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Large eukaryotic genomes are packaged into the restricted area of the nucleus to
protect the genetic code and provide a dedicated environment to read, copy and
repair DNA. The physical organisation of the genome into chromatin loops and
self-interacting domains provides the basic structural units of genome
architecture. These structural arrangements are complex, multi-layered, and
highly dynamic and influence how different regions of the genome interact.
The role of chromatin structures during transcription via enhancer-promoter
interactions is well established. Less understood is how nuclear architecture
influences the plethora of chromatin transactions during DNA replication and
repair. In this review, we discuss how genome architecture is regulated during the
cell cycle to influence the positioning of replication origins and the coordination
of DNA double strand break repair. The role of genome architecture in these
cellular processes highlights its critical involvement in preserving genome
integrity and cancer prevention.
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Introduction

The fundamental functional and structural unit of chromatin are nucleosomes, which
consist of a histone octamer wrapped twice with DNA (Giles and Taberlay, 2019; Luger
et al., 1997). Arranging DNA within chromatin enables compaction of the genetic material
within the nuclear volume and protects the DNA from the innate immune system and its
cytoplasmic nucleases. The 3D structure of the genome is assembled through chromatin
folding and the spatial organisation of large chromatin domains, creating distinct regulatory
compartments for processes like transcription, DNA repair, and replication (Boettiger et al.,
2016; Figures 1A–D). This physical compartmentalisation segregates transcriptionally
active and inactive regions of the genome and is critical for establishing and
maintaining replication timing (Bonev and Cavalli, 2016; Marchal et al., 2019). The 3D
structure of the genome is assembled by architectural proteins that include CCCTC-binding
factor (CTCF) and the structural maintenance of chromosomes (SMC) proteins within the
cohesin and condensin complexes. These proteins promote the formation of chromatin
loops and provide barrier elements that insulate genomic regions (Boettiger et al., 2016;
Bonev and Cavalli, 2016; Phillips-Cremins et al., 2013; Pombo and Dillon, 2015; Rajderkar
et al., 2023; Rao et al., 2014; Schalbetter et al., 2017; Sofueva et al., 2013). Despite our
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understanding of the molecular determinants of genome
architecture there remains many unknowns regarding the
biophysical principals of spatial genome compartmentalisation.

The hierarchical levels of 3D genome compartmentalisation are
defined in interphase nuclei using chromosome conformation
capture sequencing technologies such as Hi-C (Dekker et al.,
2002; Lieberman-Aiden et al., 2009; Rao et al., 2014) (Figures
1A–D). Chromosomes occupy distinct non-overlapping nuclear
territories (Figure 1A) (Hubner and Spector, 2010) classified into
multi-megabase (Mb) scale A and B compartments (Figure 1B). The
A compartments are transcriptionally active, gene-rich,
preferentially located in the nuclear interior, and replicated in
early S-phase (Lieberman-Aiden et al., 2009). Whereas B
compartments are transcriptionally inactive, gene-poor,
heterochromatic, and associated with late S-phase replication
(Lieberman-Aiden et al., 2009). A/B compartments are further
grouped into A1-A2, and B1-B4, which are linked to distinct
genomic features (Lieberman-Aiden et al., 2009). For example,
A1 compartments are associated with nuclear speckles (Chen
et al., 2018), B1 compartments with polycomb bodies (Rao et al.,
2014), and B2 and B3 compartments with lamin associated domains
(LADs) (Rao et al., 2014; van Schaik et al., 2020).

Within the large-scale A/B compartments are smaller
topologically associating domains (TADs) that consist of two
main features: a highly self-interacting domain and boundary
elements that restrict interactions between distinct TADs
(Figure 1C; Dixon et al., 2012; Pombo and Dillon, 2015; Rao
et al., 2014). TADs are largely, but not entirely, stable between
cell types (Criscione et al., 2016). Hi-C methods now produce 3D
genome maps of sufficient resolution to define nested subTADs
within larger TADs. SubTADs are structurally akin to TADs but
exhibit weaker boundaries and remain functionality undefined
(Norton et al., 2018). Within TADs and subTADs are chromatin
loops regulated by cohesin and CTCF (Figure 1D)(Szabo et al.,
2020). Cohesin-regulated loop extrusion generates chromatin
interactions, whereas CTCF insulates TADs by reducing inter-

TAD contacts (Szabo et al., 2020). At the DNA-histone interface
within the chromatin loops, the 3D genome is influenced through
nucleosome phasing regulated by ATP-dependent chromatin
remodelers (Barutcu et al., 2016; de Dieuleveult et al., 2016; Giles
et al., 2019). Collectively, 3D genome topology is a multilayered
structure regulated locally though nucleosome positioning,
regionally via chromatin looping and TAD domains, and globally
through large scale organisation of A/B compartments.

In addition to regulating transcription, TADs also delineate
discrete replication domains and constrain the spreading of DNA
damage markers around DNA double-stranded breaks (DSBs)
(Arnould and Legube, 2020; Dixon et al., 2012; Pope et al.,
2014). Notably, the boundaries between TADs are enriched for
replication origins, active transcription, and become strengthened
after DNA repair (Emerson et al., 2022; Sanders et al., 2020).
Compared to cell-type specific TAD boundaries, evolutionally
stable TAD boundaries have increased sequence conservation,
higher enrichment of house-keeping genes, and greater CTCF
binding (McArthur and Capra, 2021). This suggests important
biological functions are regulated within these inter-TAD regions.
However, many questions about TAD functions remain
unanswered. For example, there is only a limited understanding
of how endogenous genetic variation, exogenous stress, and skeletal
forces (e.g., actin and microtubules) contribute to active TAD
dynamics or plasticity. Further, we have a limited understanding
of how disrupted TAD structures impact genome stability.

The connection between 3D genome structure and transcription
is extensively reviewed (Bonev and Cavalli, 2016; Han et al., 2024;
Krijger and de Laat, 2016; Kumar et al., 2021; Schoenfelder and
Fraser, 2019; van Steensel and Furlong, 2019). Here we focus instead
on the 3D genome during mammalian cell cycle progression and the
role of the 3D genome in DNA replication and repair. Specifically,
we discuss key steps in the transition between interphase andmitosis
that preserve 3D genome memory; the order of DNA replication;
and the role of the 3D chromatin architecture in maintaining
genome integrity after DNA damage.

FIGURE 1
Layers of 3D genome organisation. (A) Whole chromosomes are spatially positioned into territories within the nucleus. (B) Chromosomes are
organised globally into A and B mega base scale compartments within each chromosome territory. (C) Within A/B compartments there is regions
organisation of highly self-interacting topologically associated domains (TADs) that are connected by TAD boundaries. (D) TADs are comprised of locally
organised chromatin loops largely organised by cohesin and CTCF. Created with Biorender.com.
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3D genome and the cell cycle

The cell cycle is an ordered, continuous series of events that
controls genome replication and chromosome segregation.
(Matthews et al., 2022). For over two decades, it has been
evident that the cell cycle impacts the dynamic properties of the
3D genome (Dekker et al., 2002). More recently, single cell Hi-C
experiments have demonstrated that cell cycle dependent changes
are a major contributor to the dynamic organisation of the genome
during interphase (Nagano et al., 2017; Naumova et al., 2013).
During interphase the locations of the borders that define TADs
were unchanged, but their intensity/insulation is dynamic.
Insulation cannot be measured in mitotic cells but reaches a
maximum as interphase nuclear architecture is reestablished
during G1 phase. As cells enter S-phase, insulation (a measure
of chromatin contacts across TAD boundaries) declines and

plateaus at its lowest point in mid-S phase through to G2. The
loss of insulation during S-phase coincides with the timing of
replication. Early replicating TAD boundaries lose insulation in
early S-phase and mid-late S-replicating boundaries lose insulation
in mid-late S-phase. These findings suggest that replication across
TAD borders or neighboring regions disrupts their chromatin
contacts (Nagano et al., 2017; Naumova et al., 2013).
Conversely, the kinetics of interphase A/B compartmentalisation
differs from TADs. A/B compartmentalisation is weakest during
G1 and increases across the cell cycle reaching a maximum in
G2 before mitotic chromosome condensation dramatically
restructures the genome during mitosis (Nagano et al., 2017).
This implies that TADs and A/B compartments have distinct
functions in interphase. Studying the restructuring of the
genome during mitosis has provided many valuable insights into
the principles governing genome organisation.

FIGURE 2
3D genome organisation upon cell cycle exit and re-entry. (A) Progression from metaphase to anaphase/telophase involves a change in the spatial
positioning of DNA with the mitotic spindle pulling sister-chromatids in opposite directions from the metaphase plate. At this time, there is initial
unwinding of chromatin and the beginning of interphase compartment formation. As cells exit mitosis, condensin is replaced with cohesin, and CTCF
returns to all its binding sites for the formation of structural loops along with enhancer-promoter loops. (B) In Early G1 there is a burst of F-actin that
facilitates nuclear volume expansion. A/B compartments and TADs become more defined across G1 and a subset of the mitotic enhancer-promoter
loops are lost in favour of more cohesin/CTCF structural loops. (C) Senescent cells that have exited the cell cycle form senescence associated
heterochromatin foci and have altered chromatin compartments. Created with Biorender.com.
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Compacting the 3D genome for mitosis

The timely and ordered assembly of compact mitotic
chromosomes during prophase is crucial for the faithful
segregation in anaphase (Samejima et al., 2018). As cells enter
mitosis the nuclear envelope breaks down and within the first
minutes of prophase the A/B compartments and TADs are
dismantled and little to no detectable signal remains in
metaphase (Figure 2A; Gibcus et al., 2018; Nagano et al., 2017;
Naumova et al., 2013; Zhang and Blobel, 2023). Loss of TADs and
A/B compartments coincide with cohesin removal and condensin
loading on the chromosome arms (Gibcus et al., 2018; Samejima
et al., 2018; Waizenegger et al., 2000). Condensin I and II are the
architectural scaffolds that control metaphase chromatin
compaction and folding. During metaphase, when the
chromosomes are highly condensed, chromatin contact frequency
is high for regions within 10 Mb but rare for regions separated by
more than 10 Mb (Naumova et al., 2013). Polymer modelling based
on Hi-C observations suggests that mitotic chromosome
condensation involves compaction of linear genome segments
into 60 kilobase (kb) loops that are nested within larger 400 kb
loops (Gibcus et al., 2018). Multiple condensin motors then create a
helical “staircase” scaffold, which use loop extrusion to promote the
axial compaction of the 400 kb loops into highly condensed mitotic
chromatin (Figure 2A; Dey et al., 2023; Gibcus et al., 2018; Naumova
et al., 2013).

Inactivating the condensin I and II complexes that coordinate
the restructuring of chromatin during mitosis has provided valuable
insights into their roles in this process (Gibcus et al., 2018).
Depleting condensin complexes during interphase alters the
assembly of mitotic chromatin, with specific mitotic A/B
compartments partitioned, including the aggregation of
facultative and constitutive heterochromatin (Zhao et al., 2024).
While the TADs and local chromatin loops are still undetectable
when the condensins are inactivated, cells are incapable of normal
mitotic exit and they undergo mitotic slippage (Gibcus et al., 2018).
This suggests that condensin complexes play key roles in both
transitioning chromatin from interphase to mitotic structure and
maintaining the mitotic chromatin structure until chromosome
segregation is complete in telophase. Condensin is then replaced
by cohesin during telophase when the chromatin structure begins to
reform (Figure 2A) (Abramo et al., 2019; Zhang et al., 2019; Zhang
H. et al., 2021). Temporal regulation of SMC complex switching
from cohesin to condensin, and back, are thus key events in 3D
genome transition at mitotic entry and exit. There is some evidence
that other chromatin markers such as phosphorylation of histone
3 serine 10 (H3S10ph) and/or histone 3 lysine 9 di-methylation
(H3K9me2) play a role in chromatin compaction (Castellano-Pozo
et al., 2013; Lin et al., 2016; Wei et al., 1999). However, how these
epigenetic modifications and their corresponding regulators alter
the kinetics of TAD and A/B compartment dismantling for mitosis is
yet to be determined.

Organising the interphase 3D genome

Interphase chromosome positioning and spatial arrangement
begins in telophase and continues into G1. In telophase,

chromosomes rapidly decondense from rod-like mitotic
structures into more spherical shapes, with chromatin destined
for the A compartment expanding more rapidly than chromatin
that will occupy the B compartment (Nagano et al., 2017). A/B
compartment boundaries are established early, but long-range loop
formation is a slow process that continues across the entirety of
interphase (Abramo et al., 2019). In contrast, TAD structures form
more rapidly beginning in telophase, with the establishment of TAD
boundaries and their spatial positioning coinciding with the
replication timing decision point (TDP), ~3 h into G1 (Abramo
et al., 2019; Dileep et al., 2015; Zhang et al., 2019). Architectural
protein CTCF is dispensable for A/B compartment establishment
after mitotic exit but is required for formation of short-range
interphase chromatin loops (Zhang et al., 2019; Zhang H. et al.,
2021). This is achieved by partial retention of CTCF on metaphase
chromatin, coupled with rapid recovery of complete CTCF
chromatin binding in anaphase/telophase (Figure 2A), to
facilitate establishment of CTCF-cohesin dependent chromatin
loops by early G1 (Zhang et al., 2019). Enhancer-promoter
driven loops also form in anaphase and telophase (Zhang et al.,
2019). These early enhancer-promoter loops are initially more
prominent than CTCF-cohesin structural loops, indicative of
their faster reconstruction upon mitotic exit (Figure 2A). As cells
progress through G1, an increasing number of structural loops form
and a subset of the early enhancer-promoter loops disappear
(Figure 2B; Zhang et al., 2019). Acute CTCF depletion in mitosis
restricts cohesin loop extrusion, resulting in persistence of the early
enhancer-promoter loops into late G1 (Zhang H. et al., 2021). The
function of early enhancer-promoter loops during late mitosis is
unknown but their timing suggests a role in re-establishing genome
architecture.

It is unclear how the genome architecture is preserved through
cell division. Certain chromatin associated proteins and chromatin
features have been proposed to act as a “mitotic bookmarks” to guide
the assembly of genome organisation during interphase. The
binding of RNA polymerase II (RNA pol II) to chromatin
positions cohesin during the G1 transition (Zhang S. et al., 2021).
Mitotic RNA pol II depletion can disrupt A/B compartments and the
formation of TADs in G1, establishing a strong connection between
transcription and 3D genome architecture (Zhang S. et al., 2021).
Several transcription factors also possess mitotic bookmarking
features that promote transcription restart upon mitotic exit
(Blobel et al., 2009; Caravaca et al., 2013; Kadauke et al., 2012;
Young et al., 2007; Zhao et al., 2011), how these transcription factors
impact the 3D genome remains unclear.

Chromatin modifications could also have a role in establishing
interphase genome organisation during mitotic exit. Bookmarking
stem cell lineage-specific genes with histone 3 lysine 27 acetylation
(H3K27ac) facilitates their rapid expression in early G1. This process
is enhanced, but not strictly dependent on, the formation of
interphase chromatin architecture (Pelham-Webb et al., 2021).
H3K27ac also facilitates reformation of A compartments in
condensin depleted mitotic chromatin (Zhao et al., 2024). The
loss of mitotic H3K27ac, however, only impacts transcription,
and not 3D genome organisation in G1-phase stem cells
(Pelham-Webb et al., 2021). Therefore, H3K27ac contributes to
redundant pathways that govern reestablishment of 3D genome
architecture upon mitotic exit. H3K9me2 is an evolutionally
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conserved marker of heterochromatin that persists through mitosis
and marks chromatin destined for the nuclear lamina (NL)
(Poleshko et al., 2019). This helps rapidly establish genome
organisation at the nuclear edge before cells exit mitosis
(Poleshko et al., 2019), helping to reset peripheral chromatin
structure for G1 re-entry.

Nuclear lamina in 3D genome organisation

As established above, 3D genome organisation is established as
the nuclear envelope reforms during mitotic exit. The nuclear
lamina lines the inner surface of the nuclear envelope in
eukaryotic cells and anchors heterochromatin domains to the
nuclear envelope. The nuclear lamina (NL) is created through
physical association of Lamin proteins (A-type and B-type) with
the nuclear envelope and other factors. These interactions are
essential for maintaining nuclear structure, regulating DNA
replication, and controlling gene expression (Wong et al., 2022).
The separation and organisation of heterochromatic Lamin
associated domains (LADs) at the nuclear periphery is achieved
by interactions between chromatin modifications, chromatin-
binding proteins, and Lamins. Depletion of Lamin C (A-type)
disrupts the association of heterochromatin LADs with the NL as
cells enter interphase (Wong et al., 2021), and heterochromatin-
associated histone modifications H3K9me2 and H3K9me3 mark
spatially restricted LADs tethered to NL (Kind et al., 2013; Poleshko
et al., 2019; van Schaik et al., 2020). Notably, a significant number of
NL-LAD interactions are established within the first hour of nuclear
envelope formation (Figure 2B). In terms of specific genomic
regions, Telomere-proximal LADs attach to the NL rapidly,
whereas centromere-proximal LADs accumulate more slowly
(Crabbe et al., 2012; van Schaik et al., 2020). Contacts between
NL-LADs shuffle stochastically with each cell cycle, but remain
constrained, and stable throughout interphase (Jurisic et al., 2018;
Kind et al., 2013; van Schaik et al., 2020). Why stochastic shuffling of
NL-LADs occurs is unknown, but it indicates a degree of flexibility
in genome organisation at this scale between cell cycles. The
flexibility could be harnessed in response to environmental
stresses where chromatin at the nuclear periphery is at higher
risk to damage such as exposure to exogenous sources of DNA
damage and nuclear envelope rupture.

Nuclear filamentous actin in 3D genome
organisation

As cells enter G1, filamentous actin (F-actin) supports nuclear
structure by assisting with nuclear envelope reassembly, nuclear
positioning, and chromatin organisation. F-actin within the nucleus
mechanically supports daughter nuclei formation through nuclear
protrusions and nuclear volume expansion (Figure 2B; Baarlink
et al., 2017; Svitkina, 2018). F-actin driven nuclear expansion
facilitates chromosome decondensation and diffusion within the
first hour of G1, after which the nuclear F-actin is disassembled but
its contribution to genome organisation persists into late G1
(Baarlink et al., 2017). Inhibiting F-actin polymerisation, but not
branching, impairs post-mitotic nuclear expansion and chromatin

organisation implicating F-actin generated intra-nuclear forces in
the maintenance of genome architecture (Baarlink et al., 2017). It
remains unclear, if nuclear F-actin directly interacts with chromatin
to reshape the 3D genome, or if nuclear F-actin indirectly enables
chromatin expansion by increasing the nuclear volume to establish
the space required for interphase chromatin. F-actin’s role in
genome organisation is also not strictly limited to nuclear
reassembly in G1. F-actin can also reposition genomic regions for
telomere maintenance, replication fork repair, and homologous
recombination during S-phase and G2 (Harman et al., 2024;
Lamm et al., 2020; Lamm et al., 2021; Schrank et al., 2018).
Further investigation is needed to determine if F-actin has a
similar role in nuclear organisation in non-cycling cells.

Chromatin organisation during quiescence,
senescence and differentiation

Quiescence is a reversible non-proliferating state caused by
nutritional restriction and/or a reduction of growth factors.
Transition between quiescence and active proliferation in adult
hematopoietic stem cells is associated with 3D genome
reorganisation (Takayama et al., 2021). Specifically, CTCF
mediated 3D chromatin looping alters the transcriptional control
of “stemness” genes and cell fate transitions (Takayama et al., 2021).
Yeast also undergo 3D genome reorganisation in quiescence, during
which condensin mediates chromatin condensation, and there are
respective decreases and increases in centromere and telomere
interactions (Rutledge et al., 2015). Embryonic stem cells (ESCs)
use quiescence to retain plasticity to generate both embryonal and
extra-embryonal cell types (Khoa et al., 2024). The extent, if any, of
3D genome reorganisation for this transition is unknown.

Senescence is a permanent halt to cell proliferation induced by
cellular stress, including DNA damage and/or replicative ageing, or
physiological differentiation into post-mitotic tissues including
neurons, end stage B cells, or cardiomyocytes (Terzi et al., 2016).
Both stress-induced and physiological senescence are associated
with partial 3D genome reorganisation into senescence-associated
heterochromatin foci (SAHF) (Pombo and Dillon, 2015; Shaban and
Gasser, 2023; Terzi et al., 2016). Each SAHF is formed from a single
chromosome and corresponds with reduced transcription
(Figure 2C; Swanson et al., 2015; Terzi et al., 2016). Within the
3D genome of cells experiencing early replicative senescence, there
are increases in long range chromatin interactions, CTCF clustering,
and partial compartment switching (Zirkel et al., 2018). During late
replicative senescence, short range chromatin interactions increase,
as does TAD compartmental switching. TAD boundaries, however,
remain conserved (Criscione et al., 2016).

Differentiation of neuronal stem cells into astrocytes, which are
largely considered post-mitotic, also corresponds with changes in
genome organisation, but TAD boundaries remain consistent
(Sofueva et al., 2013). Depleting cohesin in astrocytes confers a
global relaxation, but not an abolishment of TADs, suggesting other
features maintain genome structure in differentiated post-mitotic
cells (Sofueva et al., 2013). It is possible that 3D genome alteration in
these cells results from LAD disruption, which is known to occur in
senescent cells. In agreement, depleting Lamin B1 artificially alters
the NL, resulting in heterochromatin reorganisation and SAHF
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formation (Sadaie et al., 2013; Shaban and Gasser, 2023).
Additionally, neural progenitor cells in Down’s syndrome
patients display 3D genome reorganisation coincident with LAD
disturbance and the appearance of senescence hallmarks (Meharena
et al., 2022). If 3D genome alteration is a cause or consequence of
senescence, however, remains to be determined.

DNA replication

DNA replication is the duplication of DNA for transmission of
genetic information into daughter cells upon cell division. During
DNA replication, genetic and epigenetic information stored in the
DNA, histones and 3D structure of the genome needs to be

preserved to maintain genome stability and cell identity. DNA
replication begins from replication origins, then proceeds
bidirectionally through the DNA in a semiconservative manner.
Each replication fork synthesises a leading strand in the same
direction as the fork progression and a lagging strand synthesised
as 100-200bp discontinuous Okazaki fragments in the opposite
direction that are joined by DNA ligase (Snedeker et al., 2017).

In eukaryotes, DNA replication is performed according to a
strict replication timing (RT) programme that coordinates the
deployment of the replication machinery across the genome
through the coordinated activation of selected replication origins.
RT is observed at the megabase scale (Mb) with “timing domains”
replicating via clusters of replication origins, that fire at similar times
during S-phase. The regulation of origin firing by the RT

FIGURE 3
The 3D genome in DNA replication and repair. (A) The timing decision point occurs early in G1, during which, early replicating chromatin is
positioned near the centre of the nucleus, while the late replicating DNA is nearer to the nuclear boundary. Late G1 is the origin decision point. Here
chromatin structural loops bring together licenced origins to be activated in S-phase and initiate DNA synthesis occurs. (B)Within “A” compartments are
early replicating domains (RD) with higher density of replication initiation sites compared to late RDs in “B” compartments. Direction of replication
measured by OK-seq and indicates forks moving to the right (red) or left (blue). (C) Upon DSB induction γH2AX signalling is spread within the damaged
TAD via chromatin contacts, except for at active gene promoters, and bordered by CTCF binding. Local 3D genome structure is rearranged to form open
chromatin around the break site (blue), surrounded by a compact chromatin boarder (red). For NHEJ, 53BP1 is released from LADs and stabilises the break
site for repair with RIF1, while for HR, BRCA1 promotes end resection that signals to actin for break clustering into a D-compartment for repair. Created
with Biorender.com.
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programme ensures the genome is copied in its entirety, once and
only once, per cell cycle in a timely manner preventing genetic
mutations and larger structural chromosome rearrangements that
have the potential to drive tumorigenesis or trigger cell death (Hu
and Stillman, 2023; O’donnell et al., 2013).

Replication timing and the 3D genome

The regulatory mechanisms that control replication timing are
not well understood, but significant progress has been made by
studying the 3D organisation of timing domains. The pattern of RT
domains across the genome closely resembles the long-range
genome interaction maps, providing strong evidence that the 3D
organisation of the genome is important for determining replication
timing (Figures 3A, B; Ryba et al., 2010). RT is also correlated with
nuclear positioning, chromatin accessibility and transcription
(Dileep et al., 2015; Pope et al., 2014). Regions that replicate
early during S-phase are positioned within transcriptionally active
TADs, in the A compartment. In contrast, late-replicating regions
are located within transcriptionally silent TADs and LADs, enriched
with heterochromatin histone modifications, and in the B
compartment located at the nuclear and nucleolar periphery
(Jackson and Pombo, 1998; Marchal et al., 2019). The replication
timing programme is evolutionarily conserved and changes during
cell differentiation, coinciding with the remodeling of the 3D
genome (Marchal et al., 2019). During differentiation, loci that
shift from early to later replication, frequently re-localise to the
nuclear periphery (Hiratani et al., 2008). Despite these observations,
the precise biological relevance of RT has been challenging to
address. It has been difficult to determine whether RT is a
consequence of genome organisation, chromatin structure, or
gene expression, and whether it plays a direct role in these processes.

Recent research into the molecular determinants of RT and its
regulation during development has provided strong evidence that
the spatiotemporal coordination of replication is essential for
preserving the epigenome and shaping the 3D structure of the
genome (Vouzas and Gilbert, 2023). Genetic dissection of
‘Rap1 interacting factor 1’ (RIF1), a key regulator of RT, has
provided much-needed insights into the links between RT and
genome organisation. RIF1 was first identified in yeast as a
regulator of telomere length and transcriptional silencing (Hardy
et al., 1992). Subsequent studies revealed its critical roles in
replication timing, genome organisation, epigenome preservation,
and DNA repair (Alavi et al., 2021; Chen and Buonomo, 2023).
RIF1’s interaction with Protein Phosphatase 1 (PP1) is critical for its
roles in RT and genome organisation. However, expression of
RIF1 mutants that cannot bind PP1 can partially restore RT,
suggesting that RIF1 may have PP1-dependent and independent
roles in RT regulation.

The recruitment of RIF1 to late replicating chromatin provides
the most probable locations of its critical PP1 targets (Gnan et al.,
2021; Hiraga et al., 2017; Sukackaite et al., 2017). RIF1’s ability to
bind to PP1 may partially contribute to replication timing by
counteracting origin firing at late replicating regions by opposing
the ‘DBF4-dependent kinase’ (DDK)-mediated phosphorylation of
the minichromosome maintenance (MCM) complex (Alver et al.,
2017; Hiraga et al., 2014; Mattarocci et al., 2014). In humans, DDK

inhibition suppresses DNA synthesis within late replicating genomic
regions via a process that requires RIF1 and ‘Ataxia telangiectasia
and Rad3 related’ (ATR) (Jones et al., 2021; Rainey et al., 2020). The
timing-specific differences observed in these studies suggest that the
order of replication may in part be achieved through varying the
requirements for DDK activity. Late replicating regions rely more
heavily on DDK activity to overcome RIF1 and ATR-dependent
suppression of origin firing. In contrast, early replicating domains,
where RIF1 is absent, require minimal DDK activity for origin firing.
In fact, cyclin-dependent kinase (CDK) activity has been shown to
compensate for the inhibition of DDK during early S-phase (Suski
et al., 2022).

Investigating RIF1’s role in genome organisation is also
providing insights into the broader requirements for RT. During
G1 phase, RIF1 participates in the re-establishment of the 3D
nuclear architecture by restricting interactions between
replication domains with similar replication timing (Foti et al.,
2016). Loss of RIF1 leads to widespread changes in replication
timing and the distribution of histone modifications, followed by
alterations in genome organisation and limited alterations in gene
expression (Klein et al., 2021). RIF1’s role in genome organisation is
highly sensitive to RIF1 dosage, whereas its role in RT requires
complete loss of function. Partial loss of RIF1 (haploinsufficiency)
disrupts chromatin organisation without affecting RT,
demonstrating that its genome organisation roles can be
uncoupled from RT phenotypes. The different phenotypic
outcomes between partial and complete loss of RIF1 suggests that
genome organisation does not strictly define RT (Chen and
Buonomo, 2023; Gnan et al., 2021). For example,
MCM6 depletion causes widespread changes in RT without
impacting genome organisation (Peycheva et al., 2022).
Moreover, directly disrupting genome organisation via cohesin or
CTCF depletion does not impact RT (Oldach and Nieduszynski,
2019; Sima et al., 2019).

Replication machinery and the 3D genome

While not influencing RT, cohesin instead impacts DNA
replication by influencing the processivity of replication
machinery and the positioning and selection of replications
origins (Figure 3A). Cohesin can act as a physical obstacle to the
replisome, and conditions that stabilise chromatin-bound cohesin or
disrupt sister chromatid cohesin lead to reduced replication fork
speed (Carvajal-Maldonado et al., 2019; Morales et al., 2020; Terret
et al., 2009). The cohesin complex is enriched at a highly efficient
subset of replication origins that are positioned at TAD boundaries
(Figures 3A, B) (Courbet et al., 2008; Emerson et al., 2022; Giles
et al., 2022; Guillou et al., 2010; MacAlpine et al., 2010). However,
the mechanisms underlying how replication origins are positioned
at TAD boundaries is a matter of debate, with multiple models
proposed to explain this phenomenon. One possibility is that
cohesin-mediated loop extrusion could slide the pre-replicative
MCM complexes along chromatin until they reach an
appropriate CTCF boundary element (Emerson et al., 2022). An
alternative model is that MCM complexes may act as physical
barriers themselves that restrict cohesin translocation, halting or
pausing loop extrusion at replication origins (Dequeker et al., 2022).
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This model suggests that inactive MCM complexes are loaded onto
chromatin in G1 to establish the 3D structure of the genome. Finally,
loading of cohesin by the MCM complex and DDK during sister
chromatid cohesin could also explain the enrichment of cohesin at
origins but these sites would not necessarily be positioned at TAD
boundaries (Zheng et al., 2018). Resolving how replication origins
are assembled at TAD boundaries will address fundamental
questions about the mechanisms required for origin positioning,
selection, and the role of the 3D genome structure in this process.

DNA replication and epigenome
maintenance

Disrupting RT interferes with themaintenance of the epigenome
(Klein et al., 2021). Precisely how RT contributes to the accurate
distribution of histone modifications is unclear, but an exciting
possibility is via the recycling of parental histone. During replication,
histone chaperones are recruited to the replisome to couple DNA
unwinding with the disassembly of parental nucleosomes (Groth
et al., 2007; Yang et al., 2016). Modified parental histones are
recycled and combined with newly synthesised naive histones
during chromatin assembly behind the replication fork. The
recycling of parental histones provides positional information for
chromatin readers and writers that ensure the histone modifications
are not diluted during replication (Flury and Groth, 2024). Recent
methods for analysing the distribution of parental histones on newly
replicated DNA are providing valuable mechanistic insights into
how the replisome directs epigenetic inheritance (Escobar et al.,
2021; Petryk et al., 2021). These techniques include a CRISPR-
biotinylation system to track parental nucleosome segregation at
single loci and chromatin occupancy after replication (ChOR)-seq
(Escobar et al., 2019; Petryk et al., 2021). The symmetrical
segregation of parental histones onto the leading and lagging
strands during DNA replication is crucial for maintaining the
epigenome in daughter cells. Asymmetric segregation of parental
histones can suppress differentiation in mouse embryonic stem cells
(ESCs) (Wenger et al., 2023) and promote tumour growth and
invasion (Tian et al., 2023). The asymmetric segregation of parental
histones into daughter cells may also contribute to establishing
different cell fates during development through asymmetric cell
divisions (Wooten et al., 2020).

Molecular mechanisms that coordinate the recycling of parental
nucleosomes have been identified with MCM2 and the fork
protection complex protein Mrc1/Claspin recycling parental H3-
H4 tetramers. Mrc1 is capable of shuttling parental H3-H4 tetramers
to leading or lagging strands (Charlton et al., 2024). The histone
chaperone, nucleophosmin (NPM1) is also critical for nucleosome
segregation within late replicating facultative heterochromatin.
NPM1 binds polycomb repressive complex 2 (PRC2) and
MCM2 to ensure H3K27me3 is maintained within the repressed
chromatin domains (Escobar et al., 2022). It is unclear how the 3D
organisation of the genome and the timing of replication ensure the
accurate recycling of parental nucleosomes. Histone chaperones
may be tightly regulated or recruited to replication forks within
particular TADs at specific times in S-phase (Escobar et al., 2021;
Escobar et al., 2019), which raises the question of how temporal
recruitment could be achieved. Future studies focusing on the

regulation and recruitment of histone chaperones in combination
with Hi-C, ChOR-seq and Repli-seq, will provide further insights
into how replication ensure accurate inheritance of the epigenome.

Genome organisation and replication during
development

Early-stage embryos provide a unique setting to study the
establishment of genome architecture and RT. Technical
advances in single-cell Repli-Seq (scRepli-Seq) have enabled high-
resolution profiling of replication states within individual S-phase
cells (Dileep and Gilbert, 2018; Takahashi et al., 2019). scRepli-Seq
has been used to examine the earliest embryonic divisions revealing
that nuclear organisation is established in the zygote before RT,
which appears at the 4-cell stage (Nakatani et al., 2024; Takahashi
et al., 2024; Xu et al., 2024). These findings demonstrate that RT is
established prior to embryonic genome activation and operates
independently of transcription. Prior to the establishment of RT,
cells display signs of replication stress with slow fork speed, fork
stalling and fork collapse during the first S-phase in 1-cells embryos
(Palmerola et al., 2022). Chromosome breaks can be observed at the
4- to 8-cell divisions with breakpoints typically localised to late-
replicating gene-poor regions (Xu et al., 2024). By the 8-cell stage,
RT is established and fork speed increases and chromosome
aberrations are reduced. These findings suggest replication stress
during the early embryonic divisions when the 3D genome, RT, and
epigenetic regulation are being established could be a source of
genomic instability that contributes to germline mutations
(Takahashi et al., 2024). Investigating the cause of replication
stress and the tolerance pathways that suppress and repair DNA
damage in these early embryonic divisions will be critical for
understanding its contribution to de novo mutations and
improving in vitro fertilisation techniques.

DNA repair

Efficient, high-fidelity DNA repair is critical to maintain genome
integrity. Genomes endure thousands of lesions per day, from
endogenous sources such as replication errors, and exogenous
threats such as toxins or radiation. DSBs are the most dangerous
form of DNA damage and can arise from ionizing radiation (IR),
X-rays, ultraviolet (UV) light, reactive oxygen species, replication
stress, toxic chemicals, and/or aberrant enzyme activity (Chang
et al., 2017; Jackson and Bartek, 2009; Tubbs and Nussenzweig,
2017). DSBs also occur during specific physiological processes
including V[D]J recombination, immunoglobulin class-switching,
and meiotic sister chromatid exchange (Jackson and Bartek, 2009).
Unrepaired or mis-repaired DSBs are a major source of genome
instability with potential catastrophic consequences, including cell
death and oncogenesis (Jackson and Bartek, 2009; Szmyd et al., 2025;
Tubbs and Nussenzweig, 2017).

The cellular response to DSBs is initiated through the DNA
damage response (DDR). Following genome damage, the master
kinases ‘ataxia-telangiectasia mutated’ (ATM), ATR, and/or ‘DNA-
dependent protein kinase ‘(DNA-PK) are activated to coordinate
cell cycle arrest, nuclear cytoskeleton function, modulation of the 3D
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genome, and DNA repair (Arnould et al., 2023; Blackford and
Jackson, 2017; Caron et al., 2015; Jackson and Bartek, 2009;
Menolfi and Zha, 2022). At the chromatin level, ATM, ATR, and
DNA-PK rapidly phosphorylate the modified histone variant H2AX
on ser139, termed γ-H2AX when phosphorylated, in the break
adjacent chromatin. γ-H2AX modification is an early step in the
DDR and establishes the early alterations to damaged chromatin
that potentiate eventual DNA restoration.

After initial DDR activation, DSBs are repaired through four
cell-cycle dependent repair pathways. Non-homologous end joining
(NHEJ) functions through the cell cycle and is the primary, and
potentially only, DSB repair pathway available in G1 phase (Branzei
and Foiani, 2008; Guirouilh-Barbat et al., 2008; Hustedt and
Durocher, 2016; Rothkamm et al., 2003). Microhomology
mediated end joining (MMEJ), single strand annealing (SSA),
and homologous recombination (HR) function in S and G2
(Branzei and Foiani, 2008; Chang et al., 2017; Hustedt and
Durocher, 2016; Rothkamm et al., 2003). MMEJ also has mitotic
repair activity (Brambati et al., 2023; Wang et al., 2018) and may
function at low levels in G1 (Truong et al., 2013; Xiong et al., 2015).
In addition to cell cycle stage, several other factors influence repair
pathway choice; including DNA end resection at the break site, the
local chromatin state, transcriptional activity in the effected genomic
region, and DNA mobility (Aymard et al., 2014; Carvalho et al.,
2014; Pfister et al., 2014; Symington and Gautier, 2011).

The 3D genome creates functional regional
compartments for DNA repair

Chromatin A/B compartments are respectively linked to
euchromatin and heterochromatin. Euchromatin A
compartments have a higher incident of endogenous breaks from
enzyme induced damage (Canela et al., 2016; Lensing et al., 2016),
whereas heterochromatin B compartments are more likely to obtain
breaks from UV irradiation, but confer protection from ionising
radiation (Fortuny and Polo, 2018; Takata et al., 2013). Chromatin
in both A and B compartments has been reported as susceptible to
replication stress induced damage (Crosetto et al., 2013; Fortuny and
Polo, 2018). The kinetics of γH2AX foci formation after DNA
damage differs between euchromatin and heterochromatin.
γH2AX foci form immediately after damage in euchromatin but
have a delayed response in heterochromatin (Natale et al., 2017).
When multiple DSBs are induced by expression of the AsiSI
restriction endonuclease, there is an approximate 15% switch of
B to A compartments (Zagelbaum et al., 2023). Therefore, while
genome breaks confer some large-scale changes to 3D genome
architecture, most A/B compartments remain unaffected.

At a regional level, TAD structure has a strong connection to
γH2AX spreading around DSBs. Following break induction, γH2AX
generally decorates 1–2 Mb of chromatin in a bidirectional but
asymmetric fashion around the DNA lesion. γH2AX spreading is
largely, but not exclusively, constrained to the affected TAD
(Figure 3C)(Arnould and Legube, 2020; Collins et al., 2020;
Iacovoni et al., 2010). Re-creating a break in the identical
location results in similar TAD-constrained γH2AX spreading
(Arnould and Legube, 2020; Arnould et al., 2021). Shifting break
location to a different region of the same TAD redistributes γH2AX

around the break but retains γH2AX within the affected TAD
(Arnould et al., 2021). Interestingly, the spatial spreading of
γH2AX occurs via 3D chromatin interactions from the DSB site,
not linearly through the TAD (Figure 3C)(Arnould and Legube,
2020; Caron et al., 2012; Collins et al., 2020). Additionally, the data
suggest that TAD boundaries strengthen when a nuclease-induced
DSB occurs, which is dependent on ATM (Arnould et al., 2023).
This likely insulates the TAD and constrains γH2AX from spreading
to adjacent TAD structures. In agreement, disrupting TAD
boundaries increases γH2AX spreading into neighbouring TADs
(Collins et al., 2020). TADs thus compartmentalise DDR activity
within the regional 3D genome structure.

53BP1 is a DDRmarker that also localizes within TAD structure
following DSB induction (Ochs et al., 2019). This is consistent with
the strong overlap between 53BP1 and γH2AX immunofluorescence
foci following damage induction. Super resolution imaging
demonstrated that 53BP1 forms nanodomains that alternate with
RIF1 in a ring structure at DSBs (Figure 3C; Ochs et al., 2019). Each
nanodomain is occupied by an individual TAD, and this structure is
proposed to safeguard genome integrity (Ochs et al., 2019).
Depleting RIF1, or expressing a mutant 53BP1 that prevents
RIF1 recruitment, disrupts the cytological ring structure, confers
aberrant spreading of repair proteins, and promotes hyper-resection
of DNA ends (Ochs et al., 2019). This is phenocopied by cohesin
depletion, suggesting cohesin and RIF1 cooperate to preserve the 3D
genome structure and promote NHEJ (Ochs et al., 2019).

The tight connection between TADs, γH2AX, and 53BP1 foci
raises the question of how DSBs in different elements of 3D genome
architecture, such as TAD boundaries vs. domains, influence DNA
repair pathway choice and genome stability. For instance, DSBs
buried within TADs may impair repair factor availability for HR.
There is no concordance between TADs and linkage disequilibrium
(Whalen and Pollard, 2019), implying that physiologically induced
breaks for non-sister chromatin recombination in meiosis do not
occur at TAD boundaries. In contrast, DSBs are enriched at TAD
boundaries during neuronal degeneration, leading to reduced TAD
definition and fewer chromatin loops (Dileep et al., 2023). This
suggests that DSBs in TAD boundaries are disruptive to 3D genome
structure and are likely more detrimental to genome function.

DSB spatially reorganise local 3D
genome structure

The local chromatin structure surrounding DSBs is spatially
modified after break induction. Laser mediated DNA damage
triggers immediate compaction around the DSB (Lou et al.,
2019). This is followed shortly thereafter by chromatin
decompaction at the lesion and establishment of a ring of
compact chromatin surrounding the break (Figure 3C; Burgess
et al., 2014; Lou et al., 2019; Luijsterburg et al., 2016). Following
break induction, PARP1 recruits the ATP-dependent chromatin
remodeller CHD2 to the lesion, triggering chromatin expansion and
deposition of the histone variant H3.3 (Luijsterburg et al., 2016).
Chromatin compaction status at DSBs is further governed by ATM
and the downstream ubiquitinase RNF8. RNF8 and its target
RNF168 regulate large scale ubiquitinylation of chromatin at DSB
sites to promote repair (Doil et al., 2009; Feng et al., 2024; Krais et al.,
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2021; Mattiroli et al., 2012; Stewart et al., 2009). Inhibiting ATM or
RNF8 disrupts the compact chromatin border established around
DSBs (Lou et al., 2019). Creating a compacted border surrounding
an open lesion likely constricts 53BP1 and γH2AX to the
surrounding TAD, and prevents transcriptional interference at
the break, whilst leaving the lesion accessible to repair factors
(Lou et al., 2019; Natale et al., 2017).

In yeast, DSBs commonly move to the periphery for repair
(Nagai et al., 2008; Oza et al., 2009). This, however, is not readily
observed in mammalian cells except for rDNA and alpha satellites
(Harding et al., 2015; Tsouroula et al., 2016; van Sluis and McStay,
2015). Chromatin does, however, mobilise in mammalian cells to
cluster DSBs and compartmentalise the genome for repair. DSB
clustering is more prominent in A compartments and enriched
during G1 repair of breaks in active genes (Arnould et al., 2023; Aten
et al., 2004; Aymard et al., 2017). Clustering has been hypothesised
to delay NHEJ, which may be detrimental to active genes, and
promote HR later in the cell cycle (Aymard et al., 2017). 3D genome
architecture is altered as DSB cluster to form “D compartments”
(Figure 3C; Arnould et al., 2023). D-compartments generally have a
strong correlation with γH2AX, contain active histone marks and
upregulated genes containing R-loops (Arnould et al., 2023).
R-loops are three-stranded RNA-DNA hybrids formed during
transcription, with active roles in gene regulation, class-switching
recombination and DNA replication in physiological conditions, but
can also cause DNA damage and genome instability (Petermann
et al., 2022; Sollier and Cimprich, 2015). R-loops can be structural
barriers for cohesin (Wulfridge et al., 2023; Zhang et al., 2023) and
may play a role in limiting cohesin-mediated loop extrusion in DSB
clustering.

The rearrangement of 3D genome structure for DSB clustering
appears to be potentiated through mechanical forces (Lamm et al.,
2021). A series of papers identified that nuclear-based actin
polymerisation, mediated by the F-actin nucleator Arp2/3, its
activator WASP, and actin regulators Formin-2 and Spire-1/2,
function in DSB and replication stress repair (Figure 3C; Belin
et al., 2015; Schrank et al., 2018; Zagelbaum et al., 2023). WASP co-
localises with γH2AX in both G1 and G2, whereas Arp2/3 is only
found at DSBs in G2 (Schrank et al., 2018). Restriction of Arp2/
3 binding at breaks to G2, may be a feature that delays active gene
repair until a homologous chromosome is available. Nucleus-
specific actin also functions in replication stress repair, which is
mediated by HR factors, consistent with actin related forces
functioning in recombinational DNA restoration (Lamm
et al., 2020).

Microtubule forces are also implicated in some specific DNA
repair outcomes (Kim, 2022). Partially depleting the telomere
protective factor TRF2 promotes DDR-positive telomeres that
remain resistant to NHEJ-dependent covalent ligations (Cesare
et al., 2013; Van Ly et al., 2018). These DDR-positive telomeres
cluster within nuclear regions co-stained for 53BP1 and γH2AX
immunofluorescence (Cesare et al., 2013; Timashev et al., 2017), and
both ATM and 53BP1 are required for telomere mobility in the
absence of repair (Dimitrova et al., 2008). Clustering is therefore a
function of the upstream DDR, and not necessarily dependent upon
repair. NHEJ-dependent ligation of telomeres completely lacking
TRF2 is mediated by microtubule forces, potentiated to the nucleus
through the transnuclear membrane LINC complex (Lottersberger

et al., 2015). This suggests that cytoskeletal forces originating from
the cell body can potentiate chromatin mobility in the nucleus.
There is an emerging understanding of potential roles for
microtubules in DNA repair (Gerlitz et al., 2013; Lerit and
Poulton, 2016; Ma et al., 2021; Oshidari et al., 2018; Shokrollahi
et al., 2024). At present, it is unclear if microtuble forces alter the 3D
genome compartments or TAD structures.

DSB clustering may compartmentalise the genome for efficient
repair at the potential cost of chromosome aberrations (Arnould
et al., 2023; Aten et al., 2004; Aymard et al., 2017). Translocations in
cancer are enriched in D-compartments (Arnould et al., 2023) and
inhibiting the F-actin nucleator Arp2/3 both prevents B to A
compartment switching after DSB and reduces translocation risk
(Zagelbaum et al., 2023). Translocations, however, still occur in
Arp2/3 inhibited cells from mis-repaired NHEJ, indicating that
translocations can occur independent of DSB clustering
(Zagelbaum et al., 2023). It is possible this stems from
microtubule forces, consistent with the NHEJ-telomere telomere-
telomere fusions observed in cells completely devoid of TRF2
(Lottersberger et al., 2015).

Chromatin architectural proteins facilitate
DSB repair

Chromatin architectural proteins play important roles in both
TAD structure and DSB clustering. CTCF is recruited to DSBs
within seconds of lesion creation. This is mediated through
PARylation and the CTCF zinc finger 4–6 (ZNF4-6) domain
(Han et al., 2017; Hilmi et al., 2017). Following recruitment,
CTCF flanks the DSB and creates a boundary to confine γH2AX
foci. This both preserves 3D genome organisation and promotes
efficient HR repair (Han et al., 2017; Hilmi et al., 2017; Lang et al.,
2017; Natale et al., 2017). Deleting ZNF4-6, or chemically inhibiting
PARylation, prevents CTCF recruitment and increases IR
susceptibility (Han et al., 2017; Lang et al., 2017). CTCF
depletion also increases chromosomal instability, end-to-end
fusions, DNA breaks, and apoptosis (Hilmi et al., 2017; Lang
et al., 2017).

CTCF directly interacts with DDR and HR factors, including
MDC1, Rad51 and Ago2, to promote repair (Lang et al., 2017). Roles
for CTCF in HR include BRCA1-independent BRCA2 recruitment
and Rad51 foci formation (Hilmi et al., 2017; Lang et al., 2017).
Notably, while CTCF colocalises with 53BP1, it does not contribute
to NHEJ, nor effect 53BP1 recruitment or clearance (Hilmi et al.,
2017; Lang et al., 2017). Consistent with CTCF promoting HR,
depleting CTCF increases NHEJ incidence 34% while reducing HR
efficiency by 47% (Lang et al., 2017). CTCF, and presumably
chromatin looping, therefore, helps maintain genome stability by
promoting effective HR.

Cohesin also functions in DSB repair by promoting loop
extrusion around break sites but does so independent of CTCF
(Arnould et al., 2021). In yeast, cohesin spreads extensively around
DSBs (Oum et al., 2011; Strom et al., 2004; Unal et al., 2004), whereas
cohesin spreading in mammals is restricted to the 2–5 kb adjacent to
the break (3C)(Arnould et al., 2021; Caron et al., 2012). Loading
cohesin at mammalian DSBs requires NIPBL, ATM kinase, and the
repair factor MRE11, all of which have a similar binding distribution
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around break sites (Arnould et al., 2021; Caron et al., 2015; Dileep
et al., 2023). Cohesin binds either side of the DSB and promotes one-
sided loop extrusion to increase chromatin contacts surrounding the
break site. This continues until arrested by a chromatin boundary
(Arnould et al., 2021; Arnould et al., 2023). ATM inhibition
abolishes cohesin-mediated loop extrusion at breaks, while DNA-
PKcs inhibition increases it, potentially skewing repair pathway
choice (Arnould et al., 2023; Caron et al., 2015). As nucleosomes that
contain H2AX pass cohesin during this loop extrusion, H2AX is
rapidly phosphorylated to become γH2AX (Arnould et al., 2021).
The exception is H2AX in active gene promoters which are not
phosphorylated to maintain transcription (Figure 3C; Caron et al.,
2012). Cohesin depletion increases the intensity of γH2AX signal in
ChIP-chip experiments, corresponding with a transcription
downregulation within the γH2AX demarcated domain (Caron
et al., 2012).

Cohesin functions vary between break location. In some
genomic locations, cohesin confines γH2AX spreading, while in
others γH2AX domains spread independent of cohesin (Caron et al.,
2012). It remains unclear if cohesin is a driver or passenger to this
process, and the potential impact of chromatin context, nucleosome
positioning, and/or the cell cycle on cohesin-mediated repair
functions. Cohesin also limits the mobility of DSBs by tethering
broken ends to protect them from spontaneous end joining.
Following DNA replication in S and carrying into G2, cohesin
links the two sister chromatids to repress distant end joining and
promote repair through the adjacent chromatid (Gelot et al., 2016).
However, during replication stress, cohesin increases end joining
through NHEJ and MMEJ, which can result in chromosome fusions
(Gelot et al., 2016). Cohesin therefore mediates loop-extrusion to
promote repair activation and protects transcriptional output
through γH2AX exclusion at promoters. Cohesin also supresses
DSB mobility by tethering broken ends to protect against deletions,
inversions, translocations and chromosome fusions mediated by
unscheduled end joining.

Lamins impact DNA repair, though little mechanistic detail is
known. Lamin B1 controls the release of 53BP1 after DSB induction
(Figure 3C; Etourneaud et al., 2021). Moreover, Lamin
B1 overexpression also impedes 53BP1 recruitment to DSBs,
impairs NHEJ, and results in persistent breaks and increased
damage sensitivity (Dileep et al., 2023; Etourneaud et al., 2021).
The related factor Lamin A also impacts 53BP1 and NHEJ. Lamin A
is required for the processing of dysfunctional telomere
heterochromatin by NHEJ through stabilisation of 53BP1
(Gonzalez-Suarez et al., 2009), and depleting of Lamin A results
in genome instability through telomere shortening (Gonzalez-
Suarez et al., 2009). Further work is required to better
understand the role of Lamins and LADs in chromatin
organisation for DNA repair. A deeper exploration of these
dynamics will shed light on the broader relationship between
nuclear architecture and DNA repair.

Radiation-induced DNA damage

Most studies investigating the 3D genome in DNA repair utilise
defined DNA breaks induced by CRISPR or other nucleases. Little is
known about how simultaneous induction of multiple stochastically

positioned different types of breaks, as occurs following irradiation,
effects 3D genome architecture. One study did investigate 3D
genome structure in G1/G0 arrested BJ-5ta foreskin fibroblasts
and cycling GM12878 lymphoblastoid cells following ionising
radiation (IR) (Sanders et al., 2020). At 24 h post-IR, Fibroblasts
displayed decreased contacts between chromosome arms.
GM12878, however, had a variable response, with an overall
initial gain in interactions that were lost by 24 h (Sanders et al.,
2020). These differing responses could be due to cell cycle phase,
repair kinetics, or potential differences in the type of breaks such as
single-stranded to double-stranded break ratio. IR failed to induce
consistent changes at the A/B compartment level, but did promote
significant increases in TAD boundary strength that remained up to
5 days post IR in all cell types tested (Sanders et al., 2020). Like
nuclease-induced breaks, the increase in TAD insulation was
dependent on ATM (Sanders et al., 2020). Additionally, cohesin
binding was reinforced after IR, (Kim et al., 2010), which may
contribute to the increased TAD boundary strength. Why TADs are
more insulated following IR remains an open question.

Discussion

In this review, we have highlighted the role for the 3D genome in the
processes of DNA replication, DNA repair and cell cycle progression.
While extensive progress has been made connecting genome structure
and function, our understanding is far from complete. The development
of degronmodels, such as dTAG, Auxin-degron (AID) and PROTAC, to
rapidly deplete chromatin architectural proteins can help further resolve
the cell cycle kinetics of chromatin architecture in different cell types and
disease models. For example, depletion of cohesin with AID has
demonstrated rapid loss of chromatin loops following, of which the
majority were reformed within 1 h after releasing from AID-directed
protein degradation (Rao et al., 2017). Collectively degron studies
degrading chromatin architectural proteins, including cohesin, CTCF
and WAPL, to study gene regulation have identified that while local
enhancer-promoter interactions are lost, there is only a modest effect on
transcription and no significant change to histone modifications or A/B
compartments (Hsieh et al., 2022; Hyle et al., 2023; Kriz et al., 2021; Luan
et al., 2021; Rao et al., 2017). To date, these studies have not considered the
implications for DNA replication, repair or cell cycle kinetics.

Higher-resolution 3D genome maps such as through Micro-C
(Hamley et al., 2023) and Hi-ChIP (Bhattacharyya et al., 2019) can
also help gain a greater understanding of how these regulating
factors control chromatin loops. Leveraging these advanced tools
will be pivotal in uncovering the intricacies of chromatin dynamics
at higher resolution in a time resolved manner. Unifying our
understanding of DNA replication at different genomic scales
will also be critical to understanding how thousands of
replication forks are deployed to copy genetic and epigenetic
information. Advances in BrdU and EdU detection using
nanopore sequencing may supersede current DNA fibre assays
and provide a much needed technique to bridge our knowledge
of replication forks dynamics with genome organisation and
epigenetic regulation (Hennion et al., 2020; Jones et al., 2022;
Muller et al., 2019).

Understanding 3D genome plasticity provides critical insights
into the mechanisms underlying various diseases and their
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treatments, as there is evidence TAD structure is dynamically altered
within diseases such as cancer and neurodegeneration (Dileep et al.,
2023; Taberlay et al., 2016). In cancer, the 3D genome can be
remodelled upon exposure to epigenetic or chemotherapy,
leading to decreased cancer associated gene expression and
reduced proliferation (Achinger-Kawecka et al., 2024; Achinger-
Kawecka et al., 2020). Cohesin subunit STAG2 has been identified as
synthetic lethal with STAG1, suggesting chromatin architectural
proteins may be a promising therapeutic target (van der Lelij et al.,
2020). Further, new druggable regulators of the 3D genome have
been discovered through a high throughput screen (Park et al.,
2023), highlighting how the 3D genome can be targeted for
improved patient outcomes. Understanding the intricate
dynamics of the 3D genome and genome stability not only holds
promise for refining therapeutic approaches but also offers
invaluable insights into a myriad of genomic technologies, paving
the way for transformative advancements in both healthcare
and research.
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