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The vascular microenvironment
and its stem cells regulate
vascular homeostasis

Yanhui Wang† , Xiaoyun Zhang† , Xin Li† , Min Cheng* and
Xiaodong Cui*

Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical
University, Weifang, China

The vascular microenvironment comprises of anatomical structures,
extracellular matrix components, and various cell populations, which play a
crucial role in regulating vascular homeostasis and influencing vascular structure
and function. Under physiological conditions, intrinsic regulation of the vascular
microenvironment is required to sustain vascular homeostasis. In contrast,
under pathological conditions, alterations to this microenvironment lead to
vascular injury and pathological remodeling. According to the anatomy, the
vascular microenvironment can be subdivided into three sections from the
inside out. The vascular endothelial microenvironment, centered on vascular
endothelial cells (VECs), includes the extracellular matrix and various vascular
physicochemical factors. The VECs interact with vascular physicochemical
factors to regulate the function of various parenchymal cells, including
hepatocytes, neurons and tumor cells. The vascular wall microenvironment,
comprising the vasa vasorum and their unique stem/progenitor cell niches, plays
a pivotal role in vascular inflammation and pathological remodeling. Additionally,
the perivascular microenvironment, which includes perivascular adipose tissue,
consists of adipocytes and stem cells, which contribute to the pathological
processes of atherosclerosis. It is anticipated that targeted regulation of the
vascular microenvironment will emerge as a novel approach for the treatment
of various diseases. Accordingly, this review will examine the structure of the
vascular microenvironment, the regulation of vascular function by vascular cells
and stem/progenitor cells, and the role of the vascular microenvironment in
regulating cardiovascular diseases.

KEYWORDS

vascularmicroenvironment, stemcells, endothelial progenitor cells,mesenchymal stem
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1 Introduction

Homeostasis refers to a state in which an individual organism maintains a
relatively stable internal environment, characterized by a balanced and harmonious
state at all levels of life activity, including cells, tissues, organs, and the whole
organism (Meizlish et al., 2021). Vascular homeostasis involves multiple aspects, which
include alteration and remodeling of vascular function, vascular injury and repair,
as well as vascular neogenesis and angiogenesis (Zhang and Dong, 2014). Therefore,
understanding the regulatory phenomena and underlying mechanisms of vascular
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homeostasis holds significant research value and practical
importance for the modulation of vascular function.

Vasculopathy is suggested to be caused by dysregulation
of the vascular niche, a microenvironment within the vascular
structures that includes anatomical components, extracellular
matrix elements, and various cell populations (Dergilev et al., 2024).
This vascular niche, also known as the vascular microenvironment,
plays a critical role in homeostatic regulation to maintain
tissue, organ function, and overall biological activity. Under
physiological conditions, the vascular microenvironment is finely
regulated to maintain the normal structure and function of the
vasculature (Nikolova et al., 2007). Conversely, under pathological
conditions, vascular cells are affected by physicochemical vascular
microenvironmental factors. As a result, they undergo functional
changes leading to vascular injury and remodeling (Lei et al., 2022).
Such alterations in vascular function can significantly affect the
performance of the tissues and organs they service. Furthermore,
vascular cells can secrete cytokines to regulate the function of
neighboring cells (Chen and Ding, 2022). Therefore, modulation
of the vascular microenvironment is a promising research avenue to
influence tissue and organ function.

The arterial vessel wall is structurally divided into three main
layers: the tunica intima, tunica media and tunica adventitia. The
intima comprises vascular endothelial cells (VECs) and the vascular
basement membrane. The tunica media predominantly includes
smooth muscle cells (SMCs) (Seidelmann et al., 2014), while the
tunica adventitia consists of connective tissue and fibroblasts. In
addition, the vascular wall contains the vasa vasorum (VV), which
are responsible for suppling nutrients to the walls of arteries
and veins (Mulligan-Kehoe and Simons, 2014). Surrounding the
vascular wall is perivascular adipose tissue (PVAT), which envelops
systemic blood vessels except in the case of cerebral vessels
(Chang et al., 2020). PVAT is a specialized form of adipose tissue
located adjacent to the outer layer of blood vessels and is primarily
composed of adipocytes, fibroblasts, stem cells, mast cells, and
neuronal cells (Hillock-Watling and Gotlieb, 2022).

In addition to VECs, SMCs, fibroblasts, and macrophages,
the tunica adventitia and PVAT also harbor resident stem
and progenitor cells, which play critical roles in the processes
of vascular inflammation, repair, and remodeling (Tinajero
and Gotlieb, 2020). These stem/progenitor cells include
mesenchymal stem cells (MSCs), smooth muscle progenitor
cells, and endothelial progenitor cells (EPCs), all of which
possess multidirectional differentiation potential and regenerative
capabilities (Rohban et al., 2017; Steens et al., 2021). Consequently,
these cells are integral to the vascular microenvironment,
contributing significantly to its regulation and function.

This article seeks to provide a comprehensive overview of
the vascular microenvironment, highlighting the pivotal role of
stem/progenitor cells inmaintaining vascular health and responding
to pathological changes.

2 Concept of vascular
microenvironment

The vascular microenvironment can be conceptualized as
a dynamic microecosystem that consists of VECs residing in

the intima, SMCs located in the subendothelial space, and
connective tissue cells, such as fibroblasts and macrophages.
These cellular components engage in complex interactions via
ligand–receptor signaling, exosome exchange, and cytokine
communication, collectively regulating vascular tone and
maintaining cellular homeostasis (Xu et al., 2022). Cells within
the vascular microenvironment of various tissues respond to
a range of physiological and pathophysiological factors, which
regulate cellular functions, including growth, differentiation and
transformation of specific cells, such as neurons (Sbierski-Kind et al.,
2021), arterial VECs (Mao et al., 2020), and immune cells (Li et al.,
2018; Ji et al., 2021). Additionally, the vascular microenvironment
influences the hematopoietic activity and osteogenesis of the bone
marrow (BM) (Chi et al., 2021; Yu et al., 2022) and plays a role
in the regenerative repair processes within liver parenchymal cells
(Duarte et al., 2018). Furthermore, the vascular microenvironment
in the lung alveoli may play an important role in regenerative tissue
repair, senescence and fibrosis (Kato et al., 2018; Chen J. et al.,
2020; Gomez-Salinero et al., 2021; Termini et al., 2021; Yan et al.,
2021). Modifications to the tumor vascular microenvironment
have also been demonstrated to influence the stemness and
invasiveness of tumor cells. Furthermore, alterations in the
vascular microenvironment contribute to the development of
atherosclerosis (AS) by promoting inflammatory responses and
vascular remodeling (Lu et al., 2020). Therefore Poulos et al.
(Poulos et al., 2014) proposed the development of drugs that target
the vascular microenvironment as a new therapeutic tool (Figure 1).

Increasing evidence suggests that targeting the vascular
microenvironment plays a critical role in regulating tissue cell
function. In murine models, overexpression of hepatocyte growth
factor (HGF) and inhibition of profibrotic NADPH oxidase 4
(NOX4) in VECs creates a modified vascular microenvironment
in the liver and lung tissue that promotes liver and lung
fibrosis. Attempts to intervene in this nascent microenvironment
promotes the regeneration of fibrotic organs (Cao et al., 2017).
In addition, Cao et al. (2016) injected bleomycin or hydrochloric
acid into the lungs of mice to replicate a lung injury model and
found that capillary endothelial cells, macrophages, and fibroblasts
pathologically reconstituted the vascular microenvironment in the
lungs, which impaired lung tissue repair. Therefore, studying the
vascular microenvironment is novel direction disease therapeutics.

To better understand the vascular microenvironment,
we divided the complex network into three parts based
on the vascular anatomy from the inside out: the vascular
endothelial microenvironment, vascular wall microenvironment,
and perivascular microenvironment. The vascular endothelial
microenvironment is focus on the VECs (Nikolova et al., 2007;
Manavski et al., 2014). The vascular wall microenvironment
is characterized by the VV, whose unique stem/progenitor
cell niches play a crucial role in monitoring, maintaining,
renewing, and replenishing key elements of the vascular
endothelial microenvironment (Zaniboni et al., 2015).
Finally, the perivascular microenvironment, which includes
PVAT, consists of stem/progenitor cells and adipocytes that
influence vascular pathophysiology (Ozen et al., 2015; Nosalski
and Guzik, 2017) (Figure 2). Regulation of the vascular
microenvironment can significantly alter the functional state of
tissue cells and influence disease progression. Understanding these
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FIGURE 1
The function of the vascular microenvironment. The maintenance, activation and remodeling of the vascular microenvironment regulate the function
of neurons, immune, tumor, liver, and spleen cells, and involved in the processes of bone marrow hematopoietic activity, liver regeneration and repair,
regulation of neural stem cell function, atherosclerotic (AS) inflammatory response, and pathological vascular remodeling.

mechanisms is crucial for identifying potential molecular targets
within the vascular microenvironment for therapeutic intervention.

3 The vascular endothelial
microenvironment and related stem
cells

3.1 The VECs influence the function of
their surrounding cells

In 2014,Géraud et al. (2014) highlighted the critical role ofVECs
within the vascular microenvironment. VECs serve as a selective
diffusion barrier between the blood and arterial wall, making
them particularly sensitive to changes induced by biochemical and
fluid factors in the bloodstream (Milutinović et al., 2019). The
physicochemical factors present in the vascular microenvironment
directly influence the function of VECs, which then regulate
the activity of surrounding cells through cytokine secretion.
For instance, VECs secrete signaling molecules that regulate
thrombosis by modulating vascular tone and preventing platelet
and leukocyte adhesion (Chi et al., 2022). In this context, we
summarize the role of VECs and vascular physicochemical factors
as key components of the vascular endothelial microenvironment.
We also discuss the inter-regulatory interactions between VECs
and physicochemical factors and highlight the relationship between
stem cells and the vascular endothelial microenvironment in
different tissues.

3.1.1 Hepatic vascular microenvironment
VECs secrete various growth factors, collectively known as

angiopoietins (Ang), which influence the biological functions of

VECs and surrounding cells. Ang2 plays a critical role in regulating
hepatocyte growth, development, regeneration, and neural stem cell
function (Androutsellis-Theotokis et al., 2010; Hong et al., 2021). In
the hepatic vascular microenvironment, liver sinusoidal endothelial
cells (LSECs) exert paracrine regulatory effects on hepatocytes
and hepatic stellate cells (HSCs) (DeLeve, 2015). Following liver
injury, precise temporal and spatial regulation of CXC-chemokine
receptor 4/7 (CXCR4/7) and Ang2 expression in LSECs is crucial
for liver reconstitution (Manavski et al., 2014). In the early
stages, upregulation of CXCR7 and downregulation of Ang2 in
LSECs promote HGF and Wnt-2 expression, while inhibiting
transforming growth factor-β (TGF-β) production, creating a pro-
regenerative microenvironment that supports liver regeneration
and repair (Ding et al., 2014; Hu et al., 2014). In contrast,
during later stages of injury, sustained signaling through fibroblast
growth factor receptor 1 (FGFR1) in LSECs increases CXCR4
expression, promoting TGF-β secretion and fostering a pro-fibrotic
environment (Ding et al., 2014). However, on the fourth day
after liver resection, restored Ang2 expression in LSECs further
facilitates the formation of a pro-angiogenic microenvironment by
enhancing vascular endothelial growth factor receptor-2 (VEGFR-2)
expression (Hu et al., 2014). Therefore, investigating the molecular
mechanisms regulating CXCR4 and CXCR7 expression could
provide new therapeutic targets for promoting liver regeneration
(Figure 3).

After liver resection, VEGF secreted by hepatocytes induces
the expression of stromal cell-derived factor 1 (SDF1), which
recruits BM CXCR7 (+) progenitors of liver sinusoidal endothelial
cells (sprocs) to the hepatic sinusoids, where they differentiate
into LSECs, aiding liver regeneration and repair (DeLeve et al.,
2016). In contrast, CCl4-induced acute liver injury upregulates
hypoxia-inducible factor-1α (HIF-1α), leading to increased CXCR4
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FIGURE 2
The composition of the vascular microenvironment. The vascular microenvironment can be subdivided into three sections according to the vascular
anatomy, from the inside out. The vascular endothelial microenvironment is centered on the vascular endothelial cells (VECs) and encompasses the
extracellular matrix and vascular physicochemical factors. The vascular wall microenvironment, comprising the vasa vasorum (VV) and their distinctive
stem/progenitor cell niches, represents a pivotal site implicated in vascular inflammation and pathological remodeling. Additionally, the perivascular
microenvironment, comprising perivascular adipose tissue (PVAT), contains adipocytes and stem cells that may contribute to the pathological process
of atherosclerosis (AS).

expression in LSECs. This elevates platelet-derived growth factor-
BB (PDGF-BB) expression and receptor activation, which inhibits
CXCR7 expression and suppresses hepatocyte regeneration.
Additionally, PDGF-BB secreted by LSECs activates adjacent
HSCs, promoting a pro-fibrotic microenvironment (Fang et al.,
2023). Thus, PDGF receptor inhibitors may serve as potential
therapeutic agents to promote CXCR7 expression and enhance
liver regeneration. These findings suggest therapeutic targets
for enhancing CXCR7 expression in LSECs, promoting HGF
and Wnt-2 secretion, and creating a pro-regenerative vascular
microenvironment (Figure 3).

3.1.2 Bone marrow vascular microenvironment
Growth factors, signaling molecules, exosomes, and functional

regulatory proteins secreted by VECs in the bone marrow
vasculature (BMV) play a crucial role in regulating the self-
renewal and homing activities of hematopoietic stem cells,
significantly influencing their development (Chen J. et al., 2020;
Ramalingam et al., 2021; Ho et al., 2022). The BMV controls the
adhesion and expansion of hematopoietic stem cells through the
Kruppel-like factor 6a (KLF6a) signaling pathway (Xue et al., 2017).
Conditional knockdown of angiopoietin-like protein 2 (ANGPTL2)
expression in VECs demonstrated that ANGPTL2 derived from
VECs supports the regenerative capacity of hematopoietic stem
cells, enabling BM vascular microenvironment to maintain

hematopoietic stem cells stemness (Yu et al., 2022). In addition,
Chen Y. et al. (2021) showed that aging induces the formation
of a fibrotic hematopoietic microenvironment that inhibits
regeneration, thus hindering the regeneration of old organs.
However, vascular microenvironment deterioration, hematopoietic
stem cells dysfunction, and regeneration defects can be ameliorated
by blocking Interleukin-1 (IL-1) signaling in endothelial cells
(ECs). Therefore, IL-1 is a key inflammatory mediator that can
be used to ameliorate the aging hematopoietic microenvironment
of the BM (Mitchell et al., 2023).

Thus, VECs in the vascular microenvironment can regulate
parenchymal cell function by secreting various signaling molecules,
affecting tissue and organ function. However, physicochemical
factors in the vascular microenvironment can also have a variety of
effects on VEC function.

3.2 Physiochemical interactions in the
vascular microenvironment and ECs in
cardiovascular diseases

The influence of physicochemical factors in the vascular
microenvironment on VECs plays a crucial role in the development
of cardiovascular diseases (CVDs). VECs are important sensors
of blood shear stress, with physiological laminar shear stress
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FIGURE 3
Liver sinusoidal endothelial cells (LSECs) in hepatic regeneration and fibrosis following liver Injury. During early liver injury, upregulated CXC-chemokine
receptor 7 (CXCR7) and downregulated Ang2 in LSECs, increase hepatocyte growth factor (HGF) and Wnt-2, reduce transforming growth factor-β
(TGF-β), creating a pro-regenerative microenvironment. Later, Ang2 upregulation enhances vascular endothelial growth factor receptor-2 (VEGFR-2),
forming a pro-angiogenic microenvironment. Persistent fibroblast growth factor receptor 1 (FGFR1) signaling boosts CXCR4 and TGF-β, inducing a
pro-fibrotic microenvironment. After hepatectomy, LSECs secrete stromal cell-derived factor 1 (SDF1) to recruit bone marrow CXCR7 (+) progenitors
of liver sinusoidal endothelial cells (sprocs), which differentiate into LSECs. In CCl4-induced liver injury, hypoxia-inducible factor-1α (HIF-1α) elevates
CXCR4 and platelet-derived growth factor-BB (PDGF-BB), inhibits CXCR7, while PDGF-BB activates hepatic stellate cells (HSCs), promoting a
pro-fibrotic microenvironment.

promoting the maintenance of vascular homeostasis (Cui et al.,
2017; Iring et al., 2019; Chandran Latha et al., 2021). In
contrast, oscillatory shear stress (OSS) alters the expression and
structure of cell–cell adhesion proteins involved in vascular
permeability (Chiu and Chien, 2011) and triggers the release
of inflammatory molecules from ECs, resulting in apoptosis
and necrosis (Zhou Y. et al., 2019; Chandran Latha et al., 2021;
Saberianpour et al., 2021; Dupuy et al., 2022). Moreover, activation
of the endothelial Toll-like receptor (TLR4) has been shown to
play a critical role in OSS-induced endothelial inflammation,
potentially serving as a key initiator of AS development
(Qu et al., 2020).

However, in addition to regulating the secretion of nitric
oxide (NO) and vasoactive substances from VECs, high glucose
synergize with OSS inhibiting the activities of phosphor endothelial
nitric oxide synthase (p-eNOS), p-protein kinase B (AKT),
and p-focal adhesion kinase in human aortic ECs, leading to
a disturbance in vascular homeostasis and even causing or
aggravating vascular remodeling and the occurrence of AS
(Patibandla et al., 2014). Furthermore, a high-fat environment
increases endothelial permeability to lipoproteins, leading to
the accumulation of low-density lipoprotein in ECs (Jensen and
Mehta, 2016; Akhmedov et al., 2021). This process induces the
secretion of more vasoconstrictor factors, such as endothelin-
1 (ET-1), while decreasing the release of vasodilator factors,
primarily NO. In addition, the expression of leukocyte adhesion
and migration molecules, such as vascular cell adhesion
molecule (VCAM), intracellular adhesion molecule (ICAM) and
monocyte chemotactic protein-1 (MCP-1), is also increased,

triggering an inflammatory response leading to EC damage and
apoptosis (Milutinović et al., 2019).

The vascular microenvironment also encompasses various
cytokines and growth factors that influence the function of VECs.
For instance, antiangiogenic factors, including ET-1 (Babaahmadi-
Rezaei et al., 2022), c-reactive protein (CRP) (Aminuddin et al.,
2020), and tumor necrosis factor-alpha (TNF-α) (Wang et al., 2021;
Babaahmadi-Rezaei et al., 2022), play critical roles. Conversely,
proangiogenic factors, including VEGF (Shoeibi et al., 2018), HIF-
1α (Zhou J. et al., 2021), basic fibroblast growth factor (b FGF)
(Shoeibi et al., 2018), and PDGF (Shoeibi et al., 2018), promote
angiogenesis. Furthermore, Ang-1 (Khamchai et al., 2022) and Ang-
2 (Huang B. et al., 2021) are involved in regulating vascular
permeability.

3.3 Interacting effects of VECs with
stem/progenitor cells

Zaniboni et al. (2015) reported that vascular progenitor cells from
porcine aorta could differentiate into ECs and SMCs, suggesting
the existence of common vascular progenitor cells for different
cell types. Numerous studies have also shown that stem/progenitor
cells, such as EPCs and MSCs, are the main components of the
vascularmicroenvironment.These cells serve as progenitors forVECs
and vascular mesenchymal stromal cells and act as an important
reserve source for terminally differentiated cells (Wang et al., 2018;
Van Nguyen et al., 2021; Zhou N. et al., 2021). In contrast, Shih et al.
(2012) found that the vascular endothelial microenvironment is a
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key site for determining the fate of stem/progenitor cells, which
can influence their biological properties and plasticity. For instance,
selective activation of the Integrin β2 andNotch signaling pathways in
ECs determines whether peripheral blood-derived EPCs differentiate
into ECs or macrophages, a process that ultimately affects the repair
of the damaged endothelium (Shih et al., 2012). Furthermore, the
secretion of platelet-derived growth factor-D (PDGF-D) by ECs has
been shown to promote the proliferation, migration, adhesion and
tube-forming ability of EPCs, thus contributing to AS (Zhang et al.,
2019).All thestudiessuggest thatVECsinteractwiththeirsurrounding
stem/progenitor cells but with some tissue specificity. Therefore, we
summarizethevascularmicroenvironmentacrossdifferentsitesbelow.

3.3.1 Bone marrow vascular microenvironment
The BM vascular microenvironment includes vascular cells

and hematopoietic stem cells. The BM vascular microenvironment
regulates the stemness and differentiation properties of
hematopoietic stem cells and is involved in the development
of hematopoietic diseases, including myelodysplastic syndromes
(MDS) (Mosteo et al., 2021) and acute myeloid leukemia
(AML) (Yamashita et al., 2020). Dysfunction of the BM vascular
microenvironment is also a major cause of hematopoietic stem cells
graft failure. For example, the increase in apoptosis of hematopoietic
stem cells induced by sinusoidal ECs via the Fas and Caspase-3
pathways is the main mechanism causing disturbances in the BM
vascular microenvironment (Kaufman et al., 2014), which greatly
exacerbates the incidence of acute graft-versus-host disease.

Abnormal alterations of stem/progenitor cells in the BM vascular
microenvironment have been implicated in the development of
various hematological malignancies. In a study involving 56 patients
with low-risk myelodysplastic syndromes (MDS), EPCs from these
patients were found to exhibit altered methylation patterns in genes
such as p15 inhibitor of cyclin-dependent kinase 4b (p15INK4b),
death-associated protein kinase (DAPK1), cadherin 1 (CDH1), or
suppressor of cytokine signaling 1 (SOCS1), which triggered the
abnormal expression of Wnt signaling-related miRNAs, ultimately
leading to defective differentiation marker expression in EPCs and
accelerates the progression of MDS (Teofili et al., 2015). However,
ECs in the vascular endothelial microenvironment may become
a new direction for modulating the state of the BM vascular
microenvironment and treating hematological malignancies. For the
first time, it has been shown that, small extracellular vesicles from
T-ALL leukemia cells remodel the vascular microenvironment and
suppress normal hematopoiesis by activating the protein kinase R-like
endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2
(eIF2)/activating transcription factor 4 (ATF4)/jagged1 (JAG1) axis
in ECs. Conversely, targeting endothelial PERK can restore vascular
microenvironment function, induce leukemia cell apoptosis, and
increase residual hematopoietic progenitor cells, providing a potential
therapeutic strategy to improve T-ALL treatment (Liu et al., 2022).

3.3.2 Tumor vascular microenvironment
The vascular microenvironment demonstrates remarkable

plasticity, maintaining normal cellular functions under physiological
conditions. However, under pathological conditions, cancer cells
exploit paracrine signaling to induce gene and metabolic
reprogramming in ECs, reshaping the vascular microenvironment

intoa tumorvascularmicroenvironment that facilitates tumorgrowth,
metastasis, angiogenesis, and immune evasion (Cleveland and Fan,
2024). For instance, innon-small cell lung cancer, cancer cells suppress
the expression of the transcriptional regulator forkhead box protein
1, reprogramming lung ECs into tumor-associated endothelial cells
(TECs) that form leaky blood vessels, which promote tumor growth
and metastasis (Bian et al., 2024). Additionally, targeted knockout of
p21-activatedkinase4 (PAK4) reprograms the transcriptomeof tumor
ECs through specificmechanisms, reduces vascular permeability, and
reduces T cell adhesion to ECs, thus providing a novel therapeutic
strategy to improve tumor vascular microenvironment and enhance
immunotherapy efficacy (Ma et al., 2021). Furthermore, tumor
cells can enhance their invasion and metastasis by promoting
neoangiogenesis, lacking basement membrane structures, leading to
cancer progression (Yip et al., 2021).

Tumor cells at the primary site can also reach the metastatic
site through the circulation by releasing a variety of secreted factors,
including tumor-secreted factors, and extracellular vesicles, thereby
affecting and remodeling the vascular microenvironment at the
metastatic site and forming the pre-metastatic microenvironment
(PMN) of the tumor (Peinado et al., 2017).ThePMN is characterized
by endothelial permeability, which facilitates the invasion of tumor
cells into surrounding tissues (Fan et al., 2022). Some studies
have suggested that inhibition of the synthesis of cyclooxygenase-
1 (COX-1) or thromboxane A2 (TXA2) can prevent the formation
of the PMN (Lucotti et al., 2019), which may be a new direction to
inhibit cancer metastasis.

3.3.3 The vascular microenvironment of the
nervous system

In the adult central nervous system, signals from ECs regulate
the proliferation and differentiation of neural stem cells and promote
the migration of neural progenitors and immature neurons to
the site of nerve injury (Rivera et al., 2017). Studies have shown
that activated forkhead box C1 promotes the proliferation and
self-renewal of arachnoid-soft meningeal stem cells by restoring
the neurovascular endothelial microenvironment in a cerebral
ischemia/reperfusion model (Lei et al., 2022). Furthermore,
structural and functional aging of the vascular endothelial
microenvironment is a primary factor underlying the decline
in brain plasticity and repair capacity (Rojas-Vázquez et al.,
2021). Therefore, regulating the function of ECs in the vascular
endothelial microenvironment of the nervous system may be a new
approach to promoting neural stem cell proliferation and neuronal
regeneration (Rivera et al., 2017).

4 Vascular wall microenvironment and
associated stem cells

4.1 Concept of the vascular wall
microenvironment

The traditional view is that the tunica adventitia is merely
a structure in which fibrous material solidifies. AS, the basic
pathological process of several CVDs, begins with endothelial
damage, which leads to inflammatory cell infiltration and lipid
deposition. The entire pathological process of AS is believed to

Frontiers in Cell and Developmental Biology 06 frontiersin.org

https://doi.org/10.3389/fcell.2025.1544129
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Wang et al. 10.3389/fcell.2025.1544129

occur from the inside out in the vessel wall (Maiellaro and Taylor,
2007; Majesky et al., 2011; Luo et al., 2021). In contrast to this
traditional view, some scientists have suggested that the tunica
adventitia is the initial responder and activator of the vascular
response to injury (Tinajero and Gotlieb, 2020). Fibroblasts within
the tunica adventitia have been identified as key contributors
to the development of AS. Following vascular injury, fibroblasts
generate significant amounts of NAD(P)H oxidase-derived reactive
oxygen species, which promote SMC hypertrophy and neointimal
hyperplasia (Meijles and Pagano, 2016). Furthermore, exosomes
secreted by fibroblasts deliver miR-21-5p to VSMCs to promote
vascular calcification (Zheng et al., 2023). These pathways can
lead to or exacerbate atherosclerotic plaque formation and vascular
sclerosis, contributing to the development of CVD. Furthermore,
resident macrophages and T cells have been found to be present in
the tunica adventitia (Sedding et al., 2018); therefore, researchers
are increasingly speculating that the development of vascular
inflammation in AS is closely related to the tunica adventitia. We
emphasize the importance of the vascular wall microenvironment
within the overall vascular microenvironment.

An increasing number of studies have shown that the VV
contains a large number of stem/progenitor cells, known as the stem
cell niche or angiogenic zone (Zengin et al., 2006). Importantly,
progenitor cells for VECs, SMCs, and perivascular cells are not
exclusively derived from the BM; a substantial portion originates
from stem cell niches within the VV (Chambers et al., 2021). Thus,
stem cell niches may serve as a reservoir of vascular cells.

In summary, we propose that the microenvironment of the
vascular wall is composed of connective tissue, fibroblasts, and the
VV in the tunica adventitia and highlight the role of potential
stem cell niches in the VV in vascular regulation (Siow and
Churchman, 2007).

4.2 Role of the VV in the vascular wall
microenvironment

4.2.1 Structure and function of the VV
The VV, first discovered over 150 years ago, is a dynamic

microvascular system situated between the tunica adventitia and
the tunica media. Its primary function is to supply nutrients to
the mesothelial two-thirds of the vessel wall. The VV consists of
ECs and SMCs in a regular laminar arrangement (Xu et al., 2015).
The first-order VV (>100 μm), which may also have a connective
tissue layer similar to that of large vessels, runs longitudinally
along the vessel and branches into second-order VV (<100 μm),
which penetrate the tunica adventitia and extend into the tunica
media in a perpendicular direction (Billaud et al., 2017; Phillippi,
2022). Only a small proportion of secondary trophoblast vessels
infiltrate the epithelial or intima-media layers. Studies have revealed
that secondary trophoblast vessels are rare in the vasculature of
healthy adults but are abundantly present in the vasculature of
individuals with AS (Barger et al., 1984). This observation suggests
the potential involvement of the VV in the development of AS,
although the specific mechanisms remain unclear.

Studies have shown that the VV is not only an important
channel for the migration of inflammatory cells into the intima,
such as macrophages and leukocytes but also a pathway for the

transport and mobilization of stem/progenitor cells from the vessel
wall intotheintima.ImmunofluorescencestainingandPKH26-labeled
macrophage injection experiments demonstrated that circulating
macrophages primarily accumulate in the VV of injured arteries.
After entering the VV, these macrophages further infiltrate the tunica
media and neointima (Li et al., 2020).Thus, the VVmay contribute to
vascular inflammation by recruiting and transporting macrophages.
Moreover, studies have reported that 7 and 14 days after arterial
injury, β-galactosidase-labeled adventitial cells were observed in the
tunica media and intima, respectively. These adventitial cells contain
various stem cell markers (Mallawaarachchi et al., 2005). When
transplantingSca-1-positive stemcellsderived fromtheadventitia into
the adventitia of venous grafts in ApoE−/− mice, Sca-1-positive stem
cells were detected in AS lesions in the intima (Hu et al., 2004). These
studies have demonstrated that the VV also serves as a pathway for
transporting stem/progenitor cells from the adventitia to the intima.
Interestingly, the adventitial VV recruit inflammatory cells, inducing
the production of matrix metalloproteinase-9 (MMP-9) and SDF-
1, which can mobilize adventitial stem cells. These stem cells may
migrate to the intima via the VV and accumulate there (Hu and
Xu, 2011). These studies further illustrate that the VV functions as
a crucial pathway, enabling the migration of inflammatory cells, such
as macrophages and leukocytes, into the intima, while also acting as
a conduit for the transport and mobilization of stem/progenitor cells
from the vessel wall to the intima. Subsequently, the stem/progenitor
cells entering the intima can differentiate into SMCs, leading
to intimal thickening and accelerated plaque growth (Mulligan-
Kehoe and Simons, 2014). Moreover, following vascular injury,
activated fibroblasts can differentiate into myofibroblasts, driving
VV proliferation and macrophage infiltration by promoting VEGF
secretion and activating the VEGFR2/ERK1/2 signaling pathway
(Li et al., 2020). Therefore, the VV may be an important structure
involved in the pathological process of AS (Majesky et al., 2011;
Upcin et al., 2021).

4.2.2 Stem/progenitor cells in the VV angiogenic
zone

In 2004, Hu et al. (2014) reported the presence of a
stem/progenitor cell niche in the outer membrane of the aortic root
in adult ApoE−/− mice. They demonstrated that stem/progenitor
cells from this site can differentiate into SMCs. Furthermore,
Pasquinelli et al. (2009) identified a significant population of
CD34+ stem/progenitor cells located between the tunica media
and tunica adventitia of the human thoracic aorta and femoral
arteries. Billaud et al. (2017) further isolated and characterized
cells from the stem/progenitor cell niche in the human thoracic
aorta, revealing that EPCs and MSCs are key components of
this niche (Huang C. et al., 2021; Chen et al., 2022). More
recently, a growing number of stem/progenitor cells have been
isolated from the VV region of the tunica adventitia in large
blood vessels, including the human pulmonary artery, adult
ascending aorta, and internal thoracic artery (Majesky et al.,
2011; Upcin et al., 2021). These findings suggest the presence of
stem/progenitor cell niches within the VV region of the vascular
wall. Stem/progenitor cell niches in the VV region contain cells
capable of differentiating into ECs, hematopoietic cells, and local
immune cells, leading to their designation as the “angiogenic zone”
(Zengin et al., 2006).
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Stem/progenitor cell niches are pivotal in regulating vascular
function and may also play a role in the vascular inflammatory
processes associated with AS. Evidence suggests that under
pathological conditions, inflammatory cells in the intima are more
likely to originate from the “angiogenic zone” of the VV rather than
the circulating vasculature (Maiellaro and Taylor, 2007; Sedding et al.,
2018; Li et al., 2021).Moreover,Billaudet al. (2017)havedemonstrated
that the stem/progenitor cell niche of the adult thoracic aorta may
be a pivotal factor in the pathological remodeling of the aortic wall.
Therefore, it canbeconcludedthat thestem/progenitorcellniche in the
VVregionnotonly responds tovascular injurybut is alsoan important
site for vascular immune surveillance and inflammatory responses
(Toledo-Flores et al., 2019; Owusu and Barrett, 2021). In addition, it
has been demonstrated that transplantation of stem/progenitor cells
from the tunica adventitia stem/progenitor cell niche to the site of
ischemia can stimulate the production of ECs and the formation of
the cardiovascular system. For example, progenitor cells transplanted
from the aortic periphery of mice into an ischemic hindlimb model
facilitatedECsformationandneovascularization, increasingperfusion
by up to 50% compared to controls (Toledo-Flores et al., 2019). These
findings suggest that stem/progenitor cells derived from such niches
represent apromisingavenue for researchand therapeutic applications
in ischemic injury repair.

Concurrently, stem/progenitor cells are influenced by the
vascular microenvironment, which in turn affects vascular function
and the regulation of the vascular wall microenvironment. The
function of stem/progenitor cells can be affected by various factors
within the vascular microenvironment, including peripheral nerve
tissue, lymphoid tissue, cytokines, and the paracrine effects of PVAT
(Ma et al., 2022). Furthermore, it has been demonstrated that the
interaction between EPCs and MSCs within the stem/progenitor
cell niche can be enhanced by angiogenic factors, such as VEGF,
or exosomes (Liu et al., 2021; Wu et al., 2021; Zhang et al.,
2021). In conclusion, the stem/progenitor cell niche in the VV
region, also known as the “vascular niche”, contains stem/progenitor
cells that may be involved in pathological processes such as
vascular inflammatory responses andpathological remodeling of the
vasculature, which are crucial for the development of CVDs.

4.2.3 The VV is involved in the pathological
process of CVD

It has been demonstrated that modifications to the vascular
wall microenvironment, particularly those centered on VV, can
directly or indirectly influence vascular endothelial function and
homeostasis, thereby contributing to the pathogenesis of various
vascular diseases (Li et al., 2020; Chambers et al., 2021; Farias-
Itao et al., 2022; Sano et al., 2022). AS, restenosis, diabetes mellitus,
and hypercholesterolemia are all associated with an increased VV
of the diseased perivascular membrane (Luo et al., 2021). However,
the high permeability of the nascentVV endothelium to lipoproteins
and leukocytes results in the formation of plaques and intraplate
hemorrhage and plaque rupture (Yan and Gotlieb, 2023). Anti-VV
angiogenesis treatments have shown promise in mitigating these
pathological processes. For instance, studies have demonstrated
that inhibiting VV angiogenesis reduces atherosclerotic plaque
formation and vascular remodeling in hypercholesterolemic mice
(Bogdanov et al., 2022). Similarly, using soluble VEGFR-1 and
VEGFR-2 to inhibit VV neovascularization in the rabbit aortic

perithelium significantly reduced the number and extent of VVs,
suggesting a potential therapeutic strategy to mitigate in-stent
restenosis (de Vries et al., 2018). This approach may serve as a novel
strategy to mitigate in-stent restenosis.

The VV is closely associated with the inflammatory response
in the pathological process of AS and has gradually become a
prominent area of research in this field. Upon entering the circulatory
system,fluorescently labeledmacrophageshavebeenshownto initially
undergo rolling, adhesion, and migration within the vasculature,
and subsequently localize in the tunica adventitia (Li et al., 2020).
Furthermore, elevated expression of VEC adhesion molecules and
selectin molecules, such as VCAM-1 and P-selectin, indicates that
the VV may act as a novel site for inflammatory cell chemotaxis,
homing, and activation (Shimosawa et al., 2019). Consequently, it
is postulated that the VV represents a pivotal site for the vascular
inflammatory response. Nevertheless, the underlying pathological
mechanism that initiates VV neovascularization and inflammatory
infiltration remains unclear.

In conclusion, the VV within the vascular wall
microenvironment plays a critical role in macrophage recruitment,
neointimal lesion formation, and vascular remodeling. Its
contribution to the development of AS underscores its close
association with CVDs. Thus, targeting VV neovascularization or
blocking its role in inflammatory cell transmission could offer a
novel therapeutic approach to halt the progression of AS (Figure 4).

5 Perivascular microenvironment and
associated stem cells

5.1 PVAT represents the perivascular
microenvironment

In addition to the intima,media, and adventitia of the vessel wall,
an additional layer of adipose tissue, known as PVAT, is situated
externally to the vessel wall. PVAT is composed of adipocytes,
MSCs, and extracellular matrix. It has been proposed that PVAT
functions as a unique endocrine or paracrine organ (Angueira et al.,
2021). Cytokines released by cells within PVAT may reach the
vascular endothelium through endocrine or paracrine mechanisms
or via the VV(Man et al., 2022), thereby influencing EC function
(Brown et al., 2014; Tanaka and Sata, 2018; Kubrova et al.,
2020). The effects of cytokines released by PVAT have a dual
nature.Under physiological conditions, PVATdynamically regulates
vascular tone by releasing vasodilatory and vasoconstrictive factors,
thereby maintaining normal vascular function (Zierold et al.,
2021). PVAT produces various bioactive factors, including NO and
lipocalin, which promote relaxation in VSMCs (Man et al., 2020).
Conversely, under pathological conditions, damaged PVAT secretes
bioactive factors that adversely affect vascular elasticity, potentially
leading to hypertension (Mu et al., 2022). Thus, while PVAT
supports vascular microenvironment stability and normal vascular
physiology under healthy conditions, PVAT dysfunction initiates
vascular pathological events (Katsiki andMikhailidis, 2021).Obesity
has been shown to induce dysfunction in PVAT and exacerbate
vascular remodeling. This process is mediated by activation of
the nod-like receptor pyrin domain containing 3/IL-1 signaling
pathway, which promotes the proliferation and differentiation
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FIGURE 4
Involvement of the vascular microenvironment in the development of atherosclerosis (AS). The vasa vasorum (VV) in the vascular microenvironment is
a conduit for the delivery of macrophages and inflammatory factors. Cytokines secreted by fibroblasts promote VV expansion and neogenesis, while
the high permeability of the neovascularized VV can lead to lipid deposition and plaque formation. In addition, stem progenitor cells in the “angiogenic
zone” of the VV and perivascular adipose tissue (PVAT) can differentiate into smooth muscle cells (SMCs), which are involved in vascular remodeling,
both of which may lead to the development of AS.

of adventitial fibroblasts within the vascular microenvironment,
thereby driving pathological vascular remodeling (Zhu et al.,
2019). These findings suggest that PVAT may serve as a potential
therapeutic target to mitigate the risk of CVD (Fleenor et al.,
2022). Therefore, we categorize PVAT as part of the perivascular
microenvironment. The perivascular microenvironment does not
exist as an isolated entity but exerts a synergistic influence on
vascular stability by regulating both the endothelial and vessel
wall microenvironment. For example, PVAT dysfunction has been
associated with the formation of unstable plaques through the
promotion of VV dilation and neovascularization (Tinajero and
Gotlieb, 2020; Yan and Gotlieb, 2023). Moreover, multigene analysis
studies of human abdominal aortic aneurysms (AAAs) have
shown that PVAT is closely associated with autoimmune and
inflammatory responses in AAAs (Piacentini et al., 2019). An
AAA induces the upregulation of proinflammatory genes, such
as protein tyrosine phosphatase receptor type C (PTPRC), C-X-C
motif chemokine ligand 8 (CXCL8), lymphocyte-specific protein
tyrosine kinase (LCK), C-C motif chemokine ligand 5 (CCL5), and
MMP-9, while suppressing the expression of the anti-inflammatory
gene peroxisome proliferator-activated receptor gamma (PPARγ),
thereby contributing to inflammation in the adjacent aortic wall
and playing a role in the pathophysiology of AAA (Meekel et al.,
2021). Additionally, PDGF-D derived from PVAT has been shown
to promote epithelial fibroblast proliferation, migration, and the

expression of inflammatory cytokines, playing a critical role in
AAA formation during obesity (Zhang et al., 2018). Therefore, the
release of inflammatory mediators and immune regulation within
PVAT may provide novel therapeutic targets for the treatment
of AAA. Nevertheless, the precise roles and mechanisms through
which PVAT influences these pathological processes remain poorly
understood. Further research is required to elucidate its involvement
and therapeutic potential.

5.2 Stem cells in PVAT

PVAT is a rich source of MSCs, which possess the capacity to
differentiate into osteoblasts, adipocytes, and chondrocytes (Ye et al.,
2021). Stem/progenitor cells, including those derived from PVAT,
can differentiate into perivascular cells that contribute to the
formation of the VV (Angueira et al., 2021; Asano et al., 2021).
However, excessive differentiation of these cells into adipocytes
is a primary mechanism underlying adipose tissue dysfunction
(Scott et al., 2019). PVAT dysfunction plays a critical role in the
progression of AS by influencing the behavior of stem/progenitor
cells. Dysfunctional PVAT releases proinflammatory factors and
free fatty acids, which induce the differentiation of PVAT-resident
stem cells into VSMCs. This process promotes vascular remodeling
and accelerates the development of AS (Klöting and Blüher, 2014;
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Ahmadieh et al., 2020). In addition, stem/progenitor cells in the
perivascular microenvironment modulate the cellular activity of
stem/progenitor cell niches in the vascular wall microenvironment,
leading to further deterioration of AS by promoting the formation
of hyperpermeable neovascular VV. For instance, transplantation
of mouse PVAT into endothelium-injured common carotid arteries
resulted in the production of CRP by injured ECs. CRP subsequently
stimulated VEGF production by PVAT-derived stem cells, which
promoted neovasculogenesis and contributed to the deterioration of
vascular disease (Manka et al., 2014; Chen J.-Y. et al., 2020).

Conversely, ECs within the vascular endothelial
microenvironment also regulate the function of PVAT. It was
demonstrated that the function of PVAT could be regulated in
an inverse manner through the targeted intervention of VECs. For
example, Peterson et al. showed that disrupting the expression of
the heme oxygenase-1 (HO-1) gene in VECs successfully inhibited
the differentiation of PVAT-derived MSCs into adipocytes. This
intervention enhanced PVAT functionality, indicating that HO-1
may act as a critical mediator in maintaining PVAT and vascular
microenvironment homeostasis (Peterson et al., 2019).

In conclusion, PVAT is a rich source of stem and progenitor
cells, particularly in the presence of MSCs. MSCs can serve as
a potent reservoir for vascular cells, whereas their differentiation
into SMCs and promotion of VV neovascularization in pathological
states accelerate the progression of AS. Second, the secretion
of cytokines by adipocytes in PVAT can affect the function of
stem/progenitor cells through the paracrine pathway. Moreover, the
function of stem/progenitor cells within the microenvironment of
the vessel wall can be influenced by the VV pathway, which leads
to the differentiation of SMCs and vascular remodeling. Therefore,
regulating the function of PVAT adipocytes may offer a novel target
to inhibit atherosclerosis progression, but further investigation is
needed to clarify the mechanisms of interaction within the vascular
microenvironment (Figure 4).

6 Discussion

The vascular microenvironment is essential for tissue
homeostasis and disease regulation, with its complex structure and
molecular network influencing both healthy and pathological states.
Studying its regulatory mechanisms provides insights into disease
development and guides the exploration of potential therapeutic
strategies for various conditions.

In the vascular endothelial microenvironment, the
overexpression of vascular endothelial HGF and the inhibition
of the profibrotic gene NOX4 contribute to the development
of a profibrotic vascular environment, which impacts liver
and lung regeneration. This offers a new perspective on the
treatment of fibrotic diseases (Cao et al., 2017). However, the
inhibition of DGKG expression in hepatic ECs has been shown
to reduce TGF-β1 secretion in the liver, thereby decreasing
angiogenesis and immune evasion in hepatocellular carcinoma
(HCC). Consequently, this leads to delayed tumor progression and
improved survival (Zhang et al., 2024). Additionally, in the BM
vascular microenvironment of AML, inhibiting the secretion of IL-
4 by ECs promotes megakaryocyte proliferation, improves platelet
count, and enhances the effectiveness of chemotherapy (Gao et al.,

2019). Therefore, a thorough investigation of the molecular network
and interactionmechanismswithin the vascularmicroenvironment,
with a particular focus on ECs, may uncover precise targets for the
treatment of a wide range of diseases.

Similarly, interventions targeting the vessel wall and
perivascular microenvironment may contribute to disease
regression. For instance, various antiangiogenic factors, such as
thalidomide, endostatin, angiostatin, and recombinant plasminogen
activator inhibitor-123 (rPAI-123), can inhibit neoangiogenesis
of VV, thereby alleviating AS lesion progression (Boyle et al.,
2017). It was found that mechanical damage to the endothelium,
induced by stent implantation, leads to the secretion of VEGF,
thereby promoting angiogenesis, which is a significant cause of
stent restenosis (Sluimer et al., 2008). Hytönen et al. injected
adenoviruses encoding soluble VEGF receptors 1 (sVEGFR1),
and 2 (sVEGFR2) into local arteries via a catheter and implanted
them in bare-metal stents at the same locations which was
shown to inhibit VV neogenesis and effectively prevent in-stent
restenosis (Hytönen et al., 2018).

PVAT in the perivascular microenvironment is a key target
for CVDs therapy (Gollasch, 2017). For instance, PPARγ in PVAT
adipocytes reduces inflammation and oxidative stress, improving
the arterial microenvironment and exerting an anti-atherosclerotic
effect (Chen J. Y. et al., 2021). This supports the use of PPARγ
agonists, such as rosiglitazone and pioglitazone, in managing
diabetes and obesity in atherosclerosis patients (Ryan et al., 2007;
Powell et al., 2012). Notably, transplantation of thoracic PVAT
into the abdominal aorta altered abdominal PVAT, inhibiting
macrophage infiltration and MMP-9 production, while preventing
VSMC apoptosis by promoting adipocyte cartilage oligomeric
matrix protein release, ultimately reducing AAA formation
(Huang et al., 2023). Additionally, PVAT holds potential as a
biomarker for diagnosing and assessing vascular function, aiding
in the prevention of CVDs (Antoniades et al., 2023).

In summary, research on the vascular microenvironment has
provided valuable insights into disease mechanisms and opened
new avenues for precision treatments of fibrosis, tumors, and CVDs.
Despite significant progress, further investigation is needed to
understand stem cell activity in this context and its therapeutic
potential. Future integration of advanced imaging, machine
learning, and molecular biology will deepen our understanding
of vascular microenvironment, offering innovative strategies for
disease diagnosis, treatment, and prognosis (Goudot et al., 2024).
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