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The Notch signaling pathway is an evolutionarily conserved intercellular signaling
cascade that regulates a number of cellular processes, including cell
development, proliferation, apoptosis, and genome stability. The Notch
signaling pathway is pervasive in the human body, affecting tumorigenesis and
progression, which is one of themost significant signaling pathways in this regard,
influencing various receptors and cellular functions of tumor cells. Aberrant
expression or mutation of Notch has been linked to the onset and
progression of a variety of malignant tumors. In this review, we discussed the
mechanism of Notch signaling in lung, liver and colorectal cancer and explored
future strategies and directions for cancer treatment by modifying the Notch
signaling pathway.
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Introduction

In 1917, Morgan and his colleagues published the first description of a notch on the edge
of the wing of Drosophila. This was the result of a heterozygous deletion of a gene on the X
chromosome, which was subsequently designated “Notch” (Morgan, 1917). As a highly
conserved intercellular signaling pathway, “Notch” was observed in a variety of eukaryotic
organisms. It transmits signals through interactions between neighboring cells and can
influence cell proliferation, differentiation, migration, growth, and apoptosis. The
determination of cell fate was a crucial function of the Notch signaling pathway, which
was critical in a multitude of biological processes, including growth, development, and
tissue repair (Vijayaraghavan et al., 2018).

The Notch signaling pathway consists of five ligands: Delta-like 1, 3, 4 (Dll1, Dll3, Dll4)
and Jagged 1, 2 (Jag1, Jag2) and four Notch receptors (Notch1, Notch 2, Notch3, Notch 4)
(Kovall et al., 2017). The precursor of the Notch receptor protein is synthesized in the
endoplasmic reticulum and subsequently cleaved by the Furin protease in the Golgi
apparatus. This process generates a heterodimeric Notch protein, which is then
transferred to the cell surface (Kopan and Ilagan, 2009). As shown in Figure 1, Notch
receptors are type I transmembrane proteins, comprising Notch extracellular (NEC), Notch
transmembrane (NTM), and Notch intracellular domain (NICD). The NEC domain is a
heterodimeric protein composed of 29–36 epidermal growth factor (EGF)-like repeats,
which facilitate binding to Notch ligands. Additionally, it contains three cysteine-rich
repeats and a heterodimerization (HD) structural domain, which serve to block ligand-
independent signaling. The NTM region contains Lin12-Notch repeats (LNR) and a HD
domain followed by three cleavage site 1 (S1), S2, and S3. The NICD comprises a
recombination signal-binding protein 1 for the J-kappa-association molecule (RAM)
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domain, ankyrin (ANK) repeats, a transactivation domain (TAD),
and a proline/glutamine/serine/threonine-rich (PEST) domain
(Zhou et al., 2022).

Activation of the Notch
signaling pathway

The interaction of Notch receptors with ligands in neighbouring
cells leads to activation of the Notch signaling pathway, and this
interaction is completed by a three-fold enzymatic cleavage process.
Firstly, Notch receptor precursor proteins are synthesized in the
endoplasmic reticulum. The newly synthesized Notch proteins are
then glycosylated and cleaved for the first time in the Golgi
apparatus by the furin protease converting enzyme at the S1,
which is located about 70 amino acids outside the
transmembrane segment, forming the NEC and NTM (Tyagi
et al., 2020). These are subsequently bound together by
noncovalent interactions between the N- and C-termini of HD
domain. S1 cleavage may occur in the negative regulatory region
(NRR), which consists of three LNR and a HD domain.

A pivotal regulatory point in Notch signaling transduction is
ligand-induced and metalloprotease-mediated Notch receptor
cleavage within the NRR. Signaling is initiated when ligand
binding induces metalloprotease cleavage of Notch.
Metalloproteinase cleavage site S2 is located within the NRR.
NRR is key to prevention of receptor activation in the lack of
ligand. Upon reaching the surface of the signal-receiving cell,
NEC domains bind to the ligand from the signal-sending cell.
The ligand is then endocytosed into the signal-sending cell,
where pressure is exerted on Notch, resulting in the dissociation
of the Notch heterodimer as well as a second cleavage of Notch by
the disintegrin and metalloproteinase family at S2, which is located
about 12–13 amino acids outside the transmembrane domain, and
the N-terminal cleavage fragment is liganded into the ligand cell.
The N-terminal cleavage fragment is then phagocytosed by ligand
cells, and the C-terminal cleavage fragment is cleaved a third time by
the γ-secretase complex at the S3 to release the soluble NICD. The
cleaved NICD is released from the membrane and ectopically
translocates to the nucleus, where it combines with signal bind-

ing protein for the Mastermind-like family members (MAML1) and
other activators to form a Notch transcriptional activator complex
that induces the expression of Notch target genes (Pandey
et al., 2020).

Advances in Notch signaling pathway in
cancer research

The function of the Notch signaling pathway in the development
of tumors has been elucidated, and numerous studies have
demonstrated that the dysregulation of the Notch signaling
pathway is linked to the onset of various neoplastic diseases,
including lung cancer, liver cancer, and colorectal cancer.

Lung cancer

Notch activity remains a significant contributor to the transition
from developmental lung formation to participation in lung
plasticity and repair. The peculiar revitalisation of Notch
signaling has been demonstrated to be linked to the development
and progression of lung cancer, including small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC). NSCLC is the
most common form of lung cancer, constituting for 80%–85% of
cases. Notch1 has been implicated in the onset and development of
NSCLC and may be useful in assessing disease progression, based on
a growing body of evidence (Huang et al., 2020). Notch2 expression
levels were approximately 40% higher in patients with advanced
NSCLC compared to patients with stage I disease, and the incidence
of Notch2 overexpression (22% increase) was significant in patients
with disease recurrence (Chen et al., 2017).

The growth, invasion and metastasis of lung cancer were closely
related to Notch signaling pathway. The identification of new
prognostic biomarkers to guide surveillance was crucial and
urgently needed from a clinical perspective. As investigated by
Liu et al., the levels of Notch receptors and ligands might be
applied as potential markers to assess the prognosis of patients
with lung cancer. High levels of Jag1, Dll1, Notch1, and
Notch2 mRNA were observed in the better overall survival of the

FIGURE 1
Notch receptor structure. The NEC region has 29–36 EGF-like repeats. The NTM region contains LNR and a HD domain followed by S1, S2, and S3.
The NICD comprises a RAM domain, ANK repeats, a TAD, and a PEST domain. NEC: Notch extracellular; EGF: epidermal growth factor; NTM: Notch
transmembrane; LNR: Lin12-Notch repeats; HD: heterodimerization; NRR: negative regulatory region; NICD: Notch intracellular domain; RAM:
recombination signal-binding protein 1 for the J-kappa-associationmolecule; ANK: ankyrin; TAD: transactivation domain; PEST: proline/glutamine/
serine/threonine-rich.
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lung adenocarcinoma patients, while higher levels of Jag2, Dll3, and
Notch3 mRNA were associated with poor survival (Liu et al., 2016).
The opposite prognostic value of Jag1 with Jag2 was attributed to
their mutual inhibition and different regulatory mechanisms
reported by Choi et al. (2009) They found that the levels of
Jag1 and Jag2 were inversely modulated and mutually
suppressive. Jag1 levels increased in Jag2 siRNA-transfected cells
and Jag2 levels increased in Jag1 siRNA-transfected cells. In
comparison to healthy lung tissues, weaker Notch2 expressions
existed in NSCLC patients (Baumgart et al., 2015). Yagci et al.
(2019) found that the higher susceptibility to lung cancer was
notably linked to the G684A and C381T synonymous
polymorphisms in the Notch3 gene.

In addition, SCLC accounts for roughly 15% of all lung cancer,
which is characterised by highly aggressive, poorly differentiated
features (Zhang et al., 2023). George et al. (2015) analysed 71 of
152 fresh-frozen clinical tumour specimens from SCLC patients by
genome sequencing, and found the prevalence of Notch mutations
in SCLC has been estimated to be in the range of 25%–28%, resulting
in a loss of function of the Notch signaling pathway (Ardeshir-
Larijani et al., 2018). Specifically, analysis of clinical trial samples
confirmed that the Notch inhibitory ligand, DLL3, is expressed in
more than 75% of SCLC, and that the majority of SCLC patients
have high levels of DLL3 expression (Hu et al., 2022).

Liver cancer

Liver cancer includes intrahepatic cholangiocarcinoma and
hepatocellular carcinoma (HCC), of which HCC is the mainly
histological subtype of liver cancer, accounting for more than
90% of the total cases of primary liver cancer. Abnormal Notch
signaling is a prominent factor in the progression of HCC tumours.
Xie et al. (2021) found that tetraspanin 5 activated Notch signaling
by increasing cleavage of the Notch S3 site catalysed by γ-secretase
and enhanced Notch-dependent epithelial-mesenchymal transition
to promote cell migration and tumour metastasis in HCC. Han et al.
(2019) identified mir-449a as a short-term recurrence-associated
miRNA that reflects the malignant grade of HCC. It can directly
target Notch1 by binding to the 3′UTR of its mRNA to inactivate the
Notch signaling pathway, and inhibit the invasion and migration of
HCC cells in vitro and in vivo by regulating epithelial-mesenchymal
transition (EMT). Luiken et al. (2020) demonstrated that Notch
effectively induces the expression of the target gene HES5 in HCC
and has both pro- and anti-tumour effects. In MYC-induced HCC,
HES5 inhibited HCC growth, whereas in AKT-induced HCC it
promoted tumour formation. As investigated by Nakano et al.
(2022), it was demonstrated that two ligands of Notch, Dll4 and
Jag1, exhibited mutual antagonism in regulating HCC progression.
Dll4 deficiency inactivates the Notch1 signaling pathway and
inhibits HCC development. In contrast, knockdown of
Jag1 resulted in ectopic expression of Dll4 in otherwise non-
expressing hepatocytes with concomitant loss of
Notch2 signaling, promoting HCC progression. Dll4 was
expressed in cancer cells and engaged Notch1 signalling in an
autocrine way, whereas Jag1 was expressed in neighbouring
hepatic stellate cells and engaged Notch2 signalling in
neighbouring cancer cells.

Colorectal cancer

Aberrant activation of Notch signaling has been proven to cause
colorectal cancer, due to the fact that Notch signaling was vital in
maintaining normal intestinal epithelial cells. The Notch signaling
pathway was identified to be expressed 10–30 times higher in colon
cancer-initiating cells than in widespread used colon cancer cell lines
(Sikandar et al., 2010). Furthermore, in a mouse model of colorectal
cancer, Notch signaling was abnormally elevated during
tumourigenesis, and inhibition of Notch signaling induced
adenoma cell differentiation towards goblet cells (Srinivasan
et al., 2016). Fazio et al. (2016) revealed that in colorectal cancer
cells, inflammation upregulated the Notch1 signaling pathway via
metalloproteinase-9, leading to increased invasiveness of intestinal
cancer cells. Zheng et al. (2015) performed immunohistochemistry
on tumour tissues, paracancerous tissues and distant normal tissues
of 47 colorectal cancer patients who did not receive radiotherapy.
They found that in comparison to the healthy tissues, Notch1 and
Jag1 were overexpressed in cancer tissues, suggesting that
Notch1 and Jag1 were essential for the occurrence and
development of colorectal cancer, as well as for judging the
prognosis. Liao et al. (2018) examined the levels of Notch1 and
Jag1 in human colorectal cancer, colorectal cancer adenoma,
paracancerous tissues and normal colorectal cancer tissues by
immunohistochemistry. The results indicated that the levels of
Notch1 and Jag1 was higher in colorectal cancer and colorectal
adenoma tissues than in paracancerous tissues and normal
colorectal tissues. The silencing of Notch1 in HT29 cells
promoted the expression of p21 in HT29 cells, inhibited cell
growth, blocked the cell cycle in the G1 phase, and promoted cell
apoptosis. Jackstadt et al. (2019) found that a high proportion of
human colorectal cancer metastases were strongly positive for
Notch1 intracellular structural domain, suggesting that
Notch1 signaling is activated in human colorectal cancer
metastases and that Notch1 is a key driver of the worst
prognostic subtype of colorectal cancer.

The relationship between Notch
mutations and cancer subtypes

Emerging evidences suggested that Notch mutations existed in
various cancer subtypes, including lung cancer (Sun et al., 2024; Li
et al., 2021; Wang et al., 2023), liver cancer (Shi et al., 2024a),
colorectal cancer (Wang et al., 2022), breast cancer (Wang et al.,
2015), and so on. Therefore, it was vital to further understand the
type and frequency of Notch mutations in the tumor background
(Shi et al., 2024b). Mutations in the Notch signaling, including
receptor mutations and ligand mutations, were closely associated
with a variety of cancer subtypes. Among Notch receptor mutations
in SCLC, missense mutations were the most commonly occurring
type. Notch1, followed by Notch2, Notch4, and Notch3, was the
family member with the highest mutation frequency (Zhang et al.,
2023). In terms of the mutations of Notch ligand family in SCLC, it
was observed that the overall mutation rate was at a low level of 4%–
7%, withmembers being reciprocally exclusive (Li et al., 2022). Hong
et al. (2022) reported that about 25% of patients with SCLC carried
mutually exclusive loss-of-function mutations in Notch receptors.
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As investigated by Almodovar et al., 52% of SCLC displayed
inactivating mutations in the Notch family (Almodovar et al.,
2018). Notably, the frequency of Notch mutations was
considerably reduced in Chinese SCLC patients in comparison
with Western SCLC patients (Hu et al., 2019). In comparison to
the lung, Notch mutations were less frequent in the liver (Zhang
et al., 2023). Su et al. (2018) indicated that Notch1 mutations were
associated with poor prognosis in HCC patients, which may be due
to disruption of the tumor suppressor effect of Notch1. Initially,
active Notch mutations were very rarely seen in the colorectal
cancer, but the overexpression of Notch family members
(receptors or ligands) were observed (Varga et al., 2020). A
recent study suggested that although Notch mutations had no
prominent effect on the overall survival of colorectal cancer
patients, these mutations could strengthen anti-tumor immunity
by modulating the immune microenvironment (Wang et al., 2020).
Moreover, Kontomanolis et al. (2018) found that elevated
Notch1 activity was associated with mutations in the PEST
domain, which was vital for NICD stability of Notch1 in triple
negative breast cancers. There were two molecular subtypes of
adenoid cystic carcinoma (ACC), ACC-I and ACC-II, of which
the enrichment of activated Notch mutations were found in ACC-I
(Ferrarotto et al., 2023).

Strategies for Notch signaling targeting
in cancer immunotherapies

Numerous studies have revealed frequent dysregulation of
Notch signaling molecule expression in a variety of tumours.
Therefore, Therapies targeting the Notch signaling has already
found in tumour therapy, which included fission inhibitors such
as, Notch ligand-targeting agents, Notch receptor-targeting agents,
transcriptional organisers and signaling agonists. γ-secretase
inhibitors (GSI) are currently being investigated in preclinical
studies as cancer therapeutics and have shown anti-tumour
activity in a wide range of tumour types (Song et al., 2023),
including non-small cell lung cancer (Liu et al., 2023; Yang et al.,
2020), HCC (Cai et al., 2023), breast cancer (Jia et al., 2021; Wang
et al., 2024), colorectal cancer and prostate cancer (Federman, 2022).

The GSI is essential for the activation and nuclear translocation
of the NICD. CD147 was overexpressed in HCC cells and facilitated
cell invasion, migration and proliferation. By binding directly to the
NOTCH1 promoter, CD147 was cleaved by γ-secretase and released
CD147ICD into the nucleus, where it promoted Notch1 expression.
In orthotopic transplantation HCC mouse models, the combined
therapy of the GSI and the CD147-targeting antibody showed better
efficacy than monotherapy (Yong et al., 2019). GSI was a class of
small molecules targeting the Notch signaling pathway, which have
been evaluated in pre-clinical and clinical trials for the treatment of
NSCLC (Pine, 2018). Das et al. found (Das et al., 2019) a new
triazole, NMK-T-057, triggered autophagic cell death in breast
cancer cells by preventing γ-secretase-mediated activation of
Notch signaling. Downregulation of Notch1 by GSI-I in
combination with IL-24 can induce apoptosis and reduce the
invasiveness and migratory ability of HepG2 cells (Han et al.,
2015). Additionally, GSI increased taxane-induced inhibition of
mitosis and apoptosis in colon cancer cells in vitro and in vivo

(Akiyoshi et al., 2008). Cui et al. found that the novel GSI, PF-
03084014, may potentiate the anti-tumour effect of doxorubicin in
prostate cancer by inhibiting the Notch pathway (Cui et al., 2015).

Conclusion

Malignant tumours represent a significant global health concern,
posing a significant threat to human wellbeing. Abnormalities in Notch
signaling disrupt the dynamic equilibrium of Notch signaling-mediated
regulatory pathways, ultimately leading to the proliferation of tumour
cells. A comprehensive examination of these pathways and their
underlying mechanisms may facilitate a deeper understanding of the
pathogenesis of malignant tumours. Furthermore, the development of
pharmaceutical agents that target different components of the Notch
signaling pathway has the potential to impede the progression of
malignant tumours, thereby facilitating the creation of more
efficacious therapeutic modalities for individuals diagnosed
with cancers.
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