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Osteoarthritis (OA) and type 2 diabetes mellitus (T2DM) often coexist due to
shared risk factors and high prevalence, but effective treatment methods are
currently lacking. Mesenchymal stromal/stem cell-derived exosomes (MSC-
Exos) have regenerative properties that can repair cartilage damage, lower blood
sugar levels, and improve pancreatic β cell function, showing great potential
in tissue repair. This review primarily explores the application of MSC-Exos in
the treatment of OA and T2DM, the potential mechanisms of MSC-Exos, and
the therapeutic strategies of engineered exosomes. Although MSC-Exo therapy
shows promising therapeutic potential, further research is needed to validate its
safety and feasibility.
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1 Introduction

OA is a chronic age-related degenerative joint disease that affects the entire synovial
joint. It is characterized by structural damage to the articular hyaline cartilage, degeneration
of subchondral bone, and changes in synovial tissue such as hypertrophy and increased
vascularization (Loeser et al., 2012). T2DM is a metabolic disease caused by a lack
of insulin or the body’s inability to use insulin effectively. T2DM is characterized by
high blood sugar, and prolonged high blood sugar can lead to osmotic and oxidative
stress, which can cause damage to various tissues, including bones, joints, kidneys, and
the nervous system (Javeed and Matveyenko, 2018). Studies have shown that T2DM
is an independent risk factor for OA (Schett et al., 2013). In T2DM, the interaction
of joint degeneration and metabolic disorder can aggravate cartilage destruction and
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GRAPHICAL ABSTRACT

The graphical abstract was created with BioRender (www.biorender.com). Exploring the feasibility of intra-articular MSC-Exo therapy for symptoms in
patients with T2DM combined with OA.

synovial inflammation, and OA and T2DM coexist
to form diabetic OA (Eitner and Wildemann, 2021;
Yang et al., 2024).

OA is a complex disease that affects multiple parts of the joint,
including articular cartilage, subchondral bone, and synovium,
and is accompanied by chronic inflammation (Courties and
Sellam, 2016). Articular cartilage is composed of chondrocytes
and the extracellular matrix (ECM), and its primary function
is to absorb mechanical stress between bones. In OA, cartilage
damage, synovial inflammation, osteophyte formation, and changes
in joint morphology increase joint pressure, leading to the release
of more pro-inflammatory mediators by chondrocytes, including
cytokines [such as interleukin-1β (IL-1β) and tumor necrosis factor-
alpha (TNF-α)], reactive oxygen species (ROS), and advanced
glycation end-products (AGEs). This, in turn, triggers an increase in
proteolytic enzymes [such as matrix metalloproteinases (MMPs)
and aggrecanases with thrombospondin motifs (ADAMTS)],
ultimately resulting in the degradation of the cartilage matrix.
As shown in Figure 1, T2DM has a pathogenic effect on OA
through two major pathways: (1) chronic hyperglycemia, which
promotes oxidative stress, bolsters pro-inflammatory cytokines
and AGEs production in joint tissues but also decreases the
chondrogenic differentiation potential of MSCs, thereby further
decreasing the already impaired cartilage repair in OA; and
(2) insulin resistance (IR), which executes its effects both
locally and also through low-grade inflammation systemically
(Veronese et al., 2019). Chondrocyte damage and apoptosis
might be induced due to leptin secretion from adipose tissue
leading to the increased production of cytokine and MMPs
(Courties and Sellam, 2016).

The main clinical treatment options for T2DM are glucose-
lowering drugs and insulin therapy, but there is still a lack of a

cure. Medications and other treatments can bring blood glucose
levels as close to normal as possible, thereby delaying or preventing
the onset of diabetes-related health problems (Su et al., 2023).
While OA treatment includes surgery and medication. Surgery
is aimed at repairing local cartilage damage, and medication
is mainly anti-inflammatory, anti-catabolic, and symptomatic
(Tejero et al., 2021; Madry, 2022). Current treatment methods can
alleviate symptoms and reduce patient discomfort, but they do not
provide a cure.

A study from the Osteoarthritis Initiative analyzed antidiabetic
drugs and found that they may slow the progression of knee
OA (Shirinsky and Shirinsky, 2017). Research indicates that
the combination of metformin and cyclooxygenase-2 inhibitors
might reduce the rate of joint replacement surgery in patients
with OA and T2DM (Lu et al., 2018). However, Barnett et al.
(2017) suggested no strong correlation between metformin
treatment and OA development in diabetic patients, potentially
due to confounding factors, diagnostic methods, and variations
in dosage and duration of use. Additionally, studies show that
long-term use of GLP-1 receptor agonists (GLP-1-RAs) can
improve knee osteoarthritis (KOA) symptoms (Zhu et al., 2023),
but both obese and non-obese diabetic patients using GLP-1-
RAs may have an increased risk of developing KOA (Lavu et al.,
2024). Given the controversy surrounding these treatments,
exploring and developing new therapeutic strategies is particularly
important.

Mesenchymal stromal/stem cells (MSCs) have demonstrated
potential therapeutic effects in treating OA and T2DM. MSCs
can promote cartilage repair and regeneration, reducing cartilage
damage caused by arthritis, alleviating inflammation associatedwith
arthritis and diabetes (Copp et al., 2023). There is growing evidence
that many of the regenerative properties previously thought to be
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FIGURE 1
The pathological mechanisms of diabetic OA. In the coexistence of T2DM and OA, elevated blood glucose levels and insulin resistance accelerate the
progression of diabetic OA through the regulation of signaling pathways. It was created with BioRender (www.biorender.com).

attributable toMSCs should be attributed to their secreted exosomes
(Basu and Ludlow, 2016). In addition, MSC-Exos grafts have the
advantages of being non-immunogenic, non-tumourigenic, and
easy to store and transport compared to MSC therapy (Batrakova
and Kim, 2015; Burger et al., 2015). Therefore, MSC-Exos have great
potential for application in the field of tissue repair.

Therefore, this review aims to comprehensively assess the latest
research progress in MSC-Exo therapy for diabetic OA, starting
from relevant mechanisms and preclinical studies, summarizing
current applications, analyzing feasibility and efficacy, exploring
potential mechanisms, and providing directions for future research.

2 The mechanisms of OA and T2DM

OA and T2DM are two common diseases that frequently
coexist due to their high prevalence and shared risk factors
such as age, gender, ethnicity, and metabolic disorders (e.g.,
obesity, hypertension, and dyslipidemia) (Alenazi et al., 2023).
Although their pathological mechanisms differ, they share common
pathophysiological bases, including chronic inflammation, oxidative
stress, and metabolic dysregulation.

2.1 The impact of T2DM on chondrocytes

Under hyperglycemic conditions, chondrocytes from OA
patients exhibit multiple dysfunctions that collectively contribute
to cartilage degradation and OA progression. Firstly, hyperglycemia
prevents chondrocytes from effectively downregulating the
expression of glucose transporter proteins (GLUTs), leading to
excessive intracellular glucose accumulation (Sun et al., 2023).
This hyperglycemic environment triggers the production of ROS
(Rosa et al., 2009), whose accumulation further induces the release

of inflammatory mediators (such as IL-1β and NF-κB), resulting
in chondrocyte degradation and apoptosis, thereby compromising
cartilage tissue integrity (Anderson et al., 2023). Additionally, OA
chondrocytes in a high-glucose environment express significantly
higher levels of MMPs, further exacerbating cartilage matrix
degradation (Seow et al., 2024). Elevated glucose levels also inhibit
the differentiation of MSCs into chondrocytes, impairing the
regenerative capacity of damaged cartilage in OA (Courties and
Sellam, 2016).

The effects of insulin on chondrocytes are concentration-
dependent. Low concentrations of insulin may exert protective
effects by promoting the synthesis of proteoglycans and type II
collagen, while high concentrations of insulinmay inhibit autophagy
and induce the release of inflammatory mediators, thereby
exacerbating cartilage degradation (Ribeiro et al., 2016). This dual
effect may be related to differences in insulin receptor signaling at
different concentrations. For example, low concentrations of insulin
may promote chondrocyte anabolism by activating theAkt signaling
pathway, while high concentrations of insulinmay inhibit autophagy
through the protein kinase B/mechanistic target of rapamycin
(Akt/mTOR) pathway, leading to cartilage matrix degradation and
enhanced inflammatory responses (Zhou et al., 2023).

Significant changes in the expression of transcription factors
and protein kinases involved in the life cycle of chondrocytes have
been observed in OA patients with diabetes. In chondrocytes from
OA and diabetic patients, the microtubule-associated protein 1
light chain 3 (LC3) expression is reduced, and phosphorylating
ribosomal S6 protein kinase (p-rpS6) expression is increased,
which is attributed to autophagy defects (Ribeiro et al., 2016;
Zhou et al., 2018). Autophagy is a key mechanism for maintaining
chondrocyte homeostasis, and the inability to clear dysfunctional
organelles andmacromolecules in the absence of effective autophagy
suggests a poor disease prognosis (de Figueroa et al., 2015).
Higher protein kinase C (PKC) phosphorylation has been observed
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in MSCs maintained under high glucose conditions prior to
chondrogenesis (Tsai et al., 2013b). Transforming growth factor-
β (TGF-β)-stimulated Wingless (Wnt)-5a overexpression activates
PKC-mediated mitogen-activated protein kinases, signaling the
differentiation of chondrogenic cells into functional cells (Matta
and Mobasheri, 2014). Vascular endothelial growth factor (VEGF)
is hypothesized to mediate cartilage catabolism and endochondral
ossification in osteoarthritis (Zupan et al., 2018). Since VEGF is
significantly upregulated under hyperglycemic conditions (Zhang,
2018a), it is reasonable to assume that VEGF expression is higher
in diabetic osteoarthritis compared to OA alone (Tsai et al., 2013a).
SRY-box transcription factor 9 (SOX9), a chondroprotective factor
typically downregulated in OA, is further reduced in diabetic
osteoarthritis (Haseeb et al., 2021).

3 Comparison of traditional therapies,
MSC therapy, and MSC-Exo therapy

MSC-Exos demonstrate significant advantages in the treatment
of OA and T2DM. They enhance therapeutic effects by delivering
active molecules such as microRNAs (miRNAs) and proteins to
target cells (Ma et al., 2022), while also regulating inflammation,
promoting tissue repair, and improving metabolism, showcasing
potential through multi-target and multi-pathway mechanisms
(Morente-López et al., 2022; Satyadev et al., 2023). In contrast,
traditional therapies typically address only a single pathological
aspect. For example, the long-term efficacy of anti-inflammatory
drugs in alleviatingOA symptoms has not been confirmed, and their
use may lead to side effects (Rizzo et al., 2023); insulin therapy may
induce hypoglycemia (Jadawji et al., 2018); and hypoglycemic agents
carry risks such as weight changes and gastrointestinal discomfort,
requiring frequent administration (Chawla et al., 2023).

Regarding MSC therapy, Phase I trials (Matas et al., 2024)
have shown that MSCs can improve pain and joint function in
OA patients, but larger-scale trials with control groups are needed
for validation. Phase II studies (Lian et al., 2023) indicate that
MSC treatment for T2DM is well-tolerated, though it may cause
transient fever, hypoglycemia, fatigue, decreased lymphocyte levels,
and increased inflammatory factors post-infusion. Despite their
immunomodulatory and tissue-regenerative capabilities, MSCs still
face challenges such as unstable cell sources, potential tumorigenic
risks, infusion-related toxicity (Jeong et al., 2011; Fennema et al.,
2017; Ma et al., 2022; Chawla et al., 2023), and negative effects on
joints in metabolic mild OA (Warmink et al., 2023).

In comparison, MSC-Exos, being cell-free, avoid risks
of immune rejection and abnormal cell proliferation (Lee,
2018). Due to the lower expression of surface proteins (e.g.,
major histocompatibility complex), MSC-Exos exhibit lower
immunogenicity than their parent cells (Murphy et al., 2019).
Engineered exosome strategies (Komuro et al., 2022) can further
enhance their bioactivity and bioavailability. Therefore, MSC-Exos
not only inherit the regenerative properties of MSCs (Basu and
Ludlow, 2016) but also demonstrate superior targeting, stability, and
broader mechanisms of action, offering more significant advantages
over traditional therapies and MSCs.

4 The biosynthesis, isolation,
characterization, and functional
applications of exosomes

4.1 The biosynthesis and composition of
exosomes

Extracellular vesicles (EVs) are present in bodily fluids,
secreted by cells, and possess a membranous structure. The
particles can be categorised into four divisions based on their
size: exosomes (30–150 nm), microvesicles (100–1,000 nm),
apoptotic bodies (50–5,000 nm, formed after cell apoptosis), and
oncosomes (1–10 μm), recently identified and detected in cancer
cells (Kou et al., 2022). Abundant studies indicate that exosomes and
microvesicles play a pivotal role in the functioning of EVs in various
physiological and pathological processes (Jeppesen et al., 2019).

Exosomes are tiny vesicles that have been discovered to have a
density ranging from 1.11 to 1.19 g/mL. When observed under an
electron microscope, they exhibit a characteristic disk-like structure
and a flat spherical shape (Colombo et al., 2014). Various types of
cells present in different bodily fluids and cell supernatants have
the ability to release exosomes in both normal and pathological
circumstances (Kou et al., 2022).

Exosomes often arise from the endosomal system by processes
such as internal budding and invagination of the plasma membrane.
This is commonly followed by the production of multivesicular
bodies (MVBs) (Kalluri and LeBleu, 2020). Endosomes are initially
formed through the process of internal budding of the plasma
membrane. This results in the creation of both early endosomes
and late endosomes. Following a series of consecutive or dual
inward folding of the plasma membrane, intraluminal vesicles
(ILVs) are generated within MVBs, which serve as progenitors
to exosomes. They can undergo degradation and be released into
the cytoplasm through fusion with autophagosomes or lysosomes.
Alternatively, they can be released into EVs through fusion with the
plasma membrane, including ILVs, which leads to the production of
exosomes (Piper and Katzmann, 2007) (Figure 2).

4.2 The isolation, identification, and
characterization of exosomes

Exosome isolation methods each have their own advantages
and disadvantages. Ultracentrifugation is the “gold standard” for
exosome isolation, with approximately 80% of studies using this
technique (Ludwig et al., 2018). Its advantages include no need
for complex sample preparation and low cost, but it is time-
consuming and offers moderate purity. Ultrafiltration is fast and
high-throughput but may damage exosomes due to shear stress or
cause loss due to membrane clogging (Li et al., 2017), reducing
yield and prolonging processing time (Dehghani et al., 2020).
Precipitation offers high yield but lower purity and is often combined
with other methods (Hammerschmidt et al., 2016). Immunoaffinity
capture achieves high specificity and preserves biological activity
but is limited by antibody availability, small sample capacity,
and long incubation times (Yang et al., 2020). Size-exclusion
chromatography (SEC) is gentle and efficient, maintaining vesicle
integrity (Konoshenko et al., 2018), but requires pre-processing
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FIGURE 2
Biosynthesis and composition of exosomes. During the formation of exosomes, early endosomes encapsulate extracellular components and
membrane proteins, forming multivesicular bodies (MVBs) that contain intraluminal vesicles (ILVs). These MVBs ultimately release exosomes through
fusion with the plasma membrane or undergo degradation by fusing with autophagosomes or lysosomes. Exosomes are composed of lipids, proteins,
nucleic acids, enzymes, and other components.

and results in low sample concentration, often needing additional
enrichment steps. Commercial kits and emerging technologies (e.g.,
microfluidics and tangential flow filtration) significantly improve
yield and purity (Abreu et al., 2022).

After isolation, exosomes are often validated using transmission
electron microscopy (TEM) (Lai et al., 2022). Exosomes are rich
in bioactive molecules, including proteins (e.g., receptors, enzymes,
transcription factors), nucleic acids (e.g., DNA, RNA), and lipids
(Valadi et al., 2007; Simpson et al., 2009). Most exosomes carry
conserved proteins, such as tetraspanins (CD81, CD63, CD9), heat
shock proteins (HSP60, HSP70, HSP90), ALIX, and TSG101, which
are widely used as exosome biomarkers (Zhang et al., 2019). Studies
show that MSC-Exos consistently express CD9, CD63, CD81, and
TSG101 but do not express calnexin and cytochrome C, making
these markers commonly used for MSC-Exos characterization
(Maumus et al., 2020) (Figure 3).

4.3 The sources, dose and administration
routes of MSC-Exos

MSCs can be isolated from a variety of tissues, including adipose
tissue, bone marrow, umbilical cord, synovium, or infrapatellar
fat pad. The phenotype and function of MSC-Exos may vary
depending on the tissue origin of the MSCs (Börger et al., 2017).
Research has shown that MSC-Exos derived from different human
tissues exhibit distinct biological properties and therapeutic effects
in vivo (Wang et al., 2017). Therefore, differences in the tissue origin
of MSC-Exos may influence their therapeutic efficacy.

The delivery route of MSC-Exos can influence therapeutic
efficacy, and different routes are used depending on the disease.
For example, intra-articular injection of bonemarrowmesenchymal
stem cell-derived exosomes (BM-MSC-Exos) is used to treat OA

patients (Do et al., 2020), nebulized umbilical cord mesenchymal
stem cell-derived exosomes (UC-MSC-Exos) is administered to
treat severe COVID-19 patients (Chu et al., 2022), and intrathecal
injection of UC-MSC-Exos is applied for patients with complete
subacute spinal cord injury (Akhlaghpasand et al., 2024). However,
the standardization of MSC-Exos dosing remains challenging, as
different studies use varying units of measurement: some studies
use micrograms by weight, others use particle counts, while some
simply reference the number of MSCs used to generate the MSC-
Exos (Lotfy et al., 2023). This heterogeneity in dosing metrics makes
direct comparison of results across studies difficult and highlights
the urgent need to establish a unified dosing standard.

Given these issues, future preclinical studies must systematically
investigate critical parameters such as the selection of MSC-
Exo sources, determination of the minimum effective dose, and
optimization of administration routes to develop disease-specific
individualized treatment protocols. These studies will provide
essential theoretical foundations and practical guidance for the
clinical application of MSC-Exos.

4.4 The biological functions of MSC-Exos

The proteins included in the MSC-Exos belong to a distinct
protein subclass that governs their distinctive biological roles
(Kalluri and LeBleu, 2020). Simultaneously, the enclosedmRNAand
miRNA within MSC-Exos serve as the fundamental components
for their functionality (Qiu et al., 2018). MSC-Exos facilitate
information transfer and communication with target cells by
delivering a variety of molecules, including cytokines, growth
factors, signaling lipids, mRNAs, and regulatory miRNAs, thereby
altering the activities and functions of the target cells (Phinney and
Pittenger, 2017). Studies have shown that MSC-Exos possess the
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FIGURE 3
Cell source, isolation, and characterization of MSC-Exos. It was created with BioRender (www.biorender.com).

ability to protect molecules from degradation and facilitate their
efficient uptake into cells through endocytosis (Bagno et al., 2018).
Additionally, MSC-Exos can serve as an ideal carrier system for

transiently regulating specific biological processes in target cells
(Rao et al., 2022), with the advantage of enabling cell-type-specific
targeted delivery through surface modifications (Yang et al., 2018).
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MSC-Exos which not only possess immunomodulatory and tissue
regeneration capabilities but also demonstrate certain advantages in
immune therapy (Wu et al., 2018). These regenerative properties
make MSC-Exos a promising tool for cell-free therapy in the
treatment of various diseases.

5 Exosomal miRNAs: emerging roles in
disease mechanisms and therapeutic
potential

Exosomal miRNAs can be absorbed by nearby or distant cells,
exerting biological effects by inhibiting target genes in recipient cells
(Qin et al., 2019). These miRNAs are stable in circulation and are
secreted by donor cells to act on distant recipient cells, regulating
their gene expression (Broussard et al., 2016). miRNAs play a crucial
role in gene expression regulation, and their functions can be divided
into two categories:one is the classic negative regulatory function,
where they inhibit gene expression by targeting mRNA; the other is
a newly discovered function, such as acting as ligands to bind toll-
like receptors (TLRs) and activate immune cells (Zhang et al., 2015).
For example, exosomal miR-21 and miR-29a not only target mRNA
but also trigger immune responses by binding to TLRs (Fabbri et al.,
2012), a discovery that has opened new directions for miRNA
functional research.

The expression levels of exosomal miRNAs can change
with physiological conditions (Skog et al., 2008), and their
surface proteins can also reflect their cellular or tissue
origins (Mathivanan et al., 2010). Additionally, differences
in the quantity and composition of exosomal miRNAs
between diseased individuals and healthy individuals make
them potential non-invasive biomarkers for early disease
diagnosis and monitoring. Furthermore, exosomes can not
only transport endogenous miRNAs but also sort and transfer
exogenousmiRNAs (Pegtel et al., 2010), a mechanism similar to that
of endogenous miRNAs, providing new perspectives for studying
intercellular communication.

In exosome functional studies, researchers use diverse technical
approaches for comprehensive analysis. Proteomic analysis employs
tandem mass spectrometry (labeling and label-free techniques),
while miRNA profiling relies on high-throughput sequencing
(Bi et al., 2022). Functional effects are explored through meta-
analysis integrating miRNA and proteomics data. Bioinformatics
tools like miRPathDB translate miRNA profiles into target gene
information for pathway analysis (Ding et al., 2024). Validation
of exosomal proteins and miRNAs is performed using Western
blot and RT-qPCR. These integrated technologies provide a robust
framework for exosome research.

In disease research, the genetic mechanisms of T2DM and
OA are not yet fully understood, making the identification of
new therapeutic targets crucial for early diagnosis and specific
intervention. In recent years, computer simulation methods have
shown great potential in disease research, such as predicting disease-
related molecular functions (Raghav and Mann, 2024), lncRNA-
miRNA interactions (Wang et al., 2022), and associations between
metabolites (Sun et al., 2022). Comprehensive analysis based on
transcriptomic data can identify differentially expressed genes
(DEGs) and reveal their biological functions in diseases (Song and

Yu, 2024). For example, themiR-29 family (includingmiR-29a,miR-
29b, and miR-29c) plays an important role in the pathogenesis of
T2DM and OA (Marttila et al., 2021; Mao et al., 2024).

Combining exosome analysis with disease research holds
promise for discovering new therapeutic targets. Moreover,
predicting biomarkers not only saves research time but also has
potential clinical value. Research based on miRNAs provides new
insights for disease diagnosis and treatment, and future studies could
further explore their potential applications in precision medicine.

6 Key signaling pathways in OA and
T2DM

6.1 PI3K/AKT/mTOR signaling pathway

The phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling
pathway can be activated by various molecules, including insulin,
glucose, growth factors, and cytokines (Engelman et al., 2006),
playing a crucial role in OA and T2DM. Intervention strategies for
OA based on this pathway can be divided into two categories: (1)
inhibiting the pathway to restore cartilage homeostasis, enhance
autophagy, and reduce inflammation, thereby alleviating joint
damage; and (2) activating the pathway to promote chondrocyte
proliferation and reduce apoptosis, exerting anti-arthritic effects
(Sun et al., 2020). Under normal conditions, the PI3K/Akt pathway
regulatesmetabolism and function, but its abnormal activation (e.g.,
overexpression ormutation)may lead to diseases such as obesity and
cancer (Huang et al., 2018).The role of themTORpathway is dual, as
it can either counteract or promote diabetes, depending on the cell
type and physiological context (Jurca et al., 2023).

Insulin regulates inflammation, metabolism, and immune
responses through the PI3K/Akt/mTOR pathway. In OA, insulin
activates the PI3K/Akt/mTOR pathway, inhibits autophagy, and
exacerbates cartilage degradation (Qiao et al., 2020). In immune
regulation, insulin inhibits Toll-like receptor 4 (TLR4) and NF-κB
through PI3K/Akt, exerting anti-inflammatory effects (Zhang et al.,
2016), but it may also exacerbate inflammation by promoting Th17
differentiation and suppressing Treg function (Shi et al., 2019).
In T Cells, insulin enhances glucose uptake and protein synthesis
through the PI3K-Akt-mTOR pathway, promoting T Cell activation
(Stentz and Kitabchi, 2003). Additionally, insulin influences
immune responses by regulating macrophage polarization (M1
to M2 transition) and neutrophil function (Klauder et al., 2020).
In bone metabolism, insulin promotes osteoblast differentiation
and bone formation through PI3K/AKT/mTOR, while also
promoting osteoclastogenesis via extracellular signal-regulated
kinase 1/2 (ERK1/2) (Xian et al., 2012; Oh and Lee, 2017).
mTOR complex 1 (mTORC1) plays a dual role in osteoblast
and osteoclast differentiation, as its overactivation may inhibit
osteoclastogenesis, while its inhibition may promote osteoclast
differentiation (Hiraiwa et al., 2019).

MSC-Exos regulate the PI3K/Akt/mTOR pathway by delivering
miRNAs and other bioactive molecules, demonstrating significant
immunomodulatory and therapeutic potential. For example,
MSC-Exos promote M2 macrophage polarization by delivering
miRNAs such as miR-122-5p and miR-148a-3p (Li K. et al., 2022);
infrapatellar fat pad mesenchymal stem cell-derived exosomes
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(IPFP-MSC-Exos) inhibit the mTOR autophagy pathway via miR-
100-5p,maintaining cartilage homeostasis (Wu et al., 2019); synovial
mesenchymal stem cell-derived exosomes (SMSC-Exos) carrying
miR-485-3p alleviate OA cartilage damage by targeting the NRP1-
mediated PI3K/Akt pathway (Qiu et al., 2024). Furthermore,
BM-MSC-Exos reduce IR and obesity in mice through the
PI3K/AKT pathway (Shi et al., 2023). Engineering approaches
can enhance exosome efficacy. For instance, Wu et al. (2024)
activated the PI3K/Akt pathway in infrapatellar fat pad-derived
mesenchymal stem cell (IPFP-MSCs) through TNF-α pretreatment,
upregulating autophagy-related protein 16 like 1 (ATG16L1) and
promoting the secretion of low-density lipoprotein receptor-related
protein 1 (LRP1)-enriched exosomes, effectively preventing OA
cartilage damage.

6.2 NLRP3 inflammasome pathway

The formation of the NOD-like receptor family pyrin
domain-containing 3 (NLRP3) inflammasome involves activation,
assembly, and regulation. Its core mechanism involves the
interaction of NLRP3 as a “receptor” and pro-Caspase-1 as
an “effector.” Upon assembly, the inflammasome activates pro-
Caspase-1, generating active Caspase-1, which processes pro-IL-
1β and pro-IL-18 into mature IL-1β and IL-18, amplifying the
inflammatory response. Simultaneously, NLRP3 inflammasome
activation induces pyroptosis, further exacerbating inflammatory
cell death (Broz, 2019).

In OA, pro-inflammatory factors such as IL-1β, IL-
18, and TNF-α accelerate disease progression by increasing
cartilage ECM degradation (Shi et al., 2019). Macrophages, the
primary cells regulating OA inflammation, activate the NLRP3
inflammasome (Sanchez-Lopez et al., 2019), releasing various pro-
inflammatory factors (Zhang et al., 2020) and cytokines (e.g., IL-1β
and IL-18), further exacerbating OA inflammation and cartilage
destruction.

In T2DM, glycolipid metabolites (e.g., glucose and free
fatty acids) activate the NLRP3 inflammasome through multiple
pathways (Wang et al., 2020). Chronic hyperglycemia and saturated
fatty acids (e.g., palmitate) activate the NLRP3 inflammasome,
promoting the secretion of IL-1β and IL-18, which interfere with
insulin signaling and lead to IR (Vandanmagsar et al., 2011).
Additionally, islet amyloid polypeptide (IAPP) deposits activate
the NLRP3 inflammasome by disrupting lysosomes, triggering
inflammatory responses (Masters et al., 2010). Studies have
shown that inhibiting NLRP3 inflammasome activation (e.g.,
through Caspase-1 inhibitors or gene knockout) can alleviate β-cell
inflammation and improve IR (Qi et al., 2019b).

Mesenchymal stem cell-derived EVs (MSC-EVs) show
potential in OA treatment by slowing disease progression,
promoting chondrocyte proliferation and migration, and
inhibiting chondrocyte apoptosis. EVs carrying miR-1208 inhibit
inflammation by targeting methyltransferase-like 3 (METTL3) to
reduce NLRP3 mRNA methylation (Zhou et al., 2022). Liu et al.
(2023) loaded exogenous miR-223 into MSC-EVs via
electroporation and modified the MSC-EVs surface with a
collagen II-targeting peptide (WYRGRL) through genetic
engineering, achieving more targeted and efficient RNA delivery

to cartilage. These dual-engineered EVs significantly inhibit NLRP3
inflammasome activation and chondrocyte pyroptosis, providing a
novel strategy for OA treatment.

Multiple signaling pathways have been shown to play roles inOA
and T2DM progression, but further research is needed to identify
specific common targets (e.g., miRNAs and target genes). MSC-
Exos demonstrate broad prospects in modulating inflammation
and promoting tissue repair, but their precise mechanisms require
further elucidation. Future research should focus on exploring the
intersections of these signaling pathways to develop more precise
therapeutic approaches.

7 Potential role of MSC-Exos in the
treatment of OA

7.1 Regulation of the ECM

The gradual degradation of cartilage matrix is the key pathology
of OA, leading to structural damage of joints and subsequent injury.
To stimulate the redeposition of cartilage ECM and preserve the
structural integrity of cartilage, it is imperative to initiate repair
mechanisms in chondrocytes and increase the expression of genes
related to synthetic metabolism (Heard et al., 2015).

Several studies have shown that MSC-Exos help to maintain
the equilibrium of the ECM. Zhang et al. (2018b) discovered
that embryonic stem cell-derived MSC exosomes promoted the
synthesis of important cartilage matrix components such as
sulfated glycosaminoglycans and type II collagen, accelerating
chondrocyte repair. Jammes et al. (2023) discovered that BM-MSC-
Exos effectively enhanced the production of a matrix resembling
transparency. This was achieved by controlling the amounts of
collagen proteins, promoting the expression of proliferating cell
nuclear antigen, and decreasing the synthesis of Htra1. Woo et al.
(2020) showed that adipose-derived mesenchymal stem cell-
derived exosomes (AD-MSC-Exos) effectively enhanced the
expression of type II collagen in chondrocytes while reducing the
expression of ADAMTS-5, MMP-1, MMP-3, and MMP-13, thereby
alleviating cartilage matrix degradation in a monoiodoacetate-
induced OA model.

Exosomes RNA has shown significant potential in promoting
cartilage ECM repair. Chen et al. (2020) found that miR-136-5p
from bone marrow-derived mesenchymal stem cells (BM-MSCs)
upregulated the expression of type II collagen, aggrecan, and SOX9,
while downregulating MMP-13 expression, thereby promoting
chondrocyte migration. Xia et al. (2021) showed that BM-MSC-
exosomal miR-125a-5p alleviated chondrocyte ECM degradation in
post-traumatic OA by inhibiting E2F2. Zhou et al. (2022) discovered
that UC-MSC-Exos suppressed the breakdown of ECM in a mouse
model of OA by using miR-1208.

7.2 Effects on cartilage repair

In the inflammatory environment and conditions of KOA,
chondrocyte metabolic homeostasis is disrupted, leading to
cartilage remodeling characterized by enhanced glycolytic
pathway, mitochondrial dysfunction, and chondrocyte senescence
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(Mobasheri et al., 2017). Chen et al. (2019a) found that
supplementing mitochondrial-related proteins using MSC-Exos
in degenerated cartilage restored mitochondrial dysfunction
and oxidative stress damage, thus rescuing energy metabolism
imbalance and promoting cartilage regeneration. Wu et al. (2019)
discovered that IPFP-MSC-Exos suppressed chondrocyte apoptosis
by inhibiting themTOR signaling pathway targeted at chondrocytes,
thereby regulating chondrocyte metabolism and promoting
ECM regeneration. Qi et al. (2019a) pointed out that BM-MSC-
Exos enhance the phosphorylation of Akt while decreasing the
phosphorylation of ERK and p38, which leads to the inhibition of
chondrocyte apoptosis produced by mitochondria.

Cartilage’s avascular nature and limited interchange of
signaling chemicals, oxygen, and nutrients pose considerable
difficulties to its self-repair capacities (Carballo et al., 2017). MSC-
Exos have exhibited robust capacities in selectively influencing
biological processes such as the growth and death of chondrocytes
(Xiang et al., 2022). Another study confirmed that AD-MSC-
Exos-derived exosomal miR-338-3p transplantation can inhibit
chondrocyte inflammation and degradation by targeting Runt-
related transcription factor 2 (RUNX2), while promoting
chondrocyte proliferation (Li C. et al., 2022a). Li et al. (2021)
revealed that exosomes derived from induced pluripotent stem cell-
derived MSCs and synovial fluid mesenchymal stem cell-derived
exosomes (SF-MSC-Exos) significantly promoted chondrocyte
proliferation and migration.

7.3 Immunoregulation

The progression of OA is directly related to the extent of
inflammatory infiltration. The secretion of inflammatory cytokines
triggers immune responses that contribute to the development
and advancement of OA. Several studies have demonstrated that
MSC-Exos can regulate inflammation by decreasing the levels of
pro-inflammatory cytokines and stimulating the secretion of anti-
inflammatory cytokines (Hassanzadeh et al., 2023). Furthermore,
synovial macrophages are the primary immune cells in the knee
joint, MSC-Exos can inhibit macrophage recruitment.

Song et al. (2023) discovered that MSC-Exos can
suppress macrophage ferroptosis through the activation of the
GOT1/CCR2/Nrf2/HO-1 signaling pathway. As a result, they
can effectively repair cartilage degradation in OA. Ragni et al.
(2020) confirmed protective and anti-inflammatory activity against
macrophages and chondrocytes in computer simulations, consistent
with in vitro findings that the MSC secretome and its initiation
inhibited chondrocyte catabolism and inflammatory markers as
well as macrophage activation. Cosenza et al. (2018) studied
the immunosuppressive impacts of microvesicles and exosomes
produced fromMSCs on T and B lymphocytes in laboratory settings
and in models of delayed-type hypersensitivit and collagen-induced
arthritis.

7.4 Anti-inflammatory response

In the pathogenesis of KOA, inflammatory responses play a
crucial role. The key determinants in managing this condition seem

to be the equilibrium between pro-inflammatory cytokines and
anti-inflammatory cytokines, which have opposing influences. The
former primarily include IL-1β, TNF-α, IL-6, IL-15, IL-17, and
IL-18. Conversely, anti-inflammatory cytokines induced by TNF
include IL-4, IL-10, IL-13, IL-37, among others.

Zhou et al. (2022) revealed that MSC-Exos effectively inhibit
the activation of the NOD-like receptor family pyrin domain
containing 3 (NLRP3) inflammasome in macrophages, resulting
in reduced secretion of IL-1β and IL-18, thereby successfully
alleviating OA. Wang et al. (2024) demonstrated that exosomes-
shuttled lncRNA small nucleolar RNA host gene 7 (SNHG7) by
BM-MSCs alleviates OA through targeting miR-485-5p/ferroptosis
suppressor protein 1 (FSP1) axis-mediated chondrocytes ferroptosis
and inflammation. Qiu et al. (2021) showed that SMSC-Exos
containing miR-129-5p mitigate inflammation induced by IL-1β
in OA by inhibiting high mobility group box 1 (HMGB1) release
(Table 1).

8 Potential role of MSC-Exos in the
treatment of T2DM

8.1 Improvement of IR

Inflammation is a critical factor in the development of IR that is
linked to T2DM associated with obesity.M1macrophages located in
adipose tissue release many substances, including TNF-α, IL-6, IL-
1β, andmonocyte chemotactic protein-1.These substances promote
inflammation and initiate IIR in insulin-responsive cells such as
adipocytes, skeletal muscle cells, and pancreatic cells (Olefsky and
Glass, 2010; Tateya et al., 2013).

Su et al. (2019) reported that BM-MSC-Exos containing
miR-29b regulates age-related IR by targeting sirtuin (SIRT)1 in
adipocytes, muscle cells, and liver cells. Chen et al. (2021) found
thatUC-MSC-Exos enhance insulin sensitivity in human adipocytes
by inhibiting the production of the adipokine leptin and increasing
the mRNA expression of adiponectin, SIRT1, and insulin receptor
substrate-1 (IRS-1). Shi et al. (2023) found that BM-MSC-Exos
increased glucose uptake and improved IR in high-fat diet-fed
mice and palmitic acid-treated 3T3-L1 adipocytes by activating
the phosphoinositide 3-kinase (PI3K/Akt) signaling pathway and
upregulatingGLUT4 expression. Sun et al. (2018) demonstrated that
intravenous administration of UC-MSC-Exos significantly reduced
blood glucose levels and partially reversed IR in a rat model of
T2DM induced by a high-fat diet and streptozotocin (STZ). The
treatment with UC-MSC-Exos restored the phosphorylation of IRS-
1 and Akt at tyrosine sites, thereby enhancing the expression and
membrane translocation of GLUT-4 in muscle tissues. Additionally,
UC-MSC-Exos promoted hepatic glycogen storage, contributing to
the maintenance of glucose homeostasis. Furthermore, UC-MSC-
Exos inhibited STZ-induced β cell apoptosis and restored insulin
secretion function in T2DM.

8.2 Effects on pancreatic β cells

One major physiological barrier for patients with T2DM is
inadequate insulin secretion, leading to sustained hyperglycemia.
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TABLE 1 Potential role of MSC-Exos in the treatment of OA.

Source Cargo Model Outcome Ref

EMSC Chondrocyte,Rat osteochondral defect model Promote cartilage repair and regeneration, attend
attenuateat apoptosis and modulate immune
reactivity

Zhang (2018b)

BM-MSC Chondrocyte Enhance the production of a matrix resembling
transparency

Jammes et al. (2023)

AD-MSC Chondrocyte, MIA rat model, DMM mouse
model

Promote the proliferation and migration of
human OA chondrocytes, maintain the
chondrocyte matrix

Woo et al. (2020)

BM-MSC miR-136-5p Chondrocyte, Post-traumatic OA mouse model Reduce the degeneration of cartilage ECM Chen et al. (2020)

BM-MSC miR-125a-5p Chondrocyte, Post-traumatic OA mouse model Alleviate chondrocyte ECM degradation Xia et al. (2021)

UC-MSC miR-1208 Chondrocyte, DMM mouse model Decrease pro-inflammatory factor secretion,
decrease osteophyte production by inhibiting
E2F2

Zhou et al. (2022)

IPFP-MSC miR-100-5p Chondrocyte, DMM mouse model Enhance the level of autophagy in chondrocytes
via inhibition of mTOR signaling pathway

Wu et al. (2019)

BM-MSC Chondrocyte Inhibit chondrocyte apoptosis Qi (2019a)

AD-MSC miR-338-3p The murine chondroprogenitor cell line ATDC5 inhibit chondrocyte inflammation and
degradation, promote chondrocyte proliferation

Li C. et al. (2022)

BM-MSC circHIPK3/miR-124-3p Chondrocyte induce chondrocyte proliferation and migration,
inhibit chondrocyte apoptosis

Li et al. (2021)

MSC MC3T3-E1 cell, OVX mouse model inhibit macrophage ferroptosis, repair cartilage
degradation

Song et al. (2023)

AD-MSC Macrophage, chondrocyte inhibit both chondrocyte catabolic and
inflammatory markers and macrophage activation

Ragni et al. (2020)

BM-MSC T lymphocyte, DTH mouse model, CIA mouse
model

Play an anti-inflammatory role on T and B
lymphocytes, suppress inflammation

Cosenza et al. (2018)

BM-MSC lncRNA Chondrocyte Repress inflammatory injury, oxidative stress and
ferroptosis

Wang et al. (2024)

SMSC MiR-129-5p Chondrocyte Decline the inflammatory response and apoptosis
of chondrocytes

Qiu et al. (2021)

Abbreviation: MSC, mesenchymal stromal/stem cells; AD-MSC, Adipose-derived MSC; BM-MSC, bone marrow derived MSC; EMSC, embryonic MSC; IPFP-MSC, infrapatellar fat pad
derived MSC; SMSC, synovial MSC; SF-MSC, synovial fluid derived MSC; UC-MSC, umbilical cord derived MSC; MIA, monosodium iodoacetate; ACLT, anterior cruciate ligament
transection; DMM, destabilization of the medial meniscus; OVX, bilateral ovariectomy; DTH, delayed-type hypersensitivity; CIA, collagen-induced arthritis.

Prolonged high blood glucose levels can deplete insulin stores
and lead to compensatory insulin secretion, which damages
pancreatic β cells.

Studies have shown that umbilical cord-derived mesenchymal
stem cells (UC-MSCs) can induce insulin-producing cells in
vitro but do not differentiate into pancreatic β cells in vivo,
mainly exerting their effects through paracrine actions in T2DM
(Nagaishi et al., 2016). In a study by Sharma et al. (2021),
treatment with UC-MSC-Exos via intravenous injection reduced
hyperglycemia in T2DM mice, increased insulin production, and
improved tissue structure. Analysis of pancreatic tissue samples
revealed elevated expression of genes involved in pancreatic
tissue regeneration pathways (Reg2, Reg3, and Amy2b). MiRNA

analysis of MSC-Exos indicated potential promotion of pancreatic
regeneration pathways, possibly through modulation of the Extl3-
Reg-cyclinD1 pathway. These results suggest that UC-MSC-Exos
have therapeutic potential in alleviating insulin deficiency by
activating pancreatic regeneration. Additionally, Xia et al. (2024)
demonstrated that MSC-Exos suppressed nuclear factor erythroid 2
related factor (NRF2)-mediated ferroptosis by delivering bioactive
proteins to regulate the Akt/ERK signaling pathway, thereby
improving the function and quantity of β cells. They modified the
β cell targeting aptamer with polyethylene glycol on the membrane
surface of exosomes, and the former mediated β cell targeting was
more effective in islet protection compared to unmodified MSC-
Exos (Table 2).

Frontiers in Cell and Developmental Biology 10 frontiersin.org

https://doi.org/10.3389/fcell.2025.1549096
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Xie et al. 10.3389/fcell.2025.1549096

TABLE 2 Potential role of MSC-Exos in the treatment of T2DM.

Source Cargo Model Outcome Ref

BM-MSC MiR-29b-3p Hepatocyte Modulate aging-related IR Su et al. (2019)

UC-MSC Adipocyte Improve insulin sensitivity in insulin resistant human
adipocytes

Chen et al. (2021)

BM-MSC Mature 3T3-L1 adipocyte (palmitate), T2DM mouse
model (STZ)

Increased glucose uptake and improve insulin resistance Shi et al. (2023)

UC-MSC L02 cell (palmitic acid), T2DM rat model (HFD + STZ) Maintain glucose homeostasis, reverse insulin
resistance, restore the insulin-secreting function

Sun et al. (2018)

UC-MSC T2DM mouse model (HFD + STZ) Reduce hyperglycemia, increase insulin production,
improve tissue structure

Sharma et al. (2021)

UC-MSC The high glucose-stimulated INS-1 cell line, T2DM
mouse model (HFD + STZ)

Reduce random blood glucose levels, enhance glucose,
insulin tolerance, increase insulin secretion

Xia et al. (2024)

Abbreviation: MSC, mesenchymal stromal/stem cells; BM-MSC, bone marrow derived MSC; UC-MSC, umbilical cord derived MSC; HFD, high-fat diet; STZ, streptozotocin.

9 Engineered MSC-Exos for
therapeutic applications

Engineering strategies aim to overcome the limitations of
natural exosomes through various approaches (Komuro et al., 2022).
Currently, the application of engineeredMSC-Exos in OA treatment
primarily focuses on content modification, membrane property
optimization, and integration with biomaterials to enhance their
bioactivity and bioavailability (Figure 4).

9.1 Cell modification

Cell modification is a method to indirectly alter the contents
or membrane properties of exosomes before isolation, serving as
a rapid response mechanism of parental cells to environmental
stimuli (Lai et al., 2014). The simplest approach for cargo loading
prior to isolation involves co-incubating the target cargo with
exosome-secreting cells, allowing the cargo to diffuse into the
exosomes via a concentration gradient (Oskouie et al., 2018).
Additionally, transfection techniques can be employed to introduce
specific plasmids into cells, enabling the ectopic expression of
target biomolecules within exosomes. Physical methods such as
sonication, electroporation, extrusion, freeze-thaw cycles, surfactant
treatment, and dialysis are also widely utilized (Luan et al., 2017).
Research indicates that natural exosomes enter recipient cells
through free diffusion and are subsequently internalized randomly
(Lai et al., 2014).

The modification of MSC-Exos content primarily relies on the
overexpression of specific non-coding RNAs to enrich therapeutic
molecules. Studies have shown that miRNAs play a crucial
regulatory role in exosome-mediated cartilage repair (Foo et al.,
2021). Currently, researchers commonly use transfection tools
such as viral vectors (Chen, 2019b), plasmids (Li F. et al., 2022),
and liposomes (Liu, 2021b) to genetically engineer parent cells,
thereby obtaining modified exosomes carrying specific molecules.
Tao et al. (2017) found that miR-140-5p-enriched exosomes

secreted by synovial mesenchymal stem cells (SMSCs) through
transfection technology significantly promoted chondrocyte
proliferation and migration, effectively alleviated symptoms in a
rat OA model, and did not compromise ECM secretion. Morente-
López et al. (2022) reported that EVs derived from UC-MSCs
with lentivirus-induced miR-21 inhibition effectively reduced
the levels of chemokines and cytokines in the serum of OA
animals and decreased the senescence-associated secretory
phenotype.

9.2 Production environment

Modulating the production environment of MSC-Exos for
engineering transformation has emerged as a highly promising
research direction, encompassing two major aspects: biochemical
factors and biophysical factors. In terms of biochemical regulation,
TNF-α pretreatment significantly enhances IPFP-MSC-Exos and
improves their therapeutic efficacy for OA (Wu et al., 2024).
MSC-Exos derived from curcumin-induced adipose tissue exhibit
enhanced antioxidant stress and anti-chondrocyte apoptosis
capabilities, thereby improving their therapeutic efficacy for OA
(Xu et al., 2022). Additionally, exosomes produced by strontium-
substituted calcium silicate-treated bone marrow mesenchymal
stem cells demonstrate a unique dual regulatory function,
promoting both osteogenesis and angiogenesis (Liu, 2021a).
Regarding biophysical regulation, studies have shown that hypoxia-
treatedMSCs not only increase exosome yield but also enhance their
ability to promote cell proliferation and differentiation (Pulido-
Escribano et al., 2022). Notably, MSC-EVs generated under hypoxic
conditions (Hypo-EVs) exhibit superior efficacy in OA cartilage
repair compared to exosomes produced under normoxic conditions
(Rong et al., 2021). Furthermore, Yan and Wu (2019) demonstrated
that UC-MSC-Exos cultured in a 3D hollow fiber bioreactor
not only show increased yield but also significantly enhanced
cartilage-protective effects.
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FIGURE 4
Engineering strategies for MSC-Exos. To enhance the therapeutic efficacy of MSC-Exos, various engineering strategies have been developed to
improve their yield, bioactivity, and bioavailability. It was created with BioRender (www.biorender.com).

9.3 Direct exosome engineering

Direct exosome engineering refers to the post-purification
process of modifying exosomes through physical, chemical,
or genetic methods to enhance their cargo or membrane
properties, thereby improving their targeting capabilities and/or
therapeutic efficacy. Some modification techniques originally
applied to parent cells can also be directly utilized on exosomes
(Zhu et al., 2024).

Zhao et al. (2023) discovered that cartilage-affinity peptide
(CAP)-conjugated exosomes derived from subcutaneous fat MSCs
could specifically deliver miR-199a-3p to target cells and deep joint
tissues, significantly impactingOAprogression. Zhuang et al. (2023)
developed superparamagnetic iron oxide nanoparticle (SPION)-
modified exosomes to load quercetin, leveraging magnetic force
(MF) to enhance quercetin’s water solubility and active targeting
ability, thereby improving islet protection. These findings serve
as valuable references, offering new strategies to enhance the
therapeutic efficiency of MSC-EVs through direct modification of
isolated EVs. Additionally, Luo et al. (2019)modified exosomes with
aptamers via Schiff base reactions between aldehydes and amino
groups, promoting bone repair by enhancing the targeting ability
of BM-MSCs. A lipid-based strategy involving the combination
of antagomir-188-loaded liposomes with exosomes from cells

engineered with the CXC motif chemokine receptor 4 gene
was employed to prevent the shift of BM-MSCs’ osteogenic
differentiation toward adipogenesis, without requiring covalent
modification (Hu et al., 2021). The underlying mechanism of non-
covalent methods involves electrostatic interactions between the
cargo and exosomes.

9.4 MSC-exos combined with biomaterials

The suboptimal therapeutic efficacy of OA is partly
attributed to the inefficient drug delivery within the knee
joint. By combining with biomaterials, MSC-Exos can achieve
effective retention at pathological sites, improve drug delivery
pathways, and thereby significantly enhance therapeutic outcomes
(You et al., 2023).

Hydrogels, owing to their injectability and cross-linking
capability under ultraviolet light, have become ideal biomaterials
for tissue engineering. Their raw materials include natural polymers
(such as polysaccharides like hyaluronic acid, alginate, and
chitosan, as well as proteins like collagen, gelatin, and silk fibroin),
synthetic polymers (such as polyglycolic acid, polycaprolactone,
and polylactic acid), and composite materials (Bahraminasab et al.,
2021). Research by Pang et al. (2023) demonstrated that gelatin
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methacryloyl hydrogel (GelMA) prolongs the release of MSC-
Exos and significantly enhances their therapeutic efficacy against
OA. Furthermore, advanced manufacturing methods such
as electrospinning, 3D printing, and microfluidic technology
have facilitated the development of nanogel/microgel porous
scaffolds (Pishavar et al., 2021), further enriching their synergistic
effects with exosomes. For instance, Yang et al. (Yang et al.,
2023) developed an enzyme-responsive smart hydrogel using
microfluidic chips by combining neovascularized bone matrix
metalloproteinase-1, self-assembling hydrogels, and exosomes
to synthesize injectable microgels. This hydrogel can specifically
recognize neovascularization and precisely release exosomes in a
spatiotemporal manner, promoting angiogenesis and osteogenesis.

Multidimensional modification strategies not only optimize the
functional properties of exosomes but also open up broader prospects
for their application in disease treatment. For example, Chen et al.
(2024) utilized CRISPR/Cas9 technology to develop a targeted
gene editing tool for fibroblast growth factor FGF18, delivered
via CAP-conjugated hybrid exosomes (CAP/FGF18-hyEXO). This
approach effectively activated the FGF18 gene in OA chondrocytes
at the genomic level in vivo. The study confirmed that this
strategy synergistically promotes cartilage regeneration, reduces
inflammation, and prevents ECM degradation both in vitro and in
vivo, demonstrating significant potential for clinical translation.

10 Discussion

Exosome-based cell-free approaches have shown promising
results in the treatment of OA and T2DM. However, research
on using MSC-Exos to treat diabetic OA remains limited. In
studies on diabetic complications, Jin et al. (2019) demonstrated
that AD-MSC-Exos alleviates diabetic nephropathy by promoting
podocyte autophagy flux and inhibiting apoptosis. Hu et al.
(2023) showed that hypoxia-preconditioned ADSC-Exos embedded
in hydrogels promote angiogenesis and accelerate diabetic
wound healing. Cao et al. (2021) proved that MSC-Exos inhibit
endothelial-mesenchymal transition and tube formation in
diabetic retinopathy. These studies provide valuable references for
exosome-based therapies targeting T2DM complicated by OA.

The biological functions of MSC-Exos vary depending on their
sources (Börger et al., 2017). Exploring the characterization ofMSC-
Exos across different subpopulations and accurately determining
their cargo content is crucial, as it may significantly alter their
impact on target tissues (Forsberg et al., 2020). In both preclinical
and clinical studies, the specific minimum effective dose of MSC-
Exos has not yet been determined. The most commonly used route
in preclinical studies is intravenous injection (Hassanzadeh et al.,
2021), along with intraperitoneal and subcutaneous injections. For
OA treatment, intra-articular injection is employed (Do et al., 2020).
There is an urgent need to standardize the parental MSC source,
therapeutic dose, and administration routes forMSC-Exos products.

The application of exosomes as biologics in clinical settings
faces multiple challenges, including standardization, safety, and
quality control issues, such as the lack of standardized methods for
collection and isolation, the inherent heterogeneity of exosomes,
and contamination from exogenous sources. To ensure the safety
and efficacy of clinical-grade exosome preparations, it is essential

to adhere to Good Manufacturing Practice (GMP) protocols and
use serum-free media to avoid animal-derived contamination. By
studying the mechanisms of action of exosomes, regulating their
key active components, and employing bioengineering techniques
to modify exosome phenotypes or contents, therapeutic efficacy can
be enhanced while reducing adverse effects (Ferreira et al., 2022).
Additionally, screening exosome biomarkers (e.g., surface receptors)
and optimizing isolation and purification methods can help obtain
more homogeneous and potent exosome populations (Chen et al.,
2022). In the future, a deeper understanding of the mechanisms
of action, along with the establishment of standardized production
processes and quality control strategies, will further unlock the
potential of exosomes in clinical applications.

Natural exosomes have limitations such as insufficient secretion,
poor targeting, short retention time, and heterogeneity (Zhu et al.,
2024), which hinder their use in large-scale clinical trials. To achieve
therapeutic effects, MSC-Exos need to carry sufficient doses of
bioactive factors (such as proteins ormiRNAs)with functional activity
to effectively trigger biological responses in target cells (Toh et al.,
2018). For example, miRNA content can be enriched through
methods such as endogenous or exogenous loading. Additionally,
modifying exosomes using bioengineering techniques can further
enhance their bioactivity and therapeutic efficacy. However, it is
important to note that while the design of engineered exosomes holds
unlimited potential, wemust also consider issues such as their loading
efficiency, differentiation from natural exosomes, biocompatibility
when combined with biomaterials, and potential adverse effects that
may arise from engineered exosome therapy.

11 Conclusion

MSC-Exo therapy represents a highly promising cell-free
therapeutic approach.The application of bioengineering technologies
has significantly enhanced the therapeutic efficacy of MSC-Exos.
Further research is needed to elucidate the mechanisms underlying
diabetic OA, establish standardized criteria for evaluating therapeutic
effects and safety, optimize engineered exosome treatment strategies,
and accelerate the clinical translation of MSC-Exos.
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Glossary

ADAMTS Aggrecanases with thrombospondin motifs

AD-MSC-Exos Adipose-derived mesenchymal stem cell-derived exosomes

AGEs Advanced glycation end-products

Akt Protein kinase B

BM-MSCs Bone marrow-derived mesenchymal stem cells

BM-MSC-Exos Bone marrow mesenchymal stem cell-derived exosomes

CAP Chondrocyte-affinity peptide

ECM Extracellular matrix

EVs Extracellular vesicles

GLP-1-RAs Glucagon-like peptide-1 receptor agonists

GLUT Glucose transporter protein

ILVs Intraluminal vesicles

IPFP-MSC-Exos Infrapatellar fat pad mesenchymal stem cell-derived exosomes

IR Insulin resistance

IRS-1 Insulin receptor substrate-1

KOA Knee osteoarthritis

miRNAs microRNAs

MMPs Matrix metalloproteinases

MSCs Mesenchymal stromal/stem cells

MSC-Exos Mesenchymal stromal/stem cell-derived exosomes

mTOR Mechanistic target of rapamycin

MVBs Multivesicular bodies

NLRP3 NOD-like receptor family pyrin domain containing 3

OA Osteoarthritis

PI3K Phosphoinositide 3-kinase

PKC Protein kinase C

ROS Reactive oxygen species

SIRT Sirtuin

SMSC-Exos Synovial mesenchymal stem cell-derived exosomes

SOX9 SRY-box transcription factor 9

STZ Streptozotocin

TNF Tumor necrosis factor

T2DM Type 2 diabetes mellitus

UC-MSCs Umbilical cord-derived mesenchymal stem cells

UC-MSC-Exos Umbilical cord mesenchymal stem cell-derived exosomes

VEGF Vascular endothelial growth factor.
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