pad. The proper placement of the application
is monitored using sonography.

Lipoaspirates were processed into nanofat using two different filter
systems: the Lipocube™ Nano device (LC) (Lipocube, Inc., London,
UK) (Cohen et al., 2019) and the Adinizer® Smart Kit (AD) (BSLrest,
South Korea). The Lipocube™Nano is a device with a cuboid shape and
four openings. Filtration started at the first opening with a 1,000 μm
pore size filter blade. The fat tissue was compressed once from port 1 to
port 2, then homogenized by passing 10 times from port 2 to port 3
(without filtration). Finally, microfat samples were compressed once
fromport 3 to port 4 through a 500 μmpore size filter blade (Figure 1A),
resulting in LC-nanofat with a particle size of approximately 500 μm.
Both integrated filter units contain blunt, round metal blades, which
compress the lipoaspirate (Figures 1B, C).

In addition, the Adinizer® Smart Kit with a different setup was
used to process the fat tissue. Filtration started with a 2,400 μm pore
size blade by connecting a syringe containing the lipoaspirate
between the filter and another syringe (Figure 1D). The fat tissue
was passed through the filter 5-10 times. Four filters were used
sequentially (2,400, 1,200, 600, 400 μm). Unlike the blunt, round
metal blades of the Lipocube, Adinizer filters feature double-edged,
sharp metal blades. These allow for independent use and chopping
the fat tissue rather than compressing it (Figures 1E, F). This process
results in AD-nanofat with a particle size of approximately 400 μm.

As a control, lipoaspirates without filtration were used, further
termed native lipoaspirate (NF-lipoaspirate). After filtration, LC-
nanofat, AD-nanofat, and NF-lipoaspirate were centrifuged at 300 g
for 5 min. The lipoaspirates were separated into different fractions:
free oil, adipose tissue debris, the fluid phase of the stromal vascular
fraction (sSVF, containing both–intact adipocytes and secretomes of
chopped adipocytes), and the SVF pellet containing mesenchymal
stem cells (MSCs) (from top to bottom, Figure 2). The fluid phase
SVF (sSVF) was collected for further analysis, and stored at −80°C
for long-term preservation. sSVF was used for further cell
stimulation experiments at a dilution of 1:10, which was
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determined to be the most suitable concentration based on previous
experiments.

CellTiter-blue (CTB) viability assay

The metabolic activity of OA-chondrocytes and OA-
synoviocytes was determined using the CellTiter-Blue (CTB) cell

viability assay (#G8081, Promega GmbH.). Cells were seeded in
DMEM/F12 containing 10% FCS and 1% P/S at a density of
20.000 cells/cm2. Then, OA-chondrocytes were treated with the
sSVF of LC, AD and NF (dilution of 1:10) in chondrogenic
medium (DMEM supplemented with 1% P/S, 110 μg/mL Sodium
Pyruvate (#S8636; Sigma-Aldrich Chemie GmbH), 1 x ITS + premix
Universal Culture Supplement (#354352; Corning Incorporated),
40 μg/ml L-Proline (#P5607; Sigma-Aldrich Chemie GmbH),

FIGURE 1
Comparison of Lipocube™ Nano filtration device and Adinizer

®
Smart Kit. Two different filter devices were used to process lipoaspirates to nanofat

(A) First, the Lipocube™ Nano device with four ports and (B) two integrated filters in port 1 (1,000 µm) and port 4 (500 µm) both with (C) blunt round
blades (D) Second, the Adinizer

®
filter system with two syringes and four individually attachable blades, (E) depicted two out of four filter discs, each of

them with (F) double-edged, angular blades

FIGURE 2
Processing of lipoaspirates. Native unfiltered lipoaspirates, Adinizer

®
-filtered nanofat and Lipocube™ Nano-filtered nanofat were centrifuged to

obtain different fractions: free oil, debris of adipose tissue, fluid phase of SVF (sSVF) and the respective SVF pellet (containing MSCs). The fluid phase of the
SVF (sSVF) was used for all further analyses, whereas the other fractions were disregarded.
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0.1 µM Dexamethasone (#D4902; Sigma-Aldrich Chemie GmbH),
10 ng/mL recombinant human TGF-ß3 (#100-36 E; Thermo Fisher
Scientific Inc.), and 50 μg/mL Ascorbate-2-phosphate (A8960;
Sigma-Aldrich Chemie GmbH)). OA-synoviocytes were
incubated with LC-, AD-, NF-sSVF (1:10) in DMEM/
F12 containing 5% FCS and 1% P/S. Following 24 h sSVF
incubation, cells were treated with the CTB reagent and
incubated for 2 h at 37°C. Fluorescence was measured at 545 nm
excitation/590 nm emission.

Cellular senescence

Senescence was assessed by measuring the activity of
senescence-associated-β-galactosidase (SA-ß-gal) using the
Cellular Senescence Assay kit (#CBA231, Cell Biolabs, Inc.),
following the manufacturer’s protocol. Chondrocytes and
synoviocytes were seeded in DMEM/F12 with 10% FCS and 1%
P/S at a density of 20.000 cells/cm2, following incubation for 24 h
with sSVF from LC, AD and NF (1:10) as previously described.
Fluorescence was measured with 360 nm excitation and
465 nm emission.

Cell proliferation

Cell proliferation was assessed using a BrdU ELISA kit
(#11647229001; Hoffmann-La Roche Ltd.). Chondrocytes and
synoviocytes, seeded at 20.000 cells/cm2, were cultivated in
DMEM/F12 with 10% FCS and 1% P/S for 24 h. The medium
was then replaced with sSVF (1:10) as described previously, and
BrdU labeling solution was added for an additional 24 h. The labeled
cells were fixed, incubated with anti-BrdU-peroxidase, and
colorimetric changes were analyzed after adding the substrate
solution, following the manufacturer’s protocol. Absorbance was
measured at 450 nm.

Cell migration

Migration (scratch) assay was performed using culture-inserts
with two wells (#80209-150, ibidi GmbH) to provide improved
reproducibility. OA-chondrocytes and synoviocytes were seeded at a
density of 10.000 cells/well in DMEM/F12 with 10% FCS and 1% P/S
for 24 h. After removing the inserts, the cells were treated with
diluted sSVF (1:10) of NF, LC or AD in either chondrogenic medium
(chondrocytes) or DMEM/F12 with 1% FCS and 1% P/S
(synoviocytes). Migration of cells was determined by measuring
gap closure over time, using 0 h as reference.

Luminex multiplex-ELISA and CGRP-ELISA

OA-chondrocytes and OA-synoviocytes were cultivated and
treated with sSVF as previously described. After 24 h of sSVF
incubation, the cells were washed once with PBS. OA-
chondrocytes were then cultured in chondrogenic medium, while
OA-synoviocytes were maintained in DMEM/F12 medium with 1%

FCS and 1% P/S for an additional 24 h. Following this incubation,
supernatants were collected, analyzed, and stored at −80°C for long-
term preservation. Luminex multiplex-ELISA of different proteins
(Supplementary Table S2) was performed with cell supernatants
(undiluted) and sSVF of LC, AD andNF (diluted 1:5, 50 µL) by using
Bio-Plex 200 system with HTF (#171000205, Bio-Rad Laboratories).

The protein levels of calcitonin gene-related peptide (CGRP) in
the sSVF and cell supernatants were analyzed using human CGRP-I
EIA Kit (#EIA-CGRP-1, RayBiotech, Inc.). The assays were
performed according to the manufactures’ protocol.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
10.2.3 software (GraphPad Software Inc.). Results are presented
as boxplots (showing median and range from minimum to
maximum) or tables (showing mean and standard deviation).
The Kruskal–Wallis test with corrected Dunn’s post hoc test was
applied. Comparisons were made between the sSVF of AD, LC and
NF-treated groups compared to the untreated control group (w/o).
A p-value of ≤0.05 was considered statistically significant.

Results

This study aimed to identify pain- and inflammation-related
factors present in the fluid phase of the stromal vascular fraction
(sSVF) of lipoaspirates from OA-patients, which were mechanically
emulsified using two distinct filter systems–the Adinizer® and the
Lipocube™ Nano system. The sSVF fraction contains both–intact
adipocytes and secretomes of chopped adipocytes. Furthermore, we
investigated the effects of sSVF treatment on the cell metabolism of
OA-chondrocytes and -synoviocytes and compared the outcomes of
the two filtration systems used.

Novel detection of pain- and inflammation-
related factors in nanofat-derived sSVF

To our knowledge, this is the first study to comprehensively
analyze the inflammation- and pain-related factors within nanofat-
derived stromal vascular fraction (sSVF) from OA patients,
comparing filtered and unfiltered samples.

We identified differentially expressed inflammation- and pain-
related cytokines, chemokines, and growth factors, as well as pain-
associated neuropeptides and complement components, within the
sSVF of lipoaspirates from OA patients. Concentrations did not
significantly differ between Adinizer-filtered (AD)-, Lipocube Nano
(LC)-filtered, and not-filtered (NF) sSVF (Supplementary Table S3).

Additionally, OA-associated matrix degradation factors,
including matrix metalloproteinases (MMPs) and their inhibitors,
tissue inhibitors of metalloproteinases (TIMPs), were detected. Five
MMPs (MMP-1, -2, -3, -7, -9) were identified, however MMP-13
concentration was below detection limit. The highest concentrations
included TIMPs (TIMP-1, TIMP-2, TIMP-3), suggesting a potential
positive effect by ameliorating cartilage destruction. TIMP-2
concentration in LC-nanofat (35 pg/mL) was significantly
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increased compared to AD-nanofat (25 pg/mL) (Supplementary
Table S4, marked green). Three isoforms of anti-inflammatory TGF-
β (TGF-β1 – 3) could be detected, withTGF-β3 being significant lower
in LC-nanofat (6 pg/mL) compared to AD-nanofat (9 pg/mL)
(Supplementary Table S4, marked red). The concentrations of
Calcitonin Gene-Related Peptide (CGRP) and Substance P (SP),
the two sensory neuropeptides analyzed in NF-, AD- and LC-sSVF,
were not significant different (Supplementary Table S4).
Complement components from both the classical and alternative
pathways were measured, with C3 concentrations being lowest in
LC-nanofat (8 pg/mL) compared to AD-nanofat (42 pg/mL) and
NF-sSVF (77 pg/mL) (Supplementary Table S4, highlighted in blue).

Nanofat treatment induced chondrocyte
proliferation and synoviocyte migration

Considering the large range of factors identified in the sSVF and
the established therapeutic benefits of autologous fat grafting in
treating joint pain of OA-patients, we focused on investigating the
metabolism of OA-chondrocytes and synoviocytes when exposed to
LC-, AD- or NF-sSVF. We also compared the two different filtration
systems used to assess whether there were significant differences in
the metabolic cell data and to evaluate if both systems would be
equally suitable for clinical application in joint treatments (Figure 3).

Migration of synoviocytes and chondrocytes was determined by
measuring gap closure over time, using 0 h as reference (Figures 3A,
B, D, E). Gap closure of chondrocytes was significantly enhanced
after 24 h of AD- (mean 48% gap closure), LC- (mean 39.3% gap
closure), and NF-sSVF (mean 47.5% gap closure) incubation
compared to untreated controls (w/o, mean 11%) (Figures 3A,
B). In addition, NF- and AD-sSVF significantly induced
chondrocyte proliferation, whereas LC had no effect on
proliferation (Figure 3C).

OA-synoviocytes migrated faster after 24 h of incubation with all
three sSVF groups (meanNF 45.7%;AD47.8%; LC 42.8%) compared to
the untreated cells (mean 9.3%) (Figures 3D, E), whereas proliferation of
OA-synoviocytes was unchanged (Figure 3F).

Nanofat reduced metabolic activity of
chondrocytes and synoviocytes

To evaluate the therapeutic impact of nanofat treatment on
cellular function and aging, the metabolic activity and senescent
state of treated OA-chondrocytes and synoviocytes were
determined (Figure 4).

Chondrocytes incubated for 24 h with NF-, AD- and LC-sSVF
showed a significant reduction of metabolic activity compared to
untreated control cells. This reduction shifted over time tomatch the

FIGURE 3
Nanofat treatment altered migration and proliferation of OA-chondrocytes and synoviocytes. Human OA-chondrocytes or synoviocytes were
incubated for 24 hwith either unfiltered sSVF (NF), Adinizer

®
-filtered (AD) or Lipocube™Nano-filtered (LC) sSVF, or left untreated (w/o). Migration of (A, B)

chondrocytes and (D, E) synoviocytes was increased after treatment with all three sSVF groups compared to w/o. Proliferation of (C) chondrocytes was
induced after NF- and AD-sSVF incubation, whereas (F) synoviocytes proliferation was not impacted after sSVF treatment. n (chondrocytes) = 5; n
(synoviocytes) = 5; n (NF, LC, AD) = 3. Kruskal–Wallis, Dunn’s multiple comparisons test, ***p < 0.001, **p < 0.01, *p < 0.05. (B, E) magnification ×10.
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levels observed in untreated cells when chondrocytes were incubated
with AD- and LC-sSVF for 48 h (Figure 4A). The senescent state was
correlated to senescence-associated ß-galactosidase (SA-β-gal)
activity. Chondrocytes showed a time-dependent significant
reduction in SA-β-gal activity when treated for 48 h with NF-,
AD-, and LC-sSVF compared to untreated
chondrocytes (Figure 4B).

The metabolic activity of synoviocytes was induced after 48 h of
incubation with LC-sSVF and only by trend elevated in NF- and
AD-sSVF-treated cells compared to the untreated controls
(Figure 4C). No relevant alterations in SA-β-gal activity were
observed when synoviocytes were incubated with the three sSVF
groups, neither for 24 h nor for 48 h (Figure 4D).

We did not observe major differences in the metabolic effects on
chondrocytes and synoviocytes between nanofat filtered with the
Adinizer® and Lipocube™ Nano filter systems.

Nanofat suppressed secretion of pain-
related factors of chondrocytes and
synoviocytes

Following the results showing that treatments with NF-, LC-,
and AD-sSVF alter cellular behavior, the secretion profiles of

chondrocytes and synoviocytes treated with these lipoaspirates
were further analyzed. We performed Luminex Multiplex-ELISA
to determine changes of pain- and inflammation-associated
cytokines, chemokines and growth factors as well as pain-
associated neuropeptides and complement components in the
secretome (cell culture supernatants) of OA-chondrocytes and
-synoviocytes (Figure 5).

Chondrocytes treated with NF-, AD- and LC-sSVF secreted less
β-nerve growth factor (β-NGF), which is critically implicated in the
sensitization and activation of nociceptors, the sensory nerves in
joint tissues that respond to painful stimuli (Figure 5A). Vascular
endothelial growth factor (VEGF), a promoter of angiogenesis and
nerve growth, which also contributes to pain perception, was less
secreted in chondrocytes (Figure 5B) and synoviocytes (Figure 5I)
following NF-treatment compared to controls. Stem cell growth
factor-beta (SCGF-β) secretion levels were reduced when
chondrocytes were incubated with LC-sSVF (Figure 5C).
Macrophage migration inhibitory factor (MIF) was significantly
upregulated in secretomes of chondrocytes (Figure 5D) and
synoviocytes (Figure 5J) treated with AD- and LC-sSVF.
Additionally, chondrocyte secretion of granulocyte-macrophage
colony-stimulating factor (GM-CSF) was significantly decreased
when incubated with NF-, AD- or LC-sSVF (Figure 5E).
Secretion of Monocyte chemoattractant protein-1 (MCP-1/

FIGURE 4
Nanofat treatment caused time-dependent alterations in the metabolic activity and senescence state of OA-chondrocytes and -synoviocytes. OA-
chondrocytes or synoviocytes were incubated for 24 h and 48 h with either unfiltered sSVF (NF), Adinizer®-filtered (AD) or Lipocube™ Nano-filtered (LC)
sSVF, or left untreated (w/o). Metabolic activity of (A) chondrocytes was time-dependently decreased, whereas (C) synoviocytes showed induced
metabolic activity after 48 h of all three sSVF treatment groups compared to w/o. SA-β-gal activity as a marker for senescence induction was time-
dependently reduced in (B) chondrocytes, but slightly increased in (D) synoviocytes 48 h after incubation with all three sSVF groups. n (chondrocytes) = 4;
n (synoviocytes) = 4; n (NF, LC, AD) = 2–4. Kruskal–Wallis, Dunn’smultiple comparisons test, ****p <0.0001 ***p <0.001, **p < 0.01, *p < 0.05. SA-β-gal =
senescence-associated ß-galactosidase.

Frontiers in Cell and Developmental Biology frontiersin.org07

Behn et al. 10.3389/fcell.2025.1534281

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2025.1534281


CCL2), a critical mediator of inflammation and tissue remodeling in
OA, was significantly reduced when cells were incubated with LC-
sSVF (Figure 5F). Substance P (SP), which is associated with chronic
inflammation and nociceptive pain in the joint, was slightly
decreased in OA-chondrocyte (Figure 5G) as well as in
synoviocyte secretomes (Figure 5K) when treated with LC- an AD.

Calcitonin gene-related peptide (αCGRP), a sensory
neuropeptide involved in both pro-inflammatory and bone-
protective properties, was decreased in the secretomes of
chondrocytes (Figure 5H) and synoviocytes (Figure 5L) following
treatment with NF-sSVF compared to untreated controls.

We did not observe any differences in the affected pain
sensitization factors between nanofat filtered with the Adinizer®

and Lipocube™ Nano filter systems.

Nanofat treatment modulated secretion of
inflammatory factors in chondrocytes and
synoviocytes

Secretion changes of transforming growth factor beta (TGF-β)
and inflammation-related factors as interleukins (IL-5, 6, 7, 8, 15),

interferon γ (IFN-γ), chemokine ligand 5 (CCL5; also known as
RANTES) and chemokine ligand 1 (CXCL1; also known as Gro-α)
were observed in with all three sSVF-treated chondrocytes and
synoviocytes (Figure 6).

A significant increase in TGF-β1 secretion was observed in
chondrocytes incubated with NF-sSVF compared to untreated
control chondrocytes (Figure 6A), whereas synoviocytes treated
with NF-, AD- and LC-sSVF secreted higher levels of TGF-β1
and TGF-β3 compared to untreated controls (Figures 6E, F).

Secretion of Interferon gamma (IFN-γ), considered as pro-
inflammatory cytokine, was significantly reduced in NF- and
AD-sSVF treated chondrocytes (Figure 6B) and in LC-sSVF
treated synoviocytes (Figure 6G). For IL-15, a similar effect could
be detected, with decreased secretion levels in the supernatant of NF-
and LC-sSVF treated chondrocytes (Figure 6D). In contrast to that,
pro-inflammatory cytokine IL-6 was elevated in secretomes of
chondrocytes incubated with AD- and LC-sSVF (Figure 6C).

OA-synoviocytes are predominantly located in the synovium,
which is recognized as the site of inflammatory processes (synovitis)
in OA. In OA-synoviocytes, NF-, LC- and AD-sSVF treatment
significantly reduced pro-inflammatory factors IL-5 (Figure 6I)
and IL-7 (Figure 6J) compared to untreated cells. Additionally,

FIGURE 5
Nanofat treatment modified protein secretion levels of pain-related factors in chondrocytes and synoviocytes. Human OA-chondrocytes or
synoviocytes were incubated for 24 h with either unfiltered sSVF (NF), Adinizer

®
-filtered (AD) or Lipocube™ Nano-filtered (LC) sSVF, or left untreated (w/o).

Alterations of chondrocytes protein secretion levels could be detected for (A) β-NGF (B) VEGF (C) SCGF-β (D)MIF (E)GM-CSF (F)MCP-1 (G) Substance P
(SP) and (H) α-CGRP. Secretion levels of sSVF-treated OA synovioctes changed for (I) VEGF (J) MIF (K) SP and (L) α-CGRP. n (chondrocytes) = 3; n
(synoviocytes) = 3; n (NF, LC, AD) = 3. Kruskal–Wallis, Dunn’s multiple comparisons test, **p < 0.01, *p < 0.05.
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secretion levels of IL-8 (Figure 6K), RANTES (Figure 6H) and Gro-α
(Figure 6L) were elevated by synoviocytes following treatment with
NF-, AD- and LC- sSVF.

Nanofat impacted the secretion of
complement components in chondrocytes
and synoviocytes

The complement system, essential to the innate immune system,
serves as a primary defense mechanism and is involved in various
physiological processes both systemically but also locally within
nearly all cells of the body.We analyzed the secretion of complement
components of OA-chondrocytes and OA-synoviocytes after
incubation with nanofat (Figure 7).

Pre-incubation of NF-, LC- or AD-sSVF resulted in significant
higher levels of C1q and C4 levels in chondrocyte (Figures 7A, B)
and synoviocyte (Figures 7C, D) cell culture supernatants compared
to untreated cells.

In both cell-types–chondrocytes and synoviocytes–NF-, AD-
and LC-sSVF treatment leads to significantly elevated secretion of

C3 (Figures 7E, G) and C3b (Figures 7F, H), the major complement
component of the alternative pathway.

A significant elevation of complement factor B (CFB)
secretion, crucial for the activation of the alternative pathway,
was observed in treated chondrocytes (NF-, LC- and AD-sSVF)
and synoviocytes (NF- and LC-sSVF) (Figures 7I, J). FH
secretion, the main inhibitor of the alternative complement
pathway, was significantly increased in OA-chondrocytes and
synoviocytes treated with NF-, AD- and LC-sSVF compared to
untreated cells (Figures 7J, L).

We did not observe any differences in the affected complement
components between nanofat filtered with the Adinizer® and
Lipocube™ Nano filter systems.

Nanofat impacted the secretion of tissue
inhibitor of metalloproteinases (TIMPs) in
chondrocytes and synoviocytes

Tissue inhibitors of metalloproteinases (TIMPs) regulate MMPs
activity, which is crucial for maintaining cartilage integrity. In OA,

FIGURE 6
Nanofat treatment altered the protein secretion levels of inflammation-associated factors in chondrocytes and synoviocytes. Human OA-
chondrocytes or synoviocytes were incubated for 24 h with either unfiltered sSVF (NF), Adinizer

®
-filtered (AD) or Lipocube™ Nano-filtered (LC) sSVF, or

left untreated (w/o). Secretion levels of all three sSVF groups-treated chondrocytes were changed for the following inflammation-associated factors (A)
TGF-β1, (B) IFN-γ (C) IL-6 and (D) IL-15. Synoviocytes secretion of (E) TGF-β1 (F) TGF-β3, (G) IFN-γ (H) RANTES, (I) IL-5 (J) IL-7, (K) IL-8 and (L)Gro-α
was impacted by all three sSVF treatment groups. n (chondrocytes) = 3; n (synoviocytes) = 3; n (NF, LC, AD) = 3. Kruskal–Wallis, Dunn’s multiple
comparisons test, **p < 0.01, *p < 0.05.
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an imbalance between MMPs and TIMPs can lead to excessive
cartilage matrix degradation, contributing to disease progression.

In this study, nanofat influenced TIMP secretion in both
chondrocytes and synoviocytes. Treatment with NF-, AD-, and
LC-sSVF led to elevated TIMP-3 levels in chondrocytes
(Figure 8C) and increased TIMP-1 and TIMP-3 levels in
synoviocytes (Figures 8D, F). However, the secretion levels of
TIMP-1 remained unchanged in treated chondrocytes
(Figure 8A), and no alterations were observed in TIMP-2
secretion in both chondrocytes and synoviocytes following
treatment (Figures 8B, E). This modulation of TIMP secretion
indicates that nanofat may help restore the balance between
matrix degradation and repair processes in OA-affected joints.

Discussion

The objective of this study was to elucidate the potential
influence of nanofat on the progression and treatment outcomes
of osteoarthritis (OA). This research aimed to provide first insights

into the molecular mechanisms underlying autologous nanofat
therapy for OA pain through in vitro analysis. The study
conducted novel comprehensive analysis of pain-related and
inflammation-associated factors present in unfiltered native
lipoaspirates, and lipoaspirates processed using and comparing
the Adinizer® filter system and the Lipocube™ Nano filter
system, with respect to effects on the molecular composition of
the fluid phase stromal vascular fractions (sSVF) of the nanofat by
the two different filter systems. Additionally, metabolic alterations in
OA-chondrocytes and OA-synoviocytes treated with nanofat
were examined.

The two emulsification devices, Adinizer® and Lipocube™Nano
filters, are configured differently. A key distinction lies in the filter
pore size; the Adinizer® system, with a smaller pore size of 400 μm,
segments the adipose tissue into finer conglomerates with sharp
blades compared to the Lipocube™ Nano, which has a pore size
of 500 µm with rounded blades. Kharamatsova et al. demonstrated
that reducing the pore size of filters resulted in a different
shape of adipocyte conglomerates (Khramtsova et al., 2020).
Also, the number of viable adipocytes is significantly lower in

FIGURE 7
Nanofat treatment changed the protein secretion levels of complement components in chondrocytes and synoviocytes. HumanOA-chondrocytes
or synoviocytes were incubated for 24 h with either unfiltered sSVF (NF), Adinizer

®
-filtered (AD) or Lipocube™ Nano-filtered (LC) sSVF, or left untreated

(w/o). Chondrocyte and synoviocyte secretion of complement components of the classical pathway (A, C) C1q (B, D) C4, and of the alternative pathway
(E, G)C3 (F, H)C3b (I, K)CFB, and (J, L) FHwas changed after incubationwith all three sSVF-groups. n (chondrocytes) = 3; n (synoviocytes) = 3; n (NF,
LC, AD) = 3. Kruskal–Wallis, Dunn’s multiple comparisons test, ***p < 0.001, **p < 0.01, *p < 0.05.
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Adinizer-processed lipoaspirates compared to Lipocube Nano-
processed nanofat. The typical diameter of adipocytes is 80 μm,
but this size can expand to 120 μm in obese individuals (Li and
Spalding, 2022).

We hypothesized that the smallest pore size of the Adinizer filter
of 400 μm and the sharp blades more effectively fragment adipose
tissue and chop adipocytes compared to the Lipocube Nano, where
adipocytes are more likely to remain intact due to less frequent
compression and a larger rounded pore size. The Adinizer facilitates
multiple compressions, enhancing adipocyte destruction, unlike the
single compression through the Lipocube Nano.

In this study, we used the sSVF, hypothesizing that the soluble
factors within the SVF containing both intact adipocytes and
secretomes of chopped adipocytes, rather than the SVF pellet
containing the mesenchymal stem cells (MSCs), are responsible
for achieving beneficial effects in pain therapy for OA-patients.
Notably, our findings showed no significant differences in cellular
effects between sSVF filtered with the Adinizer® and Lipocube™
Nano systems. This suggests that the different filter systems may
have no significant impact on how adipocytes are processed, at least
within our experimental setup. Some variations were observed
regarding the composition of pain- and inflammation-related
markers, specifically TIMP-2, TGF-β3, and complement
component C3, between the Adinizer®- and Lipocube™-filtered
sSVF. Notably, most of the clinical studies have documented a
long lasting significant improvement of pain perception after
application of processed/filtered autologous lipoaspirates into

OA-affected knees making this rather simple and safe treatment
technique attractive for delaying final joint replacement surgery.
However, one should not ignore the possibility of inter-human
variability which is fundamental for the success of these biological
therapies, because a particular subgroup of patients could respond
better/worse to a specific biologic stimulus in the sSVF than another.

Nanofat, containing metabolically active factors and MSCs, is
recognized for its regenerative potential, impacting on surrounding
tissues and cells (Grünherz et al., 2019). Here, we detected
62 cytokines, chemokines, growth factors, neuropeptides and
factors associated with tissue degradation (MMPs and TIMPs) as
well as complement components in the sSVF. All these factors have
potential effects on cells within the joint. Therefore, sSVF-treated
OA-chondrocytes and -synoviocytes were functionally analyzed
regarding metabolic changes. OA-chondrocytes exhibited
accelerated gap closure, which appears to result from both
enhanced proliferation and increased migratory capacity.
Numerous in vitro studies have indicated that chondrocytes can
migrate under the influence of various factors (Morales, 2007).
Moreover, migration of chondrocytes to an injury site and
evidence of extracellular matrix (ECM) synthesis have been
observed in vitro and ex vivo studies (Seol et al., 2014; Lyman
et al., 2012). Notably, cartilage ECM reconstruction requires
chondrocytes to be present at injury sites. An increase in
chondrocyte proliferation boosts their numbers within the
cartilage, which may be crucial for supporting effective cartilage
regeneration (Le et al., 2020).

FIGURE 8
Nanofat treatment changed the protein secretion levels of TIMPs in chondrocytes and synoviocytes. Human OA-chondrocytes or synoviocytes
were incubated for 24 h with either unfiltered sSVF (NF), Adinizer

®
-filtered (AD) or Lipocube™ Nano-filtered (LC) sSVF, or left untreated (w/o).

Chondrocyte and synoviocyte secretion of (A, D) TIMP-1 and (C, F) TIMP-3 were changed after incubation with all three sSVF-groups (B, E) TIMP-2
secretion levels were not changed after sSVF incubation. n (chondrocytes) = 3; n (synoviocytes) = 3; n (NF, LC, AD) = 3. Kruskal–Wallis, Dunn’s
multiple comparisons test, ***p < 0.001, **p < 0.01, *p < 0.05.
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Contrary, synoviocytes showed enhanced migratory capacity
with unaltered proliferation after sSVF treatment. Synoviocytes
comprise a heterogeneous population of cells within the joint
synovium, including fibroblast-like and macrophage-like cells. It
is well established that macrophages and monocytes are motile,
enabling them to reach any inflamed tissue in the body (Coaccioli
et al., 2022). Macrophages can differentiate into the pro-
inflammatory (M1) or anti-inflammatory (M2) phenotype. In
synovial tissue, M1 as well as M2 macrophages are present, latter
secreting anti-inflammatory cytokines and contribute to resolution
of inflammation and regeneration of tissue defects (Mantovani et al.,
2013; Zhao et al., 2023). Based on our current findings, we
hypothesize that nanofat may modulate macrophage polarization
via its soluble constituents, potentially enhancing M2 macrophage
migration and positively affecting the joint’s inflammatorymilieu. In
addition, metabolic activity of lipoaspirate-treated OA-
chondrocytes was found to be significantly reduced, and the
senescent state was decreased in NF-lipoaspirate treated OA-
chondrocytes. Senescent chondrocytes are known contributors to
pathophysiological changes in OA. They are mainly located close to
osteoarthritic lesions and are not found in healthy cartilage tissue
(Price et al., 2002). In the senescent state they display a senescence-
associated secretory phenotype (SASP), secreting high levels of pro-
inflammatory cytokines, and growth factors that trigger destructive
processes. In an in vivo study, the selective removal of p16INK4a-
positive senescent cells led to a reduction in inflammation, attributed
to decreased levels of SASP, indicating that reducing senescent cell
populations may confer protective effects against OA-related
damage (Jeon et al., 2017).

Cytokine concentration analyses in OA-patients have mainly
targeted synovial fluid and, to a lesser extent, serum, revealing
elevated levels of both pro-inflammatory and anti-inflammatory
cytokines, chemokines, and growth factors compared to healthy
individuals in synovial fluid. Additionally, correlations have been
found between these elevated factors and knee pain, as well as
functional limitations (Nees et al., 2019). To our knowledge, there
are no existing data on cytokine concentrations in the nanofat
batches used for intra-articular treatment of OA-patients. The
therapeutic effects of nanofat therapy in OA-patients, whether
prepared enzymatically or mechanically, appear promising. In
this study, we used the sSVF of nanofat, which contains
both–intact adipocytes and the secretome of processed
adipocytes. Other recent publications demonstrate similar
promising results using various forms of adipose-derived
treatments. Ge et al. investigated a nanofat lysate, created
through repeated freeze-thawing of nanofat, which improved
cartilage degeneration and chondrocyte function in an
experimental murine OA-model (Ge et al., 2023). Boxtel et al.
demonstrated that tissue-like SVF (cells and matrix) had pro-
regenerative and anti-inflammatory effects on OA-chondrocytes
(Vonk et al., 2022). Additionally, Kokai et al. compared various
adipose preparation methods and found that processed nanofat
demonstrated anabolic and regenerative potential in human OA
chondrocytes. They concluded that mechanically processed
preparations could be more effective than isolated SVF cell
preparations (Kokai et al., 2022). Several clinical studies have
documented long lasting reductions in pain and symptoms, along
with enhanced knee joint functionality (Lavagnolo et al., 2021). We

observed a reduction of β-NGF and SCGF-β concentrations in the
secretomes of nanofat-treated OA-chondrocytes, which is consistent
with reduced pain sensation reported by patients after nanofat
injection. One observed joint feature of arthritic diseases is
growth of nociceptive nerve fibers along new blood vessels, which
contribute to pain development. VEGF mediates the growth of new
blood vessels and allows indirect growth of new nerve fibers into
joint tissues (Walsh et al., 2010). Our data showed reduced VEGF
secretion of nanofat-treated OA-synoviocytes and OA-
chondrocytes, which may be beneficial in OA pathogenesis by
preventing excessive sprouting of nociceptive nerve fibers. MCP-1
(CCL2) and GM-CSF, two factors associated with OA-pathogenesis
(van Helvoort et al., 2020), were also downregulated. Data from
MCP-1-deficient mice demonstrated fewer immune cells infiltrating
joint tissues and consequently less cartilage damage. Additionally, a
reduction in inflammation and tissue damage was observed in
surgical induced OA-mice treated with an MCP-1 inhibitor
(Raghu et al., 2017).

In context of an inflammatory environment, we observed a
downregulation of IFN-γ in all three sSVF treatment groups OA-
chondrocytes and synoviocytes, along with a reduction in IL-5
(chondrocytes), IL-7 and IL-15 (chondrocytes and synoviocytes).
It is well-established that low-grade inflammation is critical in the
pathogenesis of OA. Therefore, mitigating inflammatory processes
and reducing pro-inflammatory cytokines are crucial for
suppressing joint tissue damage (Gonçalves et al., 2022). IFN-γ
has been demonstrated to induce the secretion of pro-inflammatory
cytokines and MMPs in bovine chondrocytes. Additionally, it exerts
a regulatory influence on human and murine osteoblasts (Gilbert
et al., 2022). Thus, our data indicate a reduction of the inflammatory
environment within the joint. Furthermore, we observed an increase
in the secretion of TGF-β1 (chondrocytes and synoviocytes) and
TGF β3 (synoviocytes). The combination of TGF-β1 and bone
morphogenetic protein-2 (BMP-2) has been shown to promote
chondrogenesis in synovial tissue explants from OA-patients,
with subsequent cartilage formation (Hunziker et al., 2023).
Similarly, TGF-β3 has been found to induce chondrogenesis of
MSCs and facilitate cartilage formation (Bian et al., 2011). We
propose that elevated TGF-β secretion may have therapeutic
effects on damaged cartilage in OA-affected joints.

Regarding TIMPs, this study showed that nanofat treatment
led to an increased secretion of TIMP-1 and TIMP-3 in both cell
types. TIMPs are crucial in maintaining the balance between
matrix degradation and repair, and their dysregulation can
accelerate cartilage destruction in OA (Mukherjee and Das,
2024). Recent studies highlight the critical role of TIMP-3 in
regulating tissue degradation and preventing cartilage damage in
OA. TIMP-3 specifically inhibits several MMPs that contribute to
ECM breakdown, thereby playing a key role in preserving joint
integrity (Nakamura et al., 2020). Additionally, TIMP-1 has been
associated with reducing inflammatory responses and mitigating
pain in OA. By inhibiting MMP activity and modulating
inflammatory pathways, TIMP-1 may help to alleviate the
pain and inflammation that are hallmarks of OA (Knight
et al., 2019). The clinical significance of this finding lies in its
potential to alter the course of OA by providing symptomatic
pain relief and offering regenerative effects by slowing down
cartilage degradation.
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However, pro-inflammatory interleukins (IL-6, IL-8),
chemokines (RANTES/CCL5; Gro-α/CXCL1) and complement
components (C1q, C4, C3, CFB and FH) were found to be
elevated after lipoaspirate-treatment of OA-chondrocytes and
OA-synoviocytes. Recent studies have demonstrated elevated
levels of these molecules in the synovial fluid of OA-patients.
These factors not only exacerbate inflammation but also initiate
molecular changes that lead to structural alterations, like cartilage
degradation, osteophyte formation, subchondral bone sclerosis and
synovial inflammation, contributing to the pathogenesis of OA
(Molnar et al., 2021; Dhilip and Parameswari, 2024; Holers et al.,
2023; Schäfer and Grässel, 2022b; Hou et al., 2020). By elevating
complement components such as C3 and CFB, along with the
inhibitory factor FH, nanofat may contribute to a more balanced
immune response, which could play a role in mitigating
inflammation and tissue damage in OA-affected joints.

Clinically, it is recognized that knee swelling following intra-
articular (i.a.) interventions usually subsides within a few days
without requiring intervention. Similar observations have been
made by other groups. One study reported swelling of the knee in
7% of the patients occurring less than 1 week (Panchal et al., 2018;
Garza et al., 2020). However, the i. a. transplantation procedures
of SVF and micro-fractured adipose tissue outlined in these
studies involved administering lower volumes. Given the
constrained space within the knee cavity and the clinical
injection of a substantial volume (approximately 100 mL) of
LC-filtered nanofat, cellular stress is expected. This leads to a
transient increase in inflammatory responses. We analyzed OA-
chondrocytes and OA-synoviocytes after only 24 h and 48 h of
treatment. The observed elevation in inflammatory cytokines
could be a natural response to the treatment, likely to
resolve over time.

Conclusion

This study demonstrated that nanofat treatment influenced the
metabolic activity of chondrocytes and synoviocytes, as well as the
secretion of pain- and inflammation-related factors. However, there
were no significant differences in the effects between the Adinizer®
and Lipocube™Nano filter systems. Based on these in vitro findings,
both filtration systems appear suitable for clinical applications as
joint treatment in OA. Further research is needed to validate these
results in (pre-) clinical settings and to ensure their safety and
efficacy in actual patient treatments.

Our findings indicate that nanofat may serve as a
complementary or even alternative treatment to traditional anti-
inflammatory therapies with NSAIDs and corticosteroids. Given the
potential for fewer systemic side effects, nanofat injections could be
particularly valuable for patients who are either unresponsive to
conventional treatments or at risk for adverse effects from long-term
medication use. Further clinical trials are essential to establish the
role of nanofat in the therapeutic landscape of OA, particularly its
long-term efficacy and safety profile.

Limitations of the study

The primary limitation of this study arises from using OA-
chondrocytes, OA-synoviocytes, and OA-nanofat from different
donors, due to disparate medical procedures. Specifically, patients
undergoing total knee replacement surgery do not receive
autologous nanofat, and nanofat therapy does not necessitate
knee replacement within at least 1 year after application. This
can lead to a higher variability in vitro experiments due to the
different patients’ medical backgrounds. Additionally, the
composition of nanofat presents a potential challenge for in vitro
studies. While it includes anabolic physiological molecules, it may
also contain environmental toxins or medication residues
originating from the donor’s adipose tissue. These contaminants
can influence cellular metabolism, making it difficult to reproduce
experimental results consistently as each combination of cells and
nanofat interacts slightly different. However, these limitations do
not apply in clinical settings, as the therapy is strict autologous. Also,
no non-OA sSVF could be analyzed. As a result, it was not possible
to compare the concentrations of factors contained in the sSVF of
OA-versus non-OA donors.
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